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Abstract

Background: Hyperhomocysteinemia, characterized by increased plasma homocysteine level, is associated with an
increased risk of atherosclerosis. On the contrary, patients with Down syndrome appear to be protected from the
development of atherosclerosis. We previously found a deleterious effect of hyperhomocysteinemia on expression of
DYRK1A, a Down-syndrome-associated kinase. As increased expression of DYRK1A and low plasma homocysteine level have
been associated with Down syndrome, we aimed to analyze the effect of its over-expression on homocysteine metabolism
in mice.

Methodology/Principal Findings: Effects of DYRK1A over-expression were examined by biochemical analysis of methionine
metabolites, real-time quantitative reverse-transcription polymerase chain reaction, and enzyme activities. We found that
over-expression of Dyrk1a increased the hepatic NAD(P)H:quinone oxidoreductase and S-adenosylhomocysteine hydrolase
activities, concomitant with decreased level of plasma homocysteine in three mice models overexpressing Dyrk1a.
Moreover, these effects were abolished by treatment with harmine, the most potent and specific inhibitor of Dyrk1a. The
increased NAD(P)H:quinone oxidoreductase and S-adenosylhomocysteine hydrolase activities were also found in
lymphoblastoid cell lines from patients with Down syndrome.

Conclusions/Significance: Our results might give clues to understand the protective effect of Down syndrome against
vascular defect through a decrease of homocysteine level by DYRK1A over-expression. They reveal a link between the
Dyrk1a signaling pathway and the homocysteine cycle.
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Introduction

Homocysteine (Hcy) is a sulfur-containing amino acid formed

during the intracellular conversion of methionine via the

adenosylated compounds S-adenosylmethionine (SAM) and S-

adenosylhomocysteine (SAH). The formation of SAM is catabo-

lized by methionine adenosyl transferase (MAT). Once Hcy is

formed, it may be recycled to methionine after remethylation by

two different pathways. The first one involves methionine synthase

(MS), an enzyme that uses vitamin B12 (cobalamin) as an essential

cofactor and 5-methyltetrahydrofolate as the methyl donor. The

5-methyltetrahydrofolate is generated by 5, 10-methylene tetra-

hydrofolate reductase (MTHFR) [1]. The second pathway, which

occurs in liver and kidney, involves the enzyme betaine-

homocysteine methyltransferase (BHMT). Hcy may also undergo

condensation with serine to form cystathionine, which is catalyzed

by the vitamin B6-dependent enzyme cystathionine beta synthase

(CBS), the first enzyme involved in the transsulfuration pathway.

Cystathionine is subsequently hydrolysed to form cysteine which

can be, in turn, incorporated into protein or used to synthesize the

antioxidant glutathione. Hcy can also turn back to SAH via

reversal of the SAH hydrolase (SAHH) reaction [1].

Elevated plasma Hcy levels are well-recognized as an indepen-

dant risk factor for atherosclerosis in the coronary, cerebrovascular
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and peripheral arterial circulation [2]. Conversely, although Down

syndrome (DS) is associated with a great variety of phenotypes, the

incidence of atherosclerotic vascular disease seems to be low [3,4].

Even if the coronary arteries of DS patients were not completely

free of atherosclerosis, it was milder than in other mentally

retarded patients and in control subjects of the same age [5].

Moreover, healthy old DS patients showed some classical

biochemical risk factors for atherosclerosis but did not suffer from

clinical cardiovascular alterations [6]. Because many genetic

factors can be related to this reduction, the reasons for this

apparent protection against atherosclerosis remain unclear.

DYRK1A, which gene is localized on human chromosome 21,

is a protein kinase that belongs to an evolutionarily conserved

family of proteins known as DYRKs (dual-specificity tyrosine-(Y)-

phosphorylation regulated kinase) involved in diverse functions

ranging from development, growth to apoptosis [7–9]. On the one

hand, we recently reported a reduction of Dyrk1a protein level in

liver of CBS-deficient mice, a murine model of hyperhomocystei-

nemia [10], suggesting a link between DYRK1A related pathways

and the Hcy cycle. On the other hand, an increased expression of

DYRK1A and low plasma Hcy levels have been associated with

DS [6,11–13]. To analyze further the relation between DYRK1A

and Hcy metabolism, we used four transgenic models to

demonstrate the effect of the over-expression of Dyrk1a on Hcy

metabolism: a model of hyperhomocysteinemia due to CBS

deficiency [14] and three models with duplications of increasing

complexity and over-expression of Dyrk1a [15]: a BAC transgenic

with one copy of the murine Dyrk1a gene; a YAC transgenic for a

human chromosome 21 fragment carrying five genes including

DYRK1A; a partial trisomy 16 mouse carrying an extra copy of a

region of MMU16 syntenic for a region of HSA21 between

Mrpl39 and Znf295 containing 138 genes (also including Dyrk1a)

and considered to be a valid mouse model of human Down

syndrome [16].

Results

DYRK1A over-expression reduces the plasma Hcy levels
in mice

In order to analyze the over-expression of DYRK1A on plasma

Hcy levels, we used three models of mice, which overexpress not

only the murine gene, but also the human one. The transgenic line

(Tg) 152F7 contains five human genes including DYRK1A. The

Tg 189N3 contains the murine orthologue of DYRK1A. The

Ts65Dn line is the most complete of the commonly available

mouse models of the mouse partial trisomy 16 and exhibits

morphological and biochemical changes seen in DS [17,18]. We

first analyzed the overexpression of DYRK1A in liver of mice.

Male Tg 152F7 mice, two months of age, showed a two-fold

increase in gene expression of DYRK1A in the liver compared to

non-transgenic mice (Fig. 1A). Female Tg 189N3 mice, two

months of age, showed a 1.4-fold increase in gene expression of

Dyrk1a compared to non-transgenic mice (Fig. 1B). Male Ts65Dn

mice, six months of age, showed a 1.6-fold increase in gene

expression of Dyrk1a compared to non-transgenic mice (Fig. 1D).

Commensurate with the mRNA expression, protein expression of

DYRK1A was 1.3 fold, 1.6 fold and 1.7 fold higher in liver of Tg

152F7, Tg 189N3, and Ts65Dn mice respectively (Fig. 2 and

Figs. 1C, 1E).

In order to show the effect of over-expression of DYRK1A on

plasma Hcy level, serum of Tg 152F7 and heterozygous CBS-

deficient (Cbs+/2) mice crossbred with Tg 152F7 mice was analyzed

by HPLC. Tg 152F7 mice (Cbs+/+ Tg 152F7; Fig. 3A and Table 1)

have a Hcy level 1.4-fold lower than those of Cbs+/+ mice (Cbs+/+ Tg -;

Fig. 3A and Table 1). As previously shown [10], Dyrk1a protein

expression was decreased in liver of Cbs+/2 mice (Cbs+/2 Tg -; Fig. 2),

compared with protein extracted from Cbs+/+ mice (Cbs+/+ Tg -;

Fig. 2). Cbs+/2 mice crossbred with Tg 152F7 mice (Cbs+/2 Tg 152F7;

Fig. 2) also showed a 1.3 fold-increased hepatic expression of

DYRK1A compared to Cbs+/2 mice (Cbs+/2 Tg -; Fig. 2). As

expected, Hcy level of Cbs+/2 mice (Cbs+/2 Tg -; Fig. 3A) was 1.7-fold

higher than those of Cbs+/+ mice (Cbs+/+ Tg -; Fig. 3A). However,

Cbs+/2 mice crossbred with Tg 152F7 mice (Cbs+/2 Tg 152F7;

Fig. 3A) have a Hcy level 1.4-fold lower than those of Cbs+/2 mice

(Cbs+/2 Tg -; Fig. 3A). Tg 189N3 and Ts65Dn mice have also a Hcy

level 2.35-fold and 1.4-fold lower than those of non-transgenic mice

respectively (Table 1). These results emphasize the effect of over-

expression of DYRK1A on plasma Hcy level, not only in case of

hyperhomocysteinemia but also in the context of DS.

DYRK1A over-expression modulates SAHH activity
As CBS is a key enzyme of Hcy metabolism [19,20], we first assayed

the CBS activity in liver samples of mice. As expected, Cbs+/2 mice

(Cbs+/2 Tg -; Fig. 3B) showed a significant decrease of CBS activity

when compared with Cbs+/+ mice (Cbs+/+ Tg -; Fig. 3B). Tg 152F7

mice (Cbs+/+ Tg 152F7; Fig. 3B) have the same CBS activity than that

of Cbs+/+ mice (Cbs+/+ Tg -; Fig. 3B). However, Cbs+/2 mice crossbred

with Tg 152F7 mice (Cbs+/2 Tg 152F7; Fig. 3B) showed a decrease of

CBS activity like Cbs+/2 mice when compared with Cbs+/+ mice. Tg

189N3 (11064 versus 10067; p,0.26 by Student’s t test n = 5 for each)

and Ts65Dn (11167 versus 10063; p,0.17 by Student’s t test n = 5

for each) mice have also the same CBS activity than that of non-

transgenic mice. Then our results show that dyrk1a overexpression

has no effect on CBS activity.

As Hcy can revert back to SAH via the SAHH mediated reverse

reaction, we assayed SAHH activity in mouse liver. Tg 152F7

mice (Cbs+/+ Tg 152F7; Fig. 3C) showed an increase of SAHH

activity when compared with Cbs+/+ mice (Cbs+/+ Tg -; Fig. 3C).

Moreover, Cbs+/2 mice crossbred with Tg 152F7 mice (Cbs+/2 Tg

152F7; Fig. 3C) counteracted the decreased SAHH activity when

compared with Cbs+/2 mice (Cbs+/2 Tg -; Fig. 3C). Tg 189N3

(Fig. 4A) and Ts65Dn (Fig. 4B) mice also showed an increased

SAHH activity when compared to non-transgenic mice. We also

determined the hepatic levels of SAM and SAH in Tg mice

overexpressing DYRK1A and found that levels of SAM and SAH

in liver of Tg 152F7 and Tg189N3 did not differ from non-

transgenic mice (Table 1). However, we found a decreased level of

SAM in liver of Ts65Dn mice compared to non-transgenic mice,

leading to decreased SAM to SAH ratio (Table 1).

In order to determine if other enzymes of the methionine and

folate cycles are altered, we assayed the mRNA expression of the

major enzymes involved in the metabolism of Hcy in the liver of

Tg 189N3. We found that even if the Mat1a mRNA expression

was not affected in Tg 189N3 mice (data not shown), the Bhmt, Ms

and Mthfr mRNA expression were increased compared to non-

transgenic mice (Table 2). However, the Sahh mRNA expression

was decreased in Tg 189N3 mice compared to non-transgenic

mice (Table 2).

Plasma Hcy level is negatively correlated with hepatic
DYRK1A expression and SAHH activity

We previously observed a negative correlation between plasma

Hcy levels and hepatic DYRK1A expression, which emphasizes

the effect of hyperhomocysteinemia on DYRK1A expression [10].

Then we investigated if there are any links between Hcy

concentration, hepatic DYRK1A protein expression and hepatic

SAHH activity. We observed a significant negative correlation

between plasma Hcy level and not only hepatic DYRK1A protein

DYRK1A and Homocysteine
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expression (r= 20.48, p,0.04; Fig. 5A) but also hepatic SAHH

activity (r= 20.61, p,0.006; Fig. 5B). Moreover, hepatic

DYRK1A protein expression was also positively correlated with

hepatic SAHH activity (r= 0.47, p,0.05; Fig. 5C). Multivariate

analysis revealed a negative correlation between plasma Hcy level

and hepatic DYRK1A protein expression and SAHH activity

Figure 1. Hepatic DYRK1A mRNA and protein expression in liver of transgenic mice. Relative expression of DYRK1A gene was based on Q-
PCR data and protein expression was determined by normalization of the density of images from DYRK1A with that of b-actin of the same blot. The
values of Tg 152F7, Tg189N3 and Ts65Dn were normalized to the mean Tg – mice from each lines. The blots are representative of three independent
experiments. Data correspond to means 6 SEM and the statistical analysis was done by Student’s unpaired t-tests. n = number of mice.
doi:10.1371/journal.pone.0007540.g001
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(Fig. 5D), indicating that high Hcy levels are associated with low

hepatic DYRK1A protein expression and low hepatic SAHH

activity in mice.

DYRK1A over-expression modulates NQO1 activity
We found that the Sahh mRNA expression not only was decreased

in Tg 189N3 mice (Table 2) but also in Ts65Dn (69.665.6 versus

102.168.5; p,0.005 by Student’s t test n = 4 for each mouse)

compared to non-transgenic mice. The increased activity of

NAD(P)H:quinone oxidoreductase (NQO1) is followed by an

increase of a by-product of the enzyme reaction, NAD+, which is

a cofactor of SAHH [21]. In order to determine if SAHH is a direct

or an indirect target of Dyrk1a, we analyzed the activity of NQO1

in liver of transgenic mice. We found an increased activity of NQO1

not only in Tg152F7 (Cbs+/+ Tg 152F7; Fig. 3D), Tg 189N3 but also

in Ts65Dn mice compared to non-transgenic mice (Fig. 3D and

Table 3). Moreover, Cbs+/2 mice crossbred with Tg 152F7 mice

(Cbs+/2 Tg 152F7; Fig. 3D) counteracted the decreased NQO1

activity when compared with Cbs+/2 mice (Cbs+/2 Tg -; Fig. 3D).

Commensurate with the increased activity, mRNA expression of

NQO1 was 1.8 fold higher in liver of Tg 189N3 and Ts65Dn mice

compared to non-transgenic mice (Table 3).

Harmine inhibits the effects of DYRK1A over-expression
on SAHH activity

In order to determine if the effects are dependent on Dyrk1a

kinase activity, we treated Tg 189N3 mice with harmine, the most

potent and specific inhibitor of Dyrk1a [22,23]. Even non-

transgenic mice treated with harmine (Tg – Harmine, Fig. 6A)

showed an increased SAHH activity compared to untreated non-

transgenic mice (Tg – Vehicle, Fig. 6A), Tg 189N3 mice treated

with harmine (Tg 189N3 Harmine, Fig. 6A) had the same

increased activity than that of non-transgenic mice treated with

harmine (Tg – Harmine, Fig. 6A), which shows that treatment

with harmine prevents the increase of SAHH activity in Tg 189N3

mice. Moreover, even if harmine treatment has no effect on

NQO1 in non transgenic mice (Tg – Harmine, Fig. 6B), treatment

with harmine in Tg 189N3 mice (Tg 189N3 Harmine, Fig. 6B)

reduced NQO1 activity compared to non treated Tg 189N3 mice

(Tg 189N3 Vehicle, Fig. 6B).

To confirm the implication of Dyrk1a on Hcy level, we also

assayed plasma Hcy levels in harmine-treated non-transgenic

and Tg 189N3 mice. There was a trend towards a 1.4 fold increase

of plasma Hcy concentration in harmine treated Tg 189N3

(Tg 189N3 Harmine, Fig. 6C) compared to non-treated Tg 189N3

mice (Tg 189N3 Vehicle, Fig. 6C) although this was not

statistically significant.

SAHH and NQO1 activities were increased in
lymphoblastoid cell lines

In order to determine whether the activities observed in mice

does apply to humans, we also analyzed the SAHH and NQO1

activity in lymphoblastoid cell lines (LCLs) from patients with DS.

We first confirmed that LCLs from patients with DS (T21, Table 4)

overexpressed 1.5 fold DYRK1A at the mRNA and protein level

compared to LCLs from control individuals (control, Table 4). We

not only found an increased SAHH activity but also a decreased

mRNA SAHH expression in LCLs from patients with DS

compared to LCLs from control individuals (Table 4). Moreover,

the NQO1 activity was also increased in LCLs from patients with

DS, concomitant with an increased mRNA expression (Table 4).

Discussion

Elevated plasma Hcy level is well recognized as an important

vascular risk factor and atherosclerosis in the coronary, cerebro-

vascular and peripheral arterial circulation, even if the degree of

hyperhomocysteinemia is moderate [2]. On the contrary, adults

with Down syndrome seem to be protected against atherosclerosis,

despite having elevated risk factors, such as elevated total body fat,

higher levels of triglycerides and C-reactive protein, and lower

levels of moderate to vigorous physical activity [24]. As we found a

negative correlation between plasma Hcy levels and hepatic

DYRK1A expression which underlines the effect of hyperhomo-

cysteinemia on DYRK1A expression [10], we decided to analyze

the over-expression of DYRK1A on Hcy metabolism. Here we

show that overexpression of DYRK1A diminishes the plasma Hcy

level. This result was obtained with different murine models which

contain the human or the murine gene, with duplications of

increasing complexity and over-expression of Dyrk1a. Therefore,

we see an effect of Hcy level on DYRK1A expression [10], but

also an effect of DYRK1A expression on Hcy level, which is

Figure 2. DYRK1A protein expression in liver of CBS-deficient
mice crossbred with 152F7 transgenic mice. (A) Western
immunoblots showing DYRK1A expression in liver of wild type mice
(Cbs+/+ Tg -), heterozygous mice (Cbs+/2 Tg -), 152F7 transgenic mice
(Cbs+/+ Tg 152F7), and heterozygous mice crossbred with 152F7
transgenic mice (Cbs+/2 Tg 152F7). Proteins were subjected to
immunoblot analysis using antibodies specific to DYRK1A (85.5 kDa).
After stripping, the membranes were reprobed with anti-b-actin
antibody (41.7 kDa) for the control. (B) Relative protein expression
was determined by normalization of the density of images from
DYRK1A with that of b-actin of the same blot. The values of Cbs+/2 Tg -,
Cbs+/+ Tg 152F7, or Cbs+/2 Tg 152F7 were normalized to the mean of
Cbs+/+ Tg - mice. The blots are representative of three independent
experiments. Data correspond to means 6 SEM and the statistical
analysis was done with one-way ANOVA followed by Student’s
unpaired t-tests. n = number of mice.
doi:10.1371/journal.pone.0007540.g002
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underlined by the correlation between plasma Hcy level and

hepatic DYRK1A protein expression (10 and Figure 5).

As increased expression of DYRK1A and low plasma Hcy levels

have been associated with DS [6,11–13], we also analyzed the

contribution of DYRK1A on Hcy levels in a mouse trisomic complex,

the Ts65Dn mice. We found an increased expression of DYRK1A in

liver and a decreased level of plasma Hcy level in Ts65Dn. DYRK1A

and CBS are two genes located on chromosome 21. Our results show

that over-expression of DYRK1A has no effect on CBS activity,

which is in agreement with the hepatic SAM levels (an allosteric

activator of CBS). It has been demonstrated that DS children have

increased cystathionine level relative to normal children, consistent

with over-expression of the CBS gene present on human chromo-

some 21 and mouse chromosome 17 [11]. On the one hand, the

over-expression of CBS in DS is the predominant mechanism to

explain the decrased plasma Hcy level in DS patients [11]. On the

other hand, the DYRK1A over-expression likely plays a role on

decreased plasma Hcy level in DS patients however, to a lesser extent.

We showed that over-expression of DYRK1A increases the

SAHH activity not only in mice, but also in LCLs obtained from

DS patients. Moreover, treatment with harmine, the most potent

and specific inhibitor of Dyrk1a [22,23], demonstrates that the

increased SAHH activity depends on Dyrk1A kinase activity. We

also established a correlation between plasma Hcy level, hepatic

DYRK1A protein expression and hepatic SAHH activity.

However, the increased hepatic SAHH activity was not associated

with statistical difference in hepatic SAH levels. A previous study

showed a lower concentration of plasma Hcy and SAH levels in

DS children than in plasma of control subjects [11]. Galletti et al.

also demonstrated that the intracellular concentration of SAH is

significantly reduced in DS erythrocytes, paralleling the low

plasma Hcy levels, and the intracellular SAM concentration is the

same as in the control cells [13]. Therefore the diminution of SAH

levels could be due to other genes located on chromosome 21. We

found a decreased hepatic SAM levels, associated with a decrease

of the SAM/SAH ratio in Ts65Dn, which suggests an altered

Figure 3. Plasma Hcy level is decreased in 152F7 transgenic mice and in CBS-deficient mice crossbred with 152F7 transgenic mice.
(A) Plasma Hcy level, (B) hepatic CBS, (C) SAHH and (D) NQO1 activity in wild type mice (Cbs+/+ Tg -), heterozygous mice (Cbs+/2 Tg -), 152F7
transgenic mice (Cbs+/+ Tg 152F7), and heterozygous mice crossbred with 152F7 transgenic mice (Cbs+/2 Tg 152F7). The values were normalized to
the mean of Cbs+/+ Tg - mice. Data correspond to means 6 SEM and the statistical analysis was done with one-way ANOVA followed by Student’s
unpaired t-tests. n = number of mice.
doi:10.1371/journal.pone.0007540.g003
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SAM-dependent methylation, but not in Tg 152F7 and Tg 189N3

mice. Interestingly, Ts65Dn mice also contain three copies of

DNMTa1 gene, which encodes for a DNA methyltransferase. The

over-expression of this DNA methyltransferase could decrease

SAM level and the SAM/SAH ratio in liver of Ts65Dn mice,

which could influence the methylation index and then the gene

expression.

SAHH cleaves SAH to adenosine and Hcy, but this reaction is

easily reversible by the same enzyme [25]. Although the

equilibrium dynamics of the SAHH reaction strongly favor SAH

formation, under physiological conditions, the rapid metabolism of

SAHH end products Hcy (via transsulfuration and remethylation

pathways) and adenosine (via the adenosine deaminase or

adenosine kinase) drive the SAHH reaction in the hydrolysis

direction. The activation of the SAHH activity in the reverse

direction would be expected to promote the diminution of Hcy.

The finding that DYRK1A over-expression activated SAHH

activity is novel and is also consistent with no limitation of the

remethylation pathway. We found an increased expression of the

three enzymes implicated in the remethylation pathway in liver of

Tg189N3 mice. However, the SAHH expression was decreased

not only in liver of Tg 189N3 and Ts65Dn mice, but also in LCLs

from DS patients. Because SAHH transcripts were decreased, the

finding of increased SAHH activity must represent a post-

transcriptional modification of the enzyme. The activation of

SAHH activity can be due to a direct or an indirect mechanism.

We found an increased activity of NQO1 not only in liver of Tg

152F7, Tg 189N3 and Ts65Dn mice, but also in LCLs obtained

from DS patients. Moreover, treatment with harmine demon-

strates that the increased NQO1 activity depends on Dyrk1A

kinase activity. The increased activity of NQO1 is followed by an

increase of a by-product of the enzyme reaction, NAD+, which is a

cofactor of SAHH [21]. NQO1 is an inducible enzyme, and its

overexpression protects cells against cell death [26]. The cell’s

major strategy of coping with oxidative stress is to increase the

anti-oxidative potential by upregulating defense enzymes through

activation of the nuclear factor-E2-related factor-2 (Nrf2). Nrf2

can activate many phase II detoxifying and antioxidant genes

including NQO1 [27]. Nrf2 dissociates from the cytoskeletal

binding protein KEAP1 and translocates to the nucleus in

response to oxidative stress. It has been demonstrated that the

PI3K/Akt pathways facilitate the release of NRF2 from KEAP1

and its subsequent translocation, and regulate ROS-dependent

Nrf2 activation [28]. Previous results have shown that phosphor-

ylation of protein kinase Akt was increased in Ts65Dn mice, and

we found an increased hepatic NQO1 activity in these mice [29].

Then over-expression of DYRK1A could modulate the hepatic

SAHH activity through an indirect mechanism initiated by its

serine/threonine kinase activity.

In conclusion, our results might give clues to understand the

protective effect of DS against vascular defect through a decrease

of Hcy level, and a link between metabolomics and signalling

pathways.

Methods

Mice and genotyping
Mice were maintained in a controlled environment with

unlimited access to food and water on 12 h light/dark cycle. All

procedures were carried out in accordance with internal guidelines

of the French Agriculture Ministry for animal handing. Number of

Table 1. Plasma Hcy levels, hepatic SAM and SAH
concentrations, and hepatic SAM/SAH ratio in transgenic
mice.

Genotype
(n = number of mice)

Hcy
(mM)

SAM
(nmol/g)

SAH
(nmol/g) SAM/SAH

Tg –
(n = 4)

3.960.3 79.569.1 52.763.1 1.560.2

Tg 152F7
(n = 6)

2.960.2* 73.266.4 42.464.1 1.860.2

Tg –
(n = 5)

4.760.6 64.8610.3 35.763.3 1.860.2

Tg 189N3
(n = 5)

260.1{ 67.7 66.5 35.563.1 260.2

Tg –
(n = 7)

2.660.1 5263.8 4463.1 1.260.1

Ts65Dn
(n = 6)

1.960.3* 35.663.5{ 51.463.8 0.760.1{

Data correspond to means 6 SEM and the statistical analysis was done by
Student’s unpaired t-tests. * p,0.04; { p,0.01; {p,0.002.
doi:10.1371/journal.pone.0007540.t001

Figure 4. Hepatic SAHH activity is increased in Tg 189N3 and Ts65Dn transgenic mice. SAHH activity in (A) Tg 189N3 and (B) Ts65Dn
transgenic mice. The values were normalized to the mean of Tg – mice from each line. Data correspond to means 6 SEM and the statistical analysis
was done by Student’s unpaired t-test. n = number of mice.
doi:10.1371/journal.pone.0007540.g004
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Table 2. Relative expression of SAHH, BHMT, MS and MTHFR gene based upon Q-PCR data obtained from non-transgenic and
Tg189N3 mice.

Genotype
(n = number of mice)

SAHH
(% of control)

BHMT
(% of control)

MS
(% of control)

MTHFR
(% of control)

Tg –
(n = 4)

104614 10066 10064 103611

Tg 189N3
(n = 4)

55612{ 242645{ 8916195{ 7266330*

The values of Tg189N3 were normalized to the mean Tg – mice. Data correspond to means 6 SEM and the statistical analysis was done by Student’s unpaired t-tests.
n = number of mice. *p = 0.068; { p, 0.03.
doi:10.1371/journal.pone.0007540.t002

Figure 5. Plasma Hcy level, DYRK1A protein expression and SAHH activity are correlated. Hepatic DYRK1A expression and SAHH activity
are presented as percent of Cbs+/+ Tg – mice. Correlation of plasma Hcy level vs. (A) hepatic DYRK1A protein expression or (B) hepatic SAHH activity.
Increasing levels of plasma Hcy and hepatic DYRK1A protein expression or SAHH activity are negatively correlated at p,0.04 and p,0.006 with a
r= 20.48 and r= 20.61 respectively. Correlation of hepatic DYRK1A protein expression vs. SAHH activity (C). Increasing levels of hepatic DYRK1A
protein expression and hepatic SAHH activity are positively correlated at p,0.05 with a r= 0.47. (D) Graph of PCA. The three quantitative variables
corresponding of plasma Hcy level, hepatic DYRK1A protein expression and hepatic SAHH activity are represented by vectors.
doi:10.1371/journal.pone.0007540.g005
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mice and suffering were minimized as possible. Mice heterozygous

for targeted disruption of the Cbs gene (Cbs+/2) were generously

donated by Dr. N. Maeda (Department of Pathology, University

of North Carolina, Chaped Hill, NC, USA) [14]. Cbs+/2 mice, on

a C57BL/6 background were obtained by mating male Cbs+/2

mice with female wild-type C57BL/6 (Cbs+/+) mice. DNA isolated

from 4 week-aged mice tail biopsies was subjected to genotyping

of the targeted CBS allele using a polymerase chain reaction

(PCR) assay [14]. The human yeast artificial chromosome 152 F7

(YAC-152F7) strain has been previously described [30]. This

transgenic line (Tg 152F7) contains the genes PIGP, TTC3,

DSCR9, DSCR3 and DYRK1A. The YAC-152F7 line, which

was constructed in an FVB/N background, was backcrossed on a

C57BL/6 background. Genotyping was performed by PCR using

specific human primers [30]. Cbs+/2 and Tg 152F7 mice, on the

same background, were crossbred. Male from each genotype from

the same litter, two months of age, were used. The murine

bacterial artificial chromosome 189 N3 (BAC-189N3) strain has

been constructed by electroporating HM-1 embryonic stem (ES)

Table 3. Relative expression of NQO1 gene based upon Q-
PCR data and NQO1 activity obtained from non-transgenic
and Tg189N3 and Ts65Dn mice.

Genotype
(n = number of mice)

mRNA expression
(% of control)

activity
(% of control)

Tg - 100.764
(n = 4)

100620,9
(n = 3)

Tg 189N3 177.3637.3*
(n = 3)

379.5 674.2*
(n = 4)

Tg – 100.965
(n = 4)

100627,2
(n = 5)

Ts65Dn 176.3622.6{

(n = 4)
212632,5*
(n = 5)

The values of Tg189N3 and Ts65Dn were normalized to the mean Tg – mice
from each line. Data correspond to means 6 SEM and the statistical analysis
was done by Student’s unpaired t-tests. n = number of mice. *p,0.03; { p,0.01.
doi:10.1371/journal.pone.0007540.t003

Figure 6. Effects of harmine on hepatic SAHH and NQO1 activities, and on plasma Hcy levels in Tg 189N3 mice. Hepatic SAHH (A) and
NQO1 (B) activities are presented as percent of untreated (Vehicle) non-transgenic (Tg –) mice activities. (C) Plasma Hcy level. Data correspond to
means 6 SEM and the statistical analysis was done with one-way ANOVA followed by Student’s unpaired t-test. n = number of mice.
doi:10.1371/journal.pone.0007540.g006
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cells with the retrofitted BAC-189N3. ES clone was selected for

overexpression of Dyrk1a, and injected into blastocysts (J Delabar,

personal communication). Female Tg 189N3 mice and control

from the same litter, two months of age, were used. Ts65Dn mice

possess a third copy of a region of mouse chromosome 16 from App

to Mx1, orthologous to the DS critical region of HSA 21 [31].

Male Ts65Dn mice and control, from the same litter, six months

of age, were used.

Harmine treatment
Mice were injected intraperitoneally overnight, with 10 mg/kg

of harmine hydrochloride hydrate (Fisher Scientific, Illkirch,

France) dissolved in 0.9% NaCl. The next morning, mice were

injected once more for 1 hour. Control mice were injected with

0.9% NaCl.

Preparation of serum samples, tissue collection, and
plasma total Hcy assay

At the time of sacrifice, blood samples were collected into tubes

containing a 1/10 volume of 3.8% sodium citrate, placed on ice

immediately. Plasma was isolated by centrifugation at 2500 g for

15 min at 4uC. Liver was harvested, snap-frozen and stored at

280uC until use. Plasma total Hcy was assayed by using the

fluorimetric high-performance liquid chromatography method

described by Fortin and Genest [32]. The inter- and intra-assay

coefficients of variation for mean tHcy level were 4.2% and 6.3%

respectively and the linearity was from 1 to 100 mM [33].

Cell Lines and Culture Conditions
Epstein–Barr virus-transformed lymphoblastoid cell lines (LCLs)

are derived from healthy individuals and unrelated DS patients,

recruited from the Institut Jérôme Lejeune (Paris, France) and the

CHU Saint-Etienne (France). Written informed consent was

obtained from the participants or from their families, and the

French biomedical ethics committee gave its approval for this

study (Comité de Protection des Personnes dans la Recherche

Biomédicale number 2003–036 and 2005–06). DS was confirmed

by karyotyping before and after Epstein–Barr virus transforma-

tion. Culture media consisted of Opti-MEM with GlutaMax

(Invitrogen, Cergy, France) supplemented with 5% fetal bovine

serum from a unique batch and 1% penicillin and streptomycin

mix (10,000 U/mL). Cell lines were grown at 37uC in humidified

incubators, in an atmosphere of 5% CO2. Cells were harvested by

centrifugation, washed in 5 mL PBS, followed by another

centrifugation, and stored at 280uC.

Determination of hepatic SAM and SAH concentrations
Levels of SAM and SAH in liver tissues were determined by

stable isotope dilution liquid chromatography tandem mass

spectrometry in an adapted method from Gellekink et al. [34].

In brief, frozen tissues were homogenized with ice-cold perchloric

acid then centrifugated. Supernatant cleanup was performed

with solid phase extraction (SPE) columns after neutralization of

the acidified samples. The type of SPE cartridges used is

phenyl boronic acid (SPE Bond Elut – PBA, 100 mg) from Varian

(Courtaboeuf, les Ulis, France). Two isotopically labeled internal

standards were used : 13C5-SAH and D3-SAM. Analytes were

detected using the transitions m/z 399–250 (SAM), 402–250

(D3-SAM), 385–136 (SAH), 390–136 (13C5-SAH) for quantifica-

tion and the transitions m/z 399–136 (SAM), 402–136 (D3-SAM),

385–134 (SAH), 390–134 (13C5-SAH) for qualification. The detec-

tion limits (signal-to-noise ratio = 3), estimated from the lower

calibration point, were 0.4 nmol/L for SAM and 0.6 nmol/L for

SAH. The variability of the assay expressed as CVs (n = 4) were

13.3% for SAM and 9.6% for SAH with a plasma pool containing

130 nmol/L of SAM and 11 nmol/L of SAH.

Western blot analysis
Proteins preparations were subjected to SDS electrophoresis on

7.5% acrylamide gels under reducing conditions and transferred to

Hybond-C Extra membrane (GE Healthcare Europe GmbH,

Saclay, France). After transfer, membranes were blocked in 10%

nonfat dry milk in Tris-saline buffer (1.5 mM Tris, 5 mM NaCl,

0.1% Tween 20) and probed overnight at 4uC with DYRK1A

antibody (1/500) (Abnova corporation, Tebu, France). Horseradish

peroxidase-conjugated secondary antibody and Western Blotting

Luminol Reagent (Santa Cruz Biotechnology, Tebu, France) were

used to detect specific proteins. b-actin (1/4000) (Sigma-Aldrich,

France) was used as an internal control. Digitized images of the

immunoblots obtained using a LAS-3000 imaging system (Fuji

Photo Film Co., Ltd.) were used for densitometric measurements

with an image analyzer (UnScan It software, Silk Scientific Inc.).

Enzyme Activity assays
Determination of CBS activity was assayed on 400 mg of total

proteins obtained from liver samples, determined by Bradford

method, as described [35]. Proteins were incubated for 1h at 37uC
with 1 mM of propargylglycine, 0.2 mM of pyridoxal phosphate,

10 mM of L-serine, 10 mM of DL-Hcy, 0.4 mM of SAM, using

DTNB (5,59-dithiobis-(2-nitrobenzoic acid)) based-assay. All the

chemical products were obtained from Sigma (Sigma-Aldrich,

France). Determination of SAH hydrolase activity was assayed on

300 mg of total proteins obtained from liver samples or

lymphoblastoid cell lines following the protocol described by

Villanueva and Halsted [36]. Determination of NQO1 activity

was assayed on 150 mg of total proteins obtained from liver

samples or lymphoblastoid cell lines following the protocol

described by Ernster [37], modified by Benson et al. [38].

Table 4. Relative expression of DYRK1A, SAHH and NQO1 and SAHH and NQO1 activities obtained from lymphoblastoid cell lines.

Genotype

DYRK1A mRNA
expression
(% of control)

DYRK1A protein
expression
(% of control)

SAHH mRNA
expression
(% of control)

SAHH activity
(% of control)

NQO1 mRNA
expression
(% of control)

NQO1 activity
(% of control)

control 10069.3
(n = 12)

10069.6
(n = 16)

100619.3
(n = 12)

10068.7
(n = 10)

99.9611
(n = 11)

100616
(n = 6)

T21 150.8610.3{

(n = 12)
154.3615.6{

(n = 16)
53.866.5*
(n = 12)

135.5612.8*
(n = 12)

160.9614.6{

(n = 11)
228655*
(n = 6)

The values of lymphoblastoid cell lines (LCLs) from patients with DS (T21) were normalized to the mean lymphoblastoid cell lines from control individuals (control). Data
correspond to means 6 SEM and the statistical analysis was done by Student’s unpaired t-tests. n = number of LCLs. * p,0.05; { p,0.006.
doi:10.1371/journal.pone.0007540.t004
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RNA extraction and determination of mRNA levels
Total RNA was prepared from mice liver with the NucleospinH

RNA II kit (Macherey-Nagel, Hoerdt). The quantity and purity of

the RNA was assessed by measuring absorbance at 260 and

280 nm. Reverse transcription was carried out on 2 mg total RNA

as described by the manufacturer (Ambion, UK). The mRNA levels

were assessed by quantitative RT-PCR (Q-PCR). cDNA (0.4 mL)

was diluted with PCR mix (Light Cycler FastStart DNA Master

SYBR Green I Kit, Roche Diagnostics) containing a final

concentration of 3 mM MgCl2 and 0.5 mM of primers in a final

volume of 10 mL. The primers were designed by Primer 3 software.

The primers pairs were selected to yield a single amplicon based on

dissociation curves. The peptidylprolyl isomerase B (PPIB) mRNA,

the hypoxanthine phosphoribosyltransferase (HPRT) mRNA, the

fasciculation and elongation zeta protein 1 (fez), and the Zinc finger

protein (AB000468) mRNA were used as an endogenous control.

Primer sequences were given in the table 5. Q-PCR was performed

on total RNA isolated from liver of individual mice or from

individual LCLs in a Lightcycler system (Roche Diagnostics). The

thermal cycler parameters were as follows : hold for 8 min at 95uC
for one cycle followed by amplification of cDNA for 40 cycles with

melting for 5 s at 95uC, annealing for 5 s at 65uC and extension for

10 s at 72uC. Each reaction was performed in triplicate. Subsequent

assay efficiency calculations were carried out in Light Cycler

Relative Quantification Software (Roche Diagnostics). As the

efficiency of the target gene and the control genes were comparable,

DCp analysis of the results allows to assess the ratio of the target

mRNA versus control mRNA [39].

Data analysis
Statistical analysis was done with one-way ANOVA followed by

Student’s unpaired t-test using Statview software. In both cases,

Student-Newman-Keuls tests were used for multiple pairwise

comparaisons. The results are expressed as mean 6 SEM.

Correlations between Hcy level, DYRK1A protein expression

and SAHH activity were determined by using Spearman’s rank

correlation as data were not normally distributed according to

Shapiro – Wilk test. The multivariate analysis was performed

according to the principal component analysis (PCA). Data were

analyzed using R software (http://www.R-project.org) and

considered significant when p,0.05. A p value of 0.06–0.10 was

considered to indicate a strong statistical tendency due to the small

sample size.
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