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Abstract

Background: Determining the correct number of positive immune cells in immunohistological sections of colorectal cancer
and other tumor entities is emerging as an important clinical predictor and therapy selector for an individual patient. This
task is usually obstructed by cell conglomerates of various sizes. We here show that at least in colorectal cancer the inclusion
of immune cell conglomerates is indispensable for estimating reliable patient cell counts. Integrating virtual microscopy and
image processing principally allows the high-throughput evaluation of complete tissue slides.

Methodology/Principal findings: For such large-scale systems we demonstrate a robust quantitative image processing
algorithm for the reproducible quantification of cell conglomerates on CD3 positive T cells in colorectal cancer. While
isolated cells (28 to 80 mm2) are counted directly, the number of cells contained in a conglomerate is estimated by dividing
the area of the conglomerate in thin tissues sections (#6 mm) by the median area covered by an isolated T cell which we
determined as 58 mm2. We applied our algorithm to large numbers of CD3 positive T cell conglomerates and compared the
results to cell counts obtained manually by two independent observers. While especially for high cell counts, the manual
counting showed a deviation of up to 400 cells/mm2 (41% variation), algorithm-determined T cell numbers generally lay in
between the manually observed cell numbers but with perfect reproducibility.

Conclusion: In summary, we recommend our approach as an objective and robust strategy for quantifying immune cell
densities in immunohistological sections which can be directly implemented into automated full slide image processing
systems.
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Introduction

In situ immunohistochemical staining of tumor-infiltrating

immune cells against the immune cell surface molecules CD3,

CD8, CD45RO and Granzyme B in large cohorts of human

colorectal cancers [1–3] supports the hypothesis that the adaptive

immune response influences the behavior of human tumors. It is

important to note that the observed immune cell densities were

better predictors of prognosis than the classical TNM classification

[4–6], initiating a debate on the feasibility of individualized

prognosis prediction based on immune cell densities. Early data

also indicates a relation of immune cell density to chemotherapy

efficacy [7], making detailed quantification of immunologic tumor

infiltrating cells even more attractive for clinical decisions. Tumor-

infiltrating immune cells therefore represent a valuable prognostic

tool in the treatment of colorectal cancer, a high density of

immune cells being associated with good outcome independently

of other established prognostic markers. In other tumor entities the

prognostic value of these immune cells could also be demonstrated

[8–12]. Immunohistochemical quantitative analysis of immune cell

surface markers can therefore be regarded as an important

prognostic and predictive tool, requiring a high standard of

precision and reproducibility for individualized patient care.

Virtual microscopy (VM) represents an important technological

advancement in histology as it allows for the first time the

automated high throughput microscopy of complete microscopic

slides. By its ability to automatically microscope a full glass slides,

VM can deliver unprecedented spatial expression data, visualizing

spatial heterogeneity of histological parameters on the level of the

individual patient. The capabilities of the new VM technology

facilitate the solution of some long standing problems in diagnostic

histology.
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Here we study the contribution of VM to the quantitative

analysis of immune cell densities which is regularly obstructed by

the presence of immune cell conglomerates. Traditionally, manual

cell counts by observers are regarded as the gold standard in

histopathological quantification. But for independent observers it

is frequently rather difficult to reproduce quantities of cell densities

roughly estimated by others [13,14]. This is especially the case

with the difficult estimation of the number of cells contained in

complex cell conglomerates (see figure 1), leading to incomplete

evaluations of slides [15]. Instead, combining full slide scanning by

VM with automatic whole slide image processing provides the

basis for developing an algorithmic solution for estimating these

cell conglomerates. On the one hand such an algorithm allows the

automatic evaluation of large batches of immunohistological slides

in an automatic high-throughput manner. On the other hand, it

also ensures the comprehensive, objective, reproducible and

quantitative evaluation of the respective slides. In this article we

present such an algorithmic approach which yields robust and

reliable estimations of cell densities in even in large cell

conglomerates.

Materials and Methods

Tissue Selection
The presented analysis comprises 20 samples from colorectal

cancer primary tumors, 12 liver metastases, 10 normal colon

mucosa and 10 liver samples. Approval from the medical ethics

committee at the University of Heidelberg was obtained and

written informed consent was obtained from all patients.

Immunohistochemical Staining
Tissue specimens were immunohistochemically analyzed for

their overall infiltration with T cells (CD3-positive cells). Tissue

sections (2 mm) were prepared from formalin-fixed, paraffin-

embedded material. After deparaffinization and rehydration, the

slides were boiled in 10 mM citrate buffer (pH 6) for 15 minutes to

retrieve the antigens. The endogenous peroxidase activity was

blocked by incubation with 0.6% H2O2 in methanol for 20

minutes. The sections were blocked with 10% normal horse serum

(VectastainH Elite ABC kit, Vector, USA). Mouse monoclonal

antibodies recognizing human CD3 (1:50 dilution, clone PS1,

Acris, Germany). This antibody was applied as primary antibody

at room temperature for 2 hours. The slides were incubated with a

biotinylated secondary antibody (1:50 dilution, horse-anti-mouse

IgG, VectastainH Elite ABC kit, Vector, USA) for 30 minutes at

room temperature and AB reagent was applied according to the

manufacturer’s instructions (VectastainH Elite ABC kit, Vector,

USA). The antigen detection was performed by a color reaction

with 3,3-di-amino-benzidine (DAB+ chromogen, DakoCytoma-

tion, USA). The sections were counterstained with hematoxylin

(AppliChem, Germany) and mounted with Aquatex (Merck,

Germany).

Evaluation of Immune Cell Densities
From twenty sections across primary colorectal cancer, ten

sections of normal colon mucosa, ten sections of normal liver and

twelve sections of liver metastases a total of 100 samples of single

CD3 positive T cells were measured manually for their area (using

the Hamamatsu NDP viewer software).

All slides were scanned using the NDP Nanozoomer HT from

Hamamatsu Photonics. The NDP Nanozoomer produces virtual

images of full tissue scans which have been analyzed visually as

well as by automatic image processing algorithms. The full tissue

sections allow large scale histological evaluations with high

precision across the complete section. Thus, ambiguities due to

varying cell densities across the tissue can be avoided. We used a

resolution of 0.46 mm/pixel (406).

Figure 1. Conglomerates and single cells. Liver metastasis of colorectal cancer with strong T cell infiltrate (CD3 staining: dark red with
hematoxylin counterstaining, A: overview, digital magnification 106, B: conglomerate (magnification 406), C: single cells, (magnification 406).
doi:10.1371/journal.pone.0007847.g001
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Visual analysis of the slides was done using the Hamamatsu

NDP viewer. At the invasive margin of colorectal cancer

metastases or primary tumors, regions with visually high immune

cell densities and conglomerates (each field with 1 mm2 size) were

selected randomly. Manual evaluation of stained immune cells was

performed (in duplicates) by two independent observers. Varia-

tions in the identified cell quantities between observers were noted

(see table 1). The results for each observer were expressed as the

number of positive stained cells/mm2. Despite the fact that many

different image processing systems could be used, we here

implemented the procedure for assessing immune cell densities

in cell conglomerates using the Visiomorph software (VisioMorph,

Visiopharm, Denmark).

Statistical Evaluation
Statistical analyses were performed with SPSS 16.0 software

(SPSS, Chicago, IL). For the two-sample comparison of the

distribution of continuous variables, exact Mann-Whitney U-tests

were used. When comparing different tissues, the exact Kruskal-

Wallis test was used. Results with two-tailed P values ,.05 were

judged to be statistically significant.

Results

Measurement of Cell Area Sizes in Sections with Isolated
CD3 Positive T Cells

From twenty sections across primary colorectal cancer, ten

sections of normal colon mucosa, ten sections of normal liver and

twelve sections of liver metastases a total of 100 samples of single

CD3 positive T cells were measured manually for their area (see

methods). To avoid specific tissue biases, a quarter of the

measurements was done in liver tissue, a quarter in metastatic

tissue, one quarter in colorectal primary tumors and one quarter in

normal mucosa. No significant differences in area sizes were seen

between the four tissues (Kruskal-Wallis test, p = 0.581). The

resulting average area of an isolated T cell comprised 51 mm2

Table 1. Cell counts of T cells (CD3+) in thirty different fields of 1 mm2 size.

Field # 1 2 3 4 5 6 7 8 9 10

Manual1 157 184 223 336 384 387 375 648 672 493

Manual2 92 171 207 238 272 422 409 617 476 457

Automated 80 172 208 252 288 366 406 486 504 524

Abs. Diff. Man. 65 13 16 98 112 35 34 31 196 36

% Diff. Man. 41% 7% 7% 29% 29% 9% 9% 5% 29% 7%

Field # 11 12 13 14 15 16 17 18 19 20

Manual1 546 600 692 751 700 729 854 872 924 1080

Manual2 502 571 642 697 738 895 605 978 748 855

Automated 530 574 654 710 764 789 798 847 852 860

Abs. Diff. Man. 44 29 50 54 38 166 249 106 176 225

% Diff. Man. 8% 5% 7% 7% 5% 23% 29% 12% 19% 21%

Field # 21 22 23 24 25 26 27 28 29 30

Manual1 814 906 1214 991 1051 1172 1383 1472 1255 1981

Manual2 858 1221 933 1381 1484 1078 1190 1106 1514 2089

Automated 888 963 985 1073 1117 1121 1213 1313 1334 2161

Abs. Diff. Man. 44 315 281 390 433 94 193 366 259 108

% Diff. Man. 5% 35% 23% 39% 41% 8% 14% 25% 21% 5%

Fields with maximum differences between manual cell counts are highlighted.
Abs. Diff. Man. = Absolute Difference between Manual1 and Manual2, % Diff. Man. = Percentage Difference between Manual1 and Manual2.
doi:10.1371/journal.pone.0007847.t001

Table 2. Cell area sizes of T cells (CD3+) measured in
histological sections of different tissues with 2 mm thickness.

Liver Liver metastases Primary CRC Mucosa

57,2 52,6 39,9 53,2

62 47,8 50,7 61

62,6 64,7 37,8 49,3

29 47,7 46,4 66,1

33,4 53,6 32,4 51,6

48,8 53 40,8 63,6

43,4 59 62,6 50

54,8 41,3 80,1 49,6

58,8 49,7 53,8 59,8

41,1 62,2 47,6 69

46,8 43,4 55,3 70,5

42,6 46,6 75,9 47,2

60,2 46,3 58,2 46,6

56,2 63,2 48,1 37,8

42,7 37,1 67,3 64

64,2 59 57,6 60,1

61,3 48 45,5 36,7

50,5 33,9 59,3 39,3

40,7 37,3 51,1 38

51,2 46,8 46,8 56,2

63,7 46,9 50,5 52,9

46,9 44,8 61,3 42,4

39,8 46,7 76 27,5

42,6 62,4 55,6 38,3

31,5 50,1 50 59,3

doi:10.1371/journal.pone.0007847.t002
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(range being 28–80 mm2; standard deviation 10.65 mm2). The

details on all measured cell areas in different tissues can be found

in table 2.

Comparison of the Manual Cell Counts for Two Observers
on Cell Conglomerates

Figure 2 depicts the results for the individual observers and for

the automated cell counting algorithm. Table 1 shows the

according quantitative values measured for the two observers

and the described automated algorithm as well as the observed

differences. With increasing numbers of stained cells the

divergence between the two observers with respect to the resulting

cell densities was remarkable (partly exceeding 400 cells/mm2

difference). We calculated the variability as ranging from 5 to 41%

depending on the area size of the conglomerate. As can be seen in

figure 1, the estimation of cell densities in conglomerates by visual

inspection is extremely difficult (see figure 1B) which explains the

partly large differences in the manual evaluations. Especially in

large conglomerates the estimation is not only time consuming but

also extremely biased by the individual observer’s ability to

estimate area sizes. The observers were allowed to repeat their

calculations but this did not diminish the variability. A

representative example is shown in figure 3, where the observer

repeated the cell count for a single conglomerate six times. As

therapy selection is increasingly done depending on exact

thresholds, this clearly emphasizes the above mentioned funda-

mental need for a reliable method capable of objectively

estimating cell densities in conglomerates. To estimate the

importance of also incorporating conglomerates (besides single

cell counts) into quantitative immunhistological cell counts

compared to only considering the single cells we analyzed 10

fields of 10 different patients for single cells and for conglomerates

(figure 4). The data show massive differences between the

complete analysis and single cell counts only, rendering the

inclusion of conglomerates in quantitative slide evaluations

mandatory.

Figure 2. Cell counts for 30 different fields with one ore more conglomerates, each evaluated by two observers (‘‘Manual1’’ and
‘‘Manual2’’) and the here presented algorithm (‘‘Automated’’). Note the up to 41% variation between the observers at high cell counts
(1000-1.500). For quantitative data comparison see table 1.
doi:10.1371/journal.pone.0007847.g002

Figure 3. Repeated quantification (six times) of a large
conglomerate by one observer. Triangles show single values for
each repetition and thin vertical lines indicate range, thick horizontal
line indicates average value.
doi:10.1371/journal.pone.0007847.g003
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Details of the Automated Algorithm
The schematic approach is depicted in figure 5. The here described

conglomerate and cell quantification procedure is embedded in a

complex automated image processing pipeline including segmentation,

color deconvolution and analyses of cellular morphology. The detailed

implementation can vary between different computational image

processing systems (Image J, VIS, Definiens, Alphelys etc.) and the

respective implementation details are beyond the scope of this paper.

Moreover, such algorithms are dependent on the specific tissue the

respective target antigen is studied in. Specific explanations regarding

image processing are therefore omitted here, because any implemen-

tation should somehow lead to the detection of single cells and

aggregated cell clusters (‘‘conglomerates’’). Instead, here we present a

general procedure for dealing with conglomerates in quantitative tissue

analysis, independent of individual systems.

In dependence on the immunohistological detection system, every

CD3 positive T cell is specified by a characteristic color and shape

(‘‘roundness’’). These two parameters were used to identify CD3

positive cells in the tissue (‘‘target objects’’) either in isolated form or in

form of conglomerates. Based on the target objects’ area size it was

classified into ‘‘single T cells’’ or ‘‘T cell conglomerates’’. If the area

size exceeded triple the observed lower range of area (28 mm2 *

3 = 84 mm2) the target object was classified as ‘‘T cell conglomerates’’,

smaller objects were regarded as ‘‘single T cells’’ if within the normal

range of T cell sizes. ‘‘Single T cell’’ objects were counted per field

(1 mm2 each). For a ‘‘T cell conglomerate’’ its area was divided by the

average area of a single T cell (51 mm2) to obtain an estimate of the

underlying cell density yielding an estimated T cell number. These T

cell numbers were added to the number of ‘‘single T cell’’ objects to

obtain a final estimation of cell densities for the given field.

Comparison of the Results from the Automated
Algorithm with the Manually Observed Numbers

Using 106 digital magnification, all manually counted fields

(1 mm2 each) were re-analyzed using an automated algorithm

based on the following approach. The manually obtained cell

densities varied greatly across the two observers and accounted for

a deviation of the estimated cell numbers of approximately 10%.

The results are in line with other reports on inter-observer

Figure 4. Impact of cell counts from conglomerates on total cell counts in 10 individual 1 mm2 fields from sections of 10 different
patients. Omitting conglomerates in the quantification would substantially distort the total cell counts.
doi:10.1371/journal.pone.0007847.g004

Figure 5. Exemplary workflow for the described algorithm.
Stained immune cells are either counted individually (where possible)
or the number of cells is estimated by the conglomerate surface. Both
results are added.
doi:10.1371/journal.pone.0007847.g005

Quantifying Cell Conglomerates

PLoS ONE | www.plosone.org 5 November 2009 | Volume 4 | Issue 11 | e7847



variability in histology stating even higher deviations between two

observers [13]. This marked high inter-observer deviation is

avoided with the automated system. Figure 2 shows the observed

cell numbers for two independent observes in context of the

performed corresponding automated analysis. Each field is 1 mm2

and contains one or more conglomerates and scattered single CD3

positive T cells.

Discussion

In diagnostic pathology the accurate determination of cell counts

is of substantial importance as histological cut-offs are increasingly

used as a basis for determining a patient’s individual therapy

strategy. Therefore, quantitative and objective methods are of

primary concern in diagnostics and clinical decisions [16], especially

in light of the accelerating automation of diagnostic routines. More

and more image processing algorithms are used for an automatic

pre-evaluation of tissue slides as a support for the diagnosing

pathologist [17]. In immunological evaluations, cell counting is

generally limited by the underlying quality and structure of the

studied tissue sections. For example, overlapping cells are of concern

when assessing tissue sections of greater thickness. The sections used

here had a thickness of 2 mm, thus minimizing the possible overlap

between immune cells. T cells have a diameter of 6 to 15 mm.

Therefore, the here described procedure is untroubled also by

densely packed cell conglomerates (see figure 6).

We here dealt with the problem of incorporating complex cell

conglomerates into histological cell count cut-off studies. The

presented data shows an enormous impact of conglomerates on

calculated cell densities for a given field (see figure 4). Simply

ignoring conglomerates as it is done in some recent studies [15] is

not acceptable because this leads to severe bias, which is especially

devastating in clinically relevant settings where accurate evaluation

with regard to cut-offs may be crucial to patient treatment or

survival. In our view accurate counting also in conglomerates is

indispensible for determining quantitative immunological patient

responses. Image processing approaches including complex

mathematical operations dissecting the conglomerates by finding

local minimal and maximal staining intensities in an image

(‘‘watershed algorithms’’) could be considered, but generally are

prone to severe errors due to unavoidable staining variability. Our

approach here uses the reliable statistical and biological basis of

immune cell size to calculate cell densities in conglomerates. It is

applicable with widely used available software image analysis

systems (ImageJ, VisioMorph, Definiens, etc.) and can imple-

mented straight forward. The rather straight-forward mathemat-

ical image processing operations avoid complex computational

operations and parameter settings. In this respect, our approach is

very attractive especially for high-throughput quantifications of

immunohistological evaluations. In summary we have shown that

(1) quantification of immune cell conglomerates is indispensable

when quantitatively evaluating immunohistological slides for

immune cell markers and (2) an intuitive, high-throughput capable

procedure for the objective and robust quantification of immune

cell conglomerates.
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