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Abstract

Background: One of the great unresolved controversies in paleobiology is whether extinct dinosaurs were endothermic,
ectothermic, or some combination thereof, and when endothermy first evolved in the lineage leading to birds. Although it
is well established that high, sustained growth rates and, presumably, high activity levels are ancestral for dinosaurs and
pterosaurs (clade Ornithodira), other independent lines of evidence for high metabolic rates, locomotor costs, or
endothermy are needed. For example, some studies have suggested that, because large dinosaurs may have been
homeothermic due to their size alone and could have had heat loss problems, ectothermy would be a more plausible
metabolic strategy for such animals.

Methodology/Principal Findings: Here we describe two new biomechanical approaches for reconstructing the metabolic
rate of 14 extinct bipedal dinosauriforms during walking and running. These methods, well validated for extant animals,
indicate that during walking and slow running the metabolic rate of at least the larger extinct dinosaurs exceeded the
maximum aerobic capabilities of modern ectotherms, falling instead within the range of modern birds and mammals.
Estimated metabolic rates for smaller dinosaurs are more ambiguous, but generally approach or exceed the ectotherm
boundary.

Conclusions/Significance: Our results support the hypothesis that endothermy was widespread in at least larger non-avian
dinosaurs. It was plausibly ancestral for all dinosauriforms (perhaps Ornithodira), but this is perhaps more strongly indicated
by high growth rates than by locomotor costs. The polarity of the evolution of endothermy indicates that rapid growth,
insulation, erect postures, and perhaps aerobic power predated advanced ‘‘avian’’ lung structure and high locomotor costs.
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Introduction

The metabolic physiology of dinosaurs and their extinct relatives

– whether they were ectothermic (‘‘cold blooded’’) like modern

reptiles, or endothermic (‘‘warm blooded’’) like birds and mammals

– is important for reconstructing their ecology, behavior, and fate

[1–6]. Endothermic animals are better able to inhabit a wide range

of climates and maintain higher levels of activity than ectotherms,

and thus much of our understanding of dinosaur paleoecology and

evolution hinges on this critical distinction. Evidence for competing

views of dinosaur metabolic physiology has come from a range of

sources, including the anatomy of ventilatory organs [7–9], the

apparent absence of ossified respiratory turbinates [10], recon-

structed posture, habitat, and ecology [2,3,11–13], analogies with

extant taxa based on experimental studies [13], the presence of

feathers or filamentous integument [14,15], and especially bone

histology and growth [16–20], with much recent work suggesting at

least some degree of endothermy.

High growth rates and perhaps activity levels seem to have been

ancestrally present in the clade Ornithodira (dinosaurs, pterosaurs,

and all descendants of their most recent common ancestor)

[21,22], in addition to perhaps some form of potentially-insulative

filamentous integument [15]. Thus these characteristics apparently

predate the parallel evolution, in pterosaurs and saurischians, of

advanced respiratory systems (e.g., expanded air sacs and one-way

air flow; [7–9]). Many studies take these features to indicate high

metabolic rates and thus endothermy (or at least intermediate

stages in its evolution) in extinct dinosaurs and other ornithodirans

[6]. The question remains whether endothermy evolved earlier in

Ornithodira, or independently in Pterosauria and Saurischia [e.g.,

19]. Some researchers remain unconvinced of endothermy even in

non-ornithurine birds (e.g. [10,16]) or tentatively favor more

complex scenarios involving multiple origins of endothermy [12].

Independent evidence would help distinguish between these

alternative hypotheses.

In modern mammals and birds, endothermy incurs an energy

cost of maintaining a high basal metabolic rate, but provides a

substantial advantage in aerobic capacity over ectothermic

reptiles. Whereas endotherms and ectotherms are capable of

similar peak power output during short bursts, the maximum
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aerobically sustained metabolic rate, also termed ‘‘maximum

aerobic power’’ or VO2max, is an order of magnitude greater for

endotherms [23]. Consequently, sustained locomotor activity,

which incurs similar costs for both groups [24], is relatively

infrequent and limited to moderate running speeds in extant

ectotherms [1,25]. While increased locomotor activity might not

have provided the initial evolutionary advantage for endothermy

[26,27], sustained aerobic activity provides a clear distinction

between modern endothermic and ectothermic vertebrates; the

metabolic physiology of modern ectothermic reptiles cannot

sustain the aerobic activity commonly seen in birds and mammals.

To assess the metabolic physiology of extinct dinosaurs and

thereby test whether individual taxa fit endothermic or ectother-

mic models better, we compared estimated metabolic rates

(oxygen consumption; mlO2 s21) during walking and running in

thirteen bipedal dinosaurs and one dinosauriform outgroup,

Marasuchus (‘‘Lagosuchus’’; Sereno and Arcucci, 1994) to maximum

aerobic power, VO2max (mlO2 s21), for living endotherms and

ectotherms. We used two recently developed methods linking

locomotor anatomy to walking and running cost to estimate

locomotor metabolic rates for dinosaurs (Fig. 1). Since walking and

slow to moderate-speed running are aerobically sustainable in

most modern amniotes [1,25,28], ectothermy in extinct species

would be supported if their predicted locomotor costs at these

moderate speeds fall within the aerobic capacity seen in living

ectotherms. Alternatively, if the aerobic power needed for walking

and slow running in these extinct species is predicted to exceed the

maximum aerobic power for ectotherms, this would suggest these

species were endothermic. We focused on bipedal species, because

issues of weight distribution between fore- and hind limbs make

biomechanical analysis of extinct quadrupeds more difficult and

speculative.

Results

Surprisingly, the estimated locomotor metabolic rates for many

dinosauriforms, especially larger taxa in our sample, consistently

exceeded the 95% confidence interval for maximum aerobic

power, VO2 max, seen in extant ectotherms (Figure 2). Locomotor

power requirements (mlO2 s21) estimated from hip height

exceeded ectothermic capabilities at moderate running speeds

(Fr 1.0) for all species, and at a slow run (Fr 0.50) for all but the

smallest species (Archaeopteryx). Even during walking (Fr 0.25), the

required metabolic output for the five largest species (a juvenile

Gorgosaurus, Dilophosaurus, Plateosaurus, Allosaurus, and Tyrannosaurus)

exceeded the range of aerobic capacity seen in extant ectotherms

(Figure 2). Similarly, locomotor cost estimates based on active

muscle volume, Vmusc, exceeded ectothermic capabilities at all

walking and running speeds for the five largest species, and at

moderate running speeds in the small, presumably active bipeds,

Heterodontosaurus, Compsognathus and Velociraptor. Only the smallest

species, Archaeopteryx, had estimated locomotor metabolic rates that

fell within or near the range of VO2max seen in modern

ectotherms, for all but the fastest speeds using both hip height and

Vmusc approaches (Figure 2; Table 1).

Differences between hip height- and Vmusc-based estimates of

dinosauriform locomotor cost highlight the different assumptions

underlying each method. The reconstructed posture used to

estimate Vmusc employs more extended joints than expected for

the smallest animals in our analysis [29]. More crouched poses,

like those of similarly-sized extant species [29], would result in

lower effective mechanical advantage (EMA) for the muscles, and

hence produce higher estimates of locomotor cost [30]. This

suggests that hip-height based estimates, which assume that EMA

values for small dinosauriforms are similar to similarly-sized

modern vertebrates, are likely more accurate for the small species

in our dataset. Notably, hip height-based estimates consistently

placed slow and moderate running costs for the smaller dinosauri-

forms within the endothermic range of aerobic output (Table 1,

Figure 2). Conversely, the hip height approach assumes extremely

extended limb postures for the largest dinosaurs, like those of

walking elephants and other similarly-sized extant vertebrates.

Such extended, ‘‘columnar’’ limb postures are incommensurate

with the joint morphology and probable limb configuration of

these species [5,31], suggesting that the Vmusc approach, which

provides higher estimates of cost, is likely more accurate for the

largest dinosaurs in our sample.

Phylogenetic analysis of our data supports the hypothesis that an

endothermic level of metabolism was needed to power at least slow

running gaits in all Dinosauriformes (Figure 3). If a conservative

approach is taken, using only locomotor cost estimates for slow

walking, for which our two methods identify the same set of taxa as

endothermic, then the hypothesis that endothermy arose inde-

pendently at least three times (in Sauropodomorpha, Tetanurae

and Neornithes) and was lost once (in Coelurosauria) is favored.

This is at odds with insulatory and histological evidence for

endothermy at least in coelurosaurs (14,15,18,19,20,22), but would

correspond to some degree of coevolution of advanced ventilator

structure, large body size and endothermy. An alternative, less

conservative approach, using locomotor cost estimates for

moderate speed running from our simple hip height-based

Figure 1. Schematic of extensor fascicle length (lfasc), the GRF vector moment arm (R; segmental gravitational, but not inertial,
moments were also included but not shown here; see [48]), and the extensor (antigravity) muscle moment arm (r) for the hip joint.
These parameters were calculated at midstance for the antigravity muscle groups at the hip, knee, and ankle, and combined with step length
(estimated from hip height) to estimate the volume of muscle activated per meter travelled (Vmusc); see Methods. Joint angles and position of the
center of mass (yellow circle) are taken from Hutchinson [40]. Adapted with permission from original artwork by Scott Hartman.
doi:10.1371/journal.pone.0007783.g001
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method, supports the hypothesis that endothermic physiology and

aerobic power were ancestral for dinosauriforms.

Discussion

These results strongly suggest endothermy for larger (.20 kg)

bipedal dinosaurs, because other explanations require physiolog-

ical adaptations or locomotor limitations unseen in living

terrestrial vertebrates. For example, it might be proposed that

extinct dinosauriforms were ectothermic, but were able to achieve

a greater VO2max than modern reptiles. While the respiratory

physiology of dinosaurs has been the subject of much debate [1–

8,17,19], the latter proposal would require an aerobic scope

(VO2max/Resting Metabolic Rate) for the five largest species in

our sample of 30–90x resting rate, far exceeding the maximum

aerobic scope in our sample of modern ectotherms (14.5) and even

greater than the aerobic scope of most mammals (mean 12.9611.0

S.D.; max 61.9; see Table S2). Alternatively, it is possible that

Figure 2. A. Locomotor power requirements for dinosauriforms (aeroic power, mlO2/s) plotted on a graph of maximum aerobic power (VO2max,
mlO2/s), for extant endotherms (light red circles and shaded region) and ectotherms (blue circles and shaded region) versus body mass. Estimated
rates of oxygen consumption for dinosauriforms are calculated using the two methods described in the text for walking (Froude 0.25), slow running
(Froude 0.50), and moderate running (Froude 1.00) speeds (from left to right, Archaeopteryx, Marasuchus, Microraptor, Compsognathus, Lesothosaurus,
Heterodontosaurus, Coelophysis, Velociraptor, Gorgosaurus, Dilophosaurus, Plateosaurus, Allosaurus, Tyrannosaurus). White symbols are estimates from
hip height, black symbols are estimates from active muscle volume, Vmusc. The data points for Coelophysis and Velociraptor (both 20 kg) have been
separated slightly for clarity. The upper limit of maximum aerobic power for modern ectotherms (i.e., the upper 95% confidence limit) is indicated by
the upper boundary of the blue region; the upper limit for modern endotherms is indicated by the upper boundary of the red region. B. A similar plot
as in A showing log10 residuals from the ectotherm trendline.
doi:10.1371/journal.pone.0007783.g002
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extinct dinosaurs/dinosauriforms did not engage in sustained

locomotion, and instead used anaerobic metabolism to fuel short

locomotor bouts. However, while intermittent locomotion is often

used by modern lizards [32], this would suggest severely limited

locomotor performance relative to living reptiles because even

walking would need to be fueled anaerobically (Figure 2). Given

the high post-exercise metabolic costs incurred by intermittent

locomotion [32], utilizing an ectothermic ‘‘run now, pay later’’

strategy with such a high cost of transport would require

problematically long, inactive recovery periods, particularly in

the largest species. Finally, it could be argued that, by

extrapolating the modern ectotherm aerobic power limit to the

body size of large theropods, our approach underestimates the

aerobic limits for large reptiles. However, while caution must

always be used when extrapolating beyond the size range of

comparative data, we see no evidence that relationship between

aerobic capacity and mass changes at large body sizes among

ectotherms or among endotherms.

Figure 3. Evolution of locomotor cost and endothermy in Archosauria. A. Estimates from our Vmusc-based method for slow walking (Fr 0.25)
used to reconstruct the evolution of endothermy. Substantial size-related homoplasy is shown. B. Estimates from our hip height-based method for
moderate running (Fr 1.0) as a less conservative alternative to Fig. 2A. Endothermy is estimated as ancestral for at least Dinosauriformes.
doi:10.1371/journal.pone.0007783.g003
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Our results for smaller taxa are more ambiguous. The smallest

species in our sample are estimated to exceed ectotherm aerobic

capacities only at moderate running speeds (Fr = 1.0) and then only

marginally (Figure 2). Thus, it is possible that these species were

ectotherms that did not engage in sustained moderate or fast

running. However, given the active lifestyles suggested for these

species in other analyses [6,33,34] it is quite plausible that our

conservative approach did not examine costs for sufficiently high

speeds. This underscores an important limitation of our analysis.

Because both endotherms and ectotherms are capable of producing

low levels of aerobic power (i.e., below the upper power limit for

ectotherms), species that require low aerobic power to fuel walking

and moderate running speeds could be either endothermic or

ectothermic. If the aerobic demands at these speeds can be met with

either endothermic or ectothermic physiology, our approach cannot

distinguish which physiology is more likely. Thus, while species that

exceed ectothermic capabilities during slow and moderate locomo-

tion may be reliably classed as endothermic, species that do not

exceed ectothermic capabilities at these low and moderate speeds

cannot be classed exclusively as ectotherms.

Further work on habitual speeds for the smaller species in our

dataset would enable us to adjust the range of speeds modeled to

better reflect those commonly used, and would improve the utility

of this approach for those species. The limb poses of small

dinosauromorphs also warrant further investigation. If the

relatively extended postures input for our Vmusc-based estimates

of cost are correct, this may indicate that relatively upright

postures were a strategy that enabled small ectothermic dinosaurs

to sustain moderate running speeds.

Large dinosaurs have sometimes been argued to be the most

likely to have been ectothermic, based on ‘‘inertial homeothermy,’’

heat loss problems, and other constraints including ecological/

energetic ones [3,13,35,36]. Our study provides independent

results that support the reconstruction of endothermy in large

dinosaurs; indeed our method most clearly supports this inference

for larger taxa. Likewise, as growth rates and other factors

plausibly correlated with endothermy are reconstructed as having

relatively different patterns and constraints in smaller- and larger-

bodied taxa (e.g. [12,19,20,35,37], methods must quantitatively

test for size-dependent influences on such factors. Our method

does account for size effects, using a hip-height-based approach for

smaller taxa and a muscle volume-based approach for larger taxa.

Sensitivity analyses (Text S1) indicate that our estimates of

dinosaur locomotor cost are robust, especially for larger taxa. For

example, for Tyrannosaurus, increasing hip height to reflect

maximum joint extension only decreases hip height-based

estimates of cost by 1.3% (Text S1). Vmusc-based estimates are

similarly robust, with the high rates of muscle activation, and

hence locomotor cost that are expected for the range of plausible

musculoskeletal anatomy and poses in these species. Even for slow

running (Fr = 0.5), estimated aerobic power in the large dinosaurs

is 3 to 15 standard errors above the ectotherm VO2max trendline,

or 100–500% above the upper bound for ectotherm aerobic

power. In contrast, two-fold changes of the key unknown

parameters (especially estimated body mass, moment arms, or

lfasc), or moving the center of mass posteriorly to be coincident

with the hip joint, result in a maximal total reduction of only 65%

in estimated locomotor cost, still well above the ectotherm range

for aerobic capacity (Text S1). Further, the Vmusc approach works

for species with known aerobic capacities: it correctly places the

extinct moa (Dinornis) and moderate running speeds (Fr 0.5) for

extant birds (Gallus and Eudromia) in the endotherm range, and

walking and slow running in Iguana, Basiliscus, and Alligator in the

ectotherm range for VO2max (Figure S1).

Our findings concur with multiple lines of independent evidence

from bone histology [18,19,22] and cardiorespiratory anatomy

[7,8] indicating high growth rates and activity levels, if not

endothermy, in Dinosauriformes. As locomotor costs were

somewhat high for all dinosauriforms, this is consistent with the

hypothesis that endothermy was ancestral for the entire clade. As

pterosaurian outgroups had advanced bone histology [19,21] and

respiratory anatomy [38] as well as long muscular hindlimbs

similar to those of dinosauriforms (although bipedalism/quad-

rupedalism remains controversial), the most parsimonious hypoth-

esis is that endothermy first evolved in the shared common

ancestor of Pterosauromorpha and Dinosauromorpha, in the clade

Ornithodira. Since pterosaur anatomy, posture and gait remain

highly controversial, and basal pterosauromorph taxa are quite

small in body size, we considered it too speculative and ultimately

ambiguous to apply our methods to pterosauromorphs, but predict

that if such models could justifiably be done, our results would be

further strengthened. Likewise, our analysis does not include

quadrupedal dinosaurs, and therefore excludes many of the largest

dinosaurs, such as sauropods. Analyses of the postures and weight

distribution for these large quadrupeds are needed to test whether

the high aerobic power requirements for bipedal forms seen here

were common among large dinosauromorphs.

Our methodology adds a new, repeatable line of evidence that is

explicitly and quantitatively linked with well-demonstrated

metabolic mechanisms that underlie fundamental differences

between endothermic and ectothermic species, and its assumptions

are checked with sensitivity analysis. Our results provide new

support, in agreement with other strong lines of evidence

[2,3,11,14,18–20], that endothermy was present in many, if not

all, non-avian dinosaurs, especially larger taxa. Endothermy still

plausibly was plesiomorphic for Dinosauriformes or even

Ornithodira, but this is more ambiguous with our method. This

is because these taxa all tend to be small-bodied and thus have

relatively low estimated locomotor costs, close to the ecto/

endothermy boundary (or areas of overlapping costs between the

two groupings). Endothermy, linked to rapid growth and high

locomotor aerobic scope, may have presaged the evolution of

advanced ventilatory anatomy and function, providing a critical

locomotor advantage for dinosauromorphs, particularly in larger

species.

Materials and Methods

Dinosauriform Sample
We used recent work linking locomotor anatomy to cost to

determine the rate of energy expenditure during locomotion for

fourteen species of extinct dinosauriform archosaurs, including

Marasuchus and the giant flightless bird Dinornis (Table 1). We

applied two different methods, one simple and one more complex,

to do this.

Taxa were chosen for completeness, accessibility, and phyloge-

netic representation of the lineage from basal archosaurs to extant

birds. All basal dinosauriforms were assumed to be bipedal

although evidence for bipedalism is more ambiguous for some

taxa, particularly Marasuchus and Plateosaurus. Our sampling is far

from complete; inclusion of more basal dinosauromorphs/

dinosaurs, non-avian coelurosaurs, and basal birds could be

interesting but we feel we have captured the basic diversity in body

size and locomotor functional morphology with the chosen taxa.

Our results suggest that additional taxa would show results similar

to those in our sample with similar mass and locomotor anatomy.

Adding more basal dinosauromorphs, for example, would add

more values similar to those for Marasuchus. It is unclear how
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species with markedly different anatomy, such as large quadru-

pedal sauropods, would compare to the taxa in our sample.

Estimating Locomotor Cost from Limb Length
Our first, simpler method estimated the mass-specific locomotor

cost of transport, COT (mlO2 kg21 m21), using effective limb

length (i.e., hip height); the distance from the hip joint to the

ground while standing. In a recent comparison of locomotor cost

in 28 terrestrial species, including 11 mammals, 8 birds, and 5

reptiles, effective limb length explained 98% of the variation in

observed COT [39]. Moreover, once hip height was accounted for

there was no independent effect of body mass on cost, indicating

that effective limb length is the primary determinant of the well-

documented scaling of locomotor cost with body size [39]. Using

reconstructed initial limb postures for the dinosaurs in this analysis

(Figure 1; Table 1; [40]), we estimated COT from hip height as

COT (J kg21 m21) = 90.284(Hip Height, cm)20.77 following

Pontzer [39], and converted to mlO2 assuming 1 mlO2 = 20.1

Joules. This simple approach does not explicitly consider joint

mechanics or muscle anatomy in estimating locomotor cost,

effectively assuming that dinosauriforms followed the same scaling

relationships for muscle fascicle length, lfasc, and joint effective

mechanical advantage (EMA) as modern birds and mammals do

[29,39,41].

We multiplied COT by estimated body mass (Table 1) and

walking or running speed in order to calculate the whole-body rate

of oxygen consumption, VO2 (mlO2 s21) during locomotion. Note

that this approach gives the net rate of locomotor oxygen use,

above the baseline rate of resting metabolism. Speeds were tailored

to each species’ body size using the Froude number [42], where

Fr = speed2 (hip height ? g)21. VO2 was calculated at a walk

(Fr = 0.25), a slow run (Fr = 0.5), and a moderate run

(Froude = 1.0). Although running capacity in the largest theropods

remains controversial, biomechanical solutions exist that allow

slow to moderate-speed running (below Fr ,5) [31,40,42–44]

which we focus on here. Speeds and VO2 estimates are given in

Table 1.

Estimating Locomotor Cost from Active Muscle Volume
The second, more complex, method we used to reconstruct

COT and VO2 uses the volume of muscle activated to support and

propel the body while walking and running to predict the cost of

locomotion. Following previous experimental work [30,41,45–47]

that indicates a strong link between the cost of generating

muscular force to support body weight during the stance phase, we

developed a model predicting COT (mlO2 kg21 m21) from the

mass-specific volume of muscle activated, Vmusc (cm3 kg21 m21),

to support body weight during walking and running.

Using published data for 10 extant species (Table S1), the

volume of muscle activated per unit of ground reaction force

(GRF) was estimated as the mean fascicle length of the extensor

muscles, lfasc, divided by the joint’s effective mechanical advantage

or EMA [29,45–47]; the posture-dependent ratio of the antigravity

muscle and GRF moment arms (r and R, respectively) (Figure 1).

Where available, EMA for extant taxa was calculated using force-

plate-based measurements of R. For other extant species, EMA

was calculated using a free-body diagram of a supportive hindlimb

at mid-stance, including segmental gravitational (but not inertial;

negligible at midstance) moments [48]. The poses input for these

modeled taxa were based upon experimental data for running

animals at mid-stance [48].

Where possible, modeled poses were updated with more recent

kinematic data. For example, we used more accurate poses for

quadrupedal (walking) alligators [49] as well as running ostriches

[50], but note that these updated poses did not change our results

drastically when compared to prior reconstructions [48] (see Text

S1). Also note that the alligator pose used in [48] was bipedal and

not identical to the quadrupedal pose used here. Additionally,

predicting total muscle volumes solely from hindlimb data for the

extant quadrupeds simply assumes that the fore- and hindlimbs are

acting with similar mechanical advantage, activating similar

volumes of muscle to produce one Newton of GRF. This

assumption is supported by force-plate studies in other quadrupeds

(dogs [45] and quadrupedal chimpanzees [46]).

Using EMA and cadaver-based estimates of fascicle length, and

assuming an isometric muscle stress of 200 kNm22 [46] (plausible

variation of this parameter, 650%, does not affect our ultimate

results), we then estimated the volume of muscle needed to

produce one Newton of GRF during locomotion. The volume per

1N of GRF at each joint (hip, knee, and ankle) was summed, and

then multiplied by g/step length [41] to give the total mass-specific

muscle volume, Vmusc, activated per meter travelled [30,44–47].

In our validation test of this model, Vmusc predicted 98% of the

variation in net (i.e., with resting costs removed) mass-specific

COT (r2 = 0.98, df = 9, p,0.001; Figure S1a), indicating this

method reliably predicts locomotor cost across a range of

terrestrial vertebrates. This strong correlation remained even

when the smallest species, Bobwhite quail, was removed (r2 = 0.93,

df = 8, p,0.001, Figure S1b). Notably, estimates of Vmusc from

both force-plate studies and from inverse dynamic models fit the

Vmusc/COT trendline equally well (Figure S1). Note that degrees

of freedom reflect the number of species.

We then applied this validated model to the extinct dinosauri-

forms in our dataset in order to predict locomotor metabolic rate

for these extinct bipeds. Vmusc for each dinosaur species was

calculated as for extant species, using published reconstructions of

EMA and lfasc [40,48]; as in our extant sample, active muscle

volume for the metatarsophalangeal joint in our dinosaur sample

was excluded (see [40,48] for discussion). Non-avian dinosaur step

lengths were estimated from the ratio of step length to hip height

in modern birds (step length = 1.1hip height, ordinary least squares

(OLS) regression: r2 = 0.87, n = 6, p,0.01). We converted Vmusc to

COT using the OLS equation from our model, as COT = 0.0029

Vmusc+0.0598 (r2 = 0.93, df = 8, p,0.001; Figure S1B). As with hip

height based estimates of cost (above), we then multiplied COT by

estimated body mass and speed to give the whole-body rate of

oxygen consumption, VO2 (mlO2 s21) during locomotion.

Comparing VO2 for Dinosaurs to VO2max in Endotherms
and Ectotherms

VO2 for each dinosauriform was then compared to VO2max for

extant endotherms and ectotherms. VO2max data used in our

comparative sample were from measurements reported explicitly

as VO2max, from the maximum reported aerobic power elicited

during treadmill exercise studies, or, for three large varanid

lizards, estimated as five times the field metabolic rate [51]

measured in active, free-ranging animals. The use of maximum

reported aerobic power from exercise studies will tend to

underestimate true VO2max. While this will have the effect of

depressing the VO2max-Body Mass trendline (see below), this

effect is very small for the ectotherm group in our sample, since

most (89%) of ectotherm measurements are explicit measurements

of VO2max. The effect on the endotherm trendline is likely

somewhat larger; however, the critical comparison for our

dinosauriform taxa is to the ectotherm range.

For comparison with net locomotor aerobic power (mlO2/s)

predicted by our model, we subtracted resting metabolic rate

(RMR, Watts), estimated from body mass (kg) using published
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regressions (mammals [52]: RMR = 3.40mass0.75; birds [53]:

RMR = 3.79mass0.72; reptiles [54]: RMR = 0.69mass0.82; all

converted to mlO2 assuming 1 mlO2 = 20.1 Joules, from these

VO2max measurements, and then plotted them against body

mass. All measurements for ectotherms are from body tempera-

tures of 30u to 40uC; when multiple measurements were reported,

the measurement in the warmest environment (which typically is

the highest VO2max value) was used (see Table S2). As reported

previously [1], VO2max in our sample of endotherms (n = 62 birds

and mammals) was an order of magnitude higher than for

ectotherms (n = 37 reptiles) of similar body mass (endotherm

OLS trendline: VO2max = 1.23Mass0.93, ectotherm: VO2max =

0.16Mass0.85, Figure 2).

Next, VO2max and body mass were log10 transformed, and

compared using OLS in order to calculate the standard error of

estimate (SEE) for this relationship. The 95% confidence ranges

for ectotherm and endotherm VO2max were then calculated as

62SEE from their respective OLS trendlines. Due to the relatively

large sample sizes for endotherms and ectotherms, removal of the

largest and smallest taxa from this analysis had negligible effect on

the confidence intervals, and did not affect the outcome of our

dinosaur comparisons. Similarly, removal of ectothermic taxa for

which VO2max was estimated (Table S2) did not affect overall

results in identifying dinosauriforms as endotherms.

To test this approach for distinguishing ectotherms and

endotherms, we calculated Vmusc and COT as above for three

ectothermic and three endothermic species (Table S3). Our

approach correctly placed moderate running (Fr = 1.0) for two

extant birds, and all locomotion for the extinct moa, in the

endotherm range. Similarly, locomotor costs for the bipedal basilisk

lizard, and for slow running in quadrupedal iguanas and alligators,

were correctly placed in the ectotherm range (Figure S2).

The results of our sensitivity analyses for our models of

dinosauriform anatomy, posture, and locomotor cost are outlined

above, and are described in the Supporting Information (Text S1).

Phylogenetic Analysis: When Did Endothermic-Level
Locomotor Costs Evolve

To test whether endothermy predated advanced lung structure

in Saurischia, we mapped our quantitative data for our hip height

and Vmusc-based estimates of locomotor cost onto a consensus

phylogeny (Figure 3) of Archosauria, using Mesquite 2.6 [55] and

coding the data as qualitative character states (see below). The

phylogeny represents an informal ‘‘consensus’’ tree for Arch-

osauria [56–68]. Alternative placements for taxa such as

Dilophosaurus (i.e. moved to sister taxon with Coelophysis as [62,68]

rather than the initial position based on [64]) have minimal effects

on the results; the positions of other taxa are generally

uncontroversial. The data from Table 1 were used to code taxa

into four character states of two characters: one from the

conservative VO2 estimates of locomotor cost for slow walking,

and one from the generally higher hip height estimates of

locomotor cost. Character states were: (0) known ectotherms, (1)

uncertain metabolic status (i.e. locomotor cost estimates within

ectotherm 95% CIs), (2) likely endotherms (i.e. locomotor cost

estimates above ectotherm 95% CIs) and (3) known endotherms.

Parsimony-based character optimization was then implemented in

Mesquite to trace the evolution of these characters in Figure 3.

Supporting Information

Text S1 Explanation of methods and sensitivity analysis.

Found at: doi:10.1371/journal.pone.0007783.s001 (0.05 MB

DOC)

Table S1 Anatomical measurements, locomotor cost, step

length, and active muscle volume for species used to validate the

model.

Found at: doi:10.1371/journal.pone.0007783.s002 (0.05 MB

DOC)

Table S2 Body mass, estimated resting metabolic rate (RMR),

and maximum aerobic power (VO2max) for extant species. RMR:

estimated from mass; see text. Data type: VO2max, studies explicitly

measuring maximum aerobic power; exercise, from highest

reported aerobic power in a locomotion study; 5x FMR, five-

times the reported field metabolic rate for this species. Temp.:

environmental temperature for measurements of ectotherms.

Found at: doi:10.1371/journal.pone.0007783.s003 (0.18 MB

DOC)

Table S3 Anatomical parameters, mass-specific active muscle

volume (Vmusc) and mass-specific cost of transport (COT)

estimated for three endothermic and three ectothermic species.

Found at: doi:10.1371/journal.pone.0007783.s004 (0.02 MB

DOC)

Figure S1 Mass-specific active muscle volume (Vmusc) versus cost

of transport for the extant comparative sample. Black circles:

Vmusc data from force-plate trials, gray circles: Vmusc modeled

from free-body diagram analysis [45–47]; see Table S1.

Found at: doi:10.1371/journal.pone.0007783.s005 (0.17 MB

DOC)

Figure S2 Cost of locomotion at Fr 0.25, 0.5, and 1.0 for three

ectotherms (Basiliscus, Iguana, and Alligator, blue circles) and

three endotherms (Eudromia, Gallus, and Dinornis, red circles).

Symbols as in Figure 2a. Data in Table S3.

Found at: doi:10.1371/journal.pone.0007783.s006 (1.35 MB TIF)
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