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Abstract

Background: Cluster of differentiation 36 (CD36) is a transmembrane glycoprotein involved in many biological processes,
such as platelet biology, angiogenesis and in the aetiopathology of atherosclerosis and cardiovascular diseases. Toll-like
receptors (TLRs) are one of the most important receptors of the innate immune system. Their main function is the
recognition of conserved structure of microorganisms. This recognition triggers signaling pathways that activate
transcription of cytokines and co-stimulatory molecules which participate in the generation of an immune response against
microbes. In particular, TLR2 has been shown to recognize a broad range of ligands. Recently, we showed that CD36 serves
as a co-receptor for TLR2 and enhances recognition of specific diacylglycerides derived from bacteria.

Methodology/ Principal Findings: Here, we investigate the mechanism by which CD36 contributes to ligand recognition
and activation of TLR2 signaling pathway. We show that the ectodomain of murine CD36 (mCD36ED) directly interacts with
negatively charged diacylglycerol ligands, which explains the specificity and selectivity of CD36 as a TLR2 co-receptor. We
also show that mCD36ED amplifies the pro-inflammatory response to lipoteichoic acid in macrophages of wild-type mice
and restores the pro-inflammatory response of macrophages from mice deficient in CD36 (oblivious), but not from mice
deficient in cluster of differentiation 14 (CD14) (heedless).

Conclusion/ Significance: These data indicate that the CD36 ectodomain is the only relevant domain for activation of TLR2
signaling pathway and that CD36 and CD14 have a non-redundant role for loading ligands onto TLR2 in the plasma-
membrane. The pro-inflammatory role of soluble CD36 can be relevant in the activation of the immune response against
pathogens, as well as in the progression of chronic diseases. Therefore, an increased level of soluble forms of CD36, which
has been reported to be increased in type II diabetic patients, could accelerate atherosclerosis by increasing the pro-
inflammatory response to diacylglycerol ligands.
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Introduction

CD36, the prototype of scavenger receptor class B, is a

multifunctional transmembrane glycoprotein, involved in the

aetiopathology of several biological processes and diseases,

including cardiovascular diseases, Alzheimer’s disease, Plasmodium

falciparum (P. falciparum) infection, diabetes, angiogenesis, platelet

biology, atherosclerosis [1–3], and anti-tumor responses [4]. The

role of CD36 in these processes is attributed to its ability to bind a

broad range of ligands [5]. Among these are long-chain fatty acids

[6], advanced glycosylation products [7,8], oxidized Low Density

Lipoproteins [9–11], oxidized phosphocholines [12], collagen

[13], growth-hormone releasing hormone (GHRH) peptides

hexarelin and EP80317 [14], and thrombospondin-1 (TSP-1) [15].

Recently, we demonstrated that mice carrying a missense

mutation in CD36, termed oblivious, had a reduced response to

specific TLR2 ligands, lipoteichoic acids (LTA) and macrophage

activating lipoprotein-2 (MALP-2), but responded normally to the

synthetic lipopeptides, Pam3CSK4 and Pam2CSK4 [16]. More-

over, CD36obl/obl mice were unable to clear Staphylococcus aureus (S.

aureus) bacteria and showed higher mortality compared to C57BL/

6 mice. Cd362/2 mice were also more prone to develop abscesses
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[17]. A recent report also revealed that CD36-deficient mice

showed impaired tumor necrosis factor-alpha (TNF-a) secretion in

response to glycosylphosphatidylinositol (GPI) from P. falciparum

and higher parasitemia levels and mortality when infected with

Plasmodium chabaudi chabaudi AS (P. chabaudi chabaudi AS) [18].

Although these data highlight the role of CD36 in controlling

infection with S. aureus and P. falciparum, the mechanism by which

CD36 contributes to TLR2 signaling pathway activation has been

elusive. Recent reports have attempted to address this issue, but

with contrasting findings. One study [17] initially demonstrated

requirement of the CD36 C-terminus for endocytosis and nuclear

factor kappa-light-chain-enhancer of activated B cells (NF-kB)

activation, whereas other reports showed that internalization of

LTA is not necessary for signal transduction [19,20].

Here, we address the role of CD36 in the TLR2-dependent

activation of the myeloid differentiation protein 88 (MyD88) signaling

pathway. To investigate the role of CD36 as a TLR2 co-receptor, the

ectodomain of murine CD36 (mCD36ED) was cloned and expressed

using a baculovirus expression system. The interaction of mCD36ED

with TLR2 ligands and the effect of mCD36ED on the pro-

inflammatory response to LTA by primary macrophages isolated

from mice with non functional CD36 (oblivious) [16], CD14 (heedless)

[21], TLR6 (insouciant) [22], knock-out mice (Tlr22/2, Tlr12/2),

and wild-type (C57BL/6) mice were determined.

Results

mCD36ED expresses in insect cells as a monomer with
a-helical and b-sheet secondary structure

mCD36ED DNA, amplified by PCR with a hexa-histidine tag

at its carboxyl-terminus (C-terminal His-tag), was cloned in a

baculovirus transfer vector and mCD36ED protein was expressed

using a baculovirus/insect cell expression system. Protein

expression was confirmed with an anti-His-tag Western blot and

peptide identification using mass spectrometry (Supplementary

Figure S1). mCD36ED ran as a monomer on size exclusion

chromatography (Figures 1A, 1B) and its CD spectrum at 25uC
revealed a broad minimum from 207 to 230 nm and a maximum

at 195 nm, indicative of a folded protein containing a-helices and

b-sheets in its secondary structure [23]. Typical CD spectra of

proteins rich in a-helical, b-sheet, and mixed a/b secondary

structure are also shown for comparison (Figure 1C).

mCD36ED has intramolecular disulfide bonds and
N-linked glycans

Under reducing condition, the electrophoretic mobility of

mCD36ED is altered which indicates the presence of intramo-

lecular disulfide bonds (Supplementary Figure S2A). N-linked

glycosylation can be partially removed from mCD36ED by

treatment with Peptide-N-glycosidase F (PNGase F) in native

conditions to the same extent as in denaturing conditions,

revealing that its N-glycosidic linkages are accessible for

enzymatic cleavage (Supplementary Figure S2B). However,

PNGase F was not able to release all glycans from mCD36ED

(i.e., the theoretical molecular weight of mCD36ED is 47,424

kDa, but after digestion with PNGase F, mCD36ED runs at a

molecular weight above 50 kDa). mCD36ED were expressed in

Hi-5 insect cells, which have been reported to modify

recombinant glycoproteins by adding a core (a 1R3) fucose

[24,25]. Therefore, the resistance to PNGase F treatment could

be explained by the presence of core fucosylation in N-linked

glycans of mCD36ED. The position of disulfide bonds based on

bovine CD36 [26] and predicted N-linked glycosylation sites are

depicted in Supplementary Figure S2C.

mCD36ED binds to LTA, FSL-1, Pim2, and Pim4
We then demonstrated by native PAGE assays that

mCD36ED binds to LTA from S. aureus, synthetic phosphati-

dyl-myo-inositol mannosides (Pims) with two (Pim2) and four

mannoses (Pim4) from mycobacteria, synthetic fibroblast

stimulating lipopeptide-1 with a fluorescein tag (FSL-1-fluores-

cein) from Mycoplasma salivarium, but not to Pam3CSK4

(Figures 2A, 2B). Binding of mCD36ED to FSL-1-fluorescein

was also confirmed by fluorescence (Figure 2B). As a negative

control, we employed influenza hemagglutinin from the H5N1

Viet 04 strain [27], which lacks diacylglycerol moieties and was

unable to interact with human TLR2 ectodomain (data not

shown). Moreover, although Pam2CSK4 and Pam3CSK4 did not

alter the retention volume of mCD36ED, binding of both Pim2

and LTA produced a shift to higher molecular weights in size

exclusion chromatography (Figure 2C). Dot blot experiments

using an antibody specific to the polyglycerophosphate moiety of

LTA confirmed its presence in the mCD36ED-LTA complex

(Figure 2D). Furthermore, we employed a T-cell receptor (TCR)

termed KRN [28], which has a C-terminal His-tag, to discard

the possibility of an non-specific interaction between the C-

terminal His-tag and TLR2 ligands. The lack of binding of

Pam3CSK4, FSL-1 and LTA by KRN TCR excluded the

possibility that the C-terminal His-tag is involved in the binding

of TLR2 ligands (Figure 2E).

Lipomannan, FSL-1-fluorescein, and LTA activation of the
MyD88 pathway is dependent on TLR2, CD36, and CD14

To determine which receptors are important for the biological

activity of lipomannan, FSL-1 and LTA, we employed wild-type

C57BL/6, insouciant (TLR6int), oblivious (CD36obl), heedless

(CD14hdl), Tlr12/2 and Tlr22/2 mice. Insouciant, oblivious and

heedless were generated by germ-line, random mutagenesis using

ENU (N-ethyl N-nitrosourea) where their phenotypes result from

loss of functional TLR6, CD36 and CD14, respectively

[22,16,21]. Macrophages isolated from heedless, oblivious, insouciant

and Tlr12/2 mice were incubated with different concentrations

of LTA for 4 hours. While macrophage secretion of TNF-a by

FSL-1-fluorescein and LTA, were dependent on TLR6, macro-

phage activation by lipomannan from M. smegmatis was

dependent on TLR6 and TLR1. Furthermore, TNF-a secretion

by macrophages at low concentrations of the ligands was

dependent on CD36, while the absence of TLR2 and CD14

impaired TNF-a secretion by macrophages even at higher ligand

concentrations of LTA, FSL-1-fluorescein and lipomannan

(Figure 3).

mCD36ED amplifies the response to LTA in wild-type
macrophages and restores the response to LTA in CD36-
deficient, but not in CD14-deficient macrophages

To further explore the role of CD36 in activation by TLR2

ligands, we examined the effect of mCD36ED on increasing

amounts of LTA in vitro by measuring TNF-a production in

primary cultured peritoneal macrophages. Addition of mCD36ED

(50 and 100 ng/ml) increased macrophage sensitivity in C57BL/6

mice at low concentrations of LTA and restored the LTA activity

to wild-type levels in CD36obl/obl mice (Figures 4A, 4B). Moreover,

denaturation of mCD36ED, by heating for 2 hours at 100uC,

abolished restoration of the response of oblivious mice to LTA

(Figure 4C). In contrast, addition of mCD36ED only slightly

increased TNF-a secretion by insouciant macrophages, and no

significant increase of TNF-a secretion was observed for Tlr2/2

and heedless macrophages (Figure 5).

CD36 Role as TLR2 Co-Receptor
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mCD36ED does not interact directly with mTLR2ED
We investigated by immunoprecipitation whether direct

interaction of mCD36ED occurs with a murine TLR2 ectodomain

fused with an Fc domain of human IgG1 (mTLR2ED/Fc). We

incubated mCD36ED with mTLR2ED/Fc and subsequently with

magnetic protein G beads. After washing, samples from the

immunoprecipitation were run on an SDS-PAGE. No immuno-

precipitation of mCD36ED with mTLR2ED/Fc was observed

(Figure 6A), suggesting that mCD36ED does not interact directly

with mTLR2ED.

Discussion

CD36 is a type III transmembrane glycoprotein composed of an

extracellular domain, N-and C-terminal anchors and two short

intracellular domains [29]. Although other members of scavenger

Figure 1. Expression, purification, and characterization of mCD36ED. (A) mCD36ED is an apparent monomer in size exclusion
chromatography. mCD36ED and molecular weight standards (depicted in red) were run on a Superdex 200 10/30 gel filtration column. mCD36ED
elutes at 14.7 ml which corresponds to the retention volume for a protein of ,52 kDa and roughly corresponds to a molecular weight of 58.3 kDa of
mCD36ED as determined by MALDI TOF MS. (B) Fractions of mCD36ED after size exclusion chromatography were run on an SDS PAGE. The position
of purified mCD36ED, which runs with an apparent molecular weight between 50 and 75 kDa, is indicated. (C) mCD36ED is folded. The CD spectrum
of mCD36ED was recorded at 25uC. Triplicate measurements were averaged, the CD spectrum of the buffer subtracted, and the CD data were
converted from millidegrees to molar ellipticity per residue. Typical CD spectra of proteins rich in a-helical, b-sheet, and mixed a/b secondary
structure are shown for comparison. a-helical proteins typically display a CD spectrum dominated by a strong maximum around 190 nm and two
minima at 208 nm and 222 nm, while b-sheet proteins show a less pronounced maximum at 195 nm and a minimum around 215 nm. The CD
spectrum of mCD36ED with its broad minimum between 207-230 nm and a maximum around 195 nm is thus indicative of the presence of both a-
helices and b-sheets in its secondary structure.
doi:10.1371/journal.pone.0007411.g001
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Figure 2. mCD36ED binds to FSL-1, Pim2, LTA and Pim4, but not to Pam3CSK4. mCD36ED was incubated overnight with TLR2 ligands or
influenza hemagglutinin (H5N1 Viet 04 strain) and subsequently run on a native 4–20% PAGE for 4 hours at 100 volts. Fluorescence was determined
with a Versadoc imaging system. Subsequently, the gel was stained with Coomassie Blue. (A) Native gel stained with Coomassie Blue. (B)
Fluorescence from the native gel determined using a Versadoc imaging system. Lanes: 1- 1 mg of Pam3CSK4- fluorescein (Pam3CSK4f) ; 2- 1 mg of FSL-
1-fluorescein (FSL-1f); 3- 1 mg of Pim4; 4- 1 mg of Pim2; 5- 1 mg of LTA; 6- 10 mg of hemagglutinin Viet 04; 7- 10 mg of mCD36ED incubated with 10 mg
of hemagglutinin Viet 04; 8- 10 mg of mCD36ED incubated with 1 mg of Pim4; 9- 10 mg of mCD36ED incubated with 1 mg of Pim2; 10- 10 mg of
mCD36ED incubated with 1 mg of Pam3CSK4f; 11- 10 mg of mCD36ED incubated with 1 mg of FSL-1f 12- 10 mg of mCD36ED incubated with 1 mg of
LTA; 13- 10 mg of mCD36ED. (C) The retention volume of mCD36ED-LTA and mCD36ED-Pim2 is decreased as compared to uncomplexed mCD36ED.
An appreciable shift in molecular weight is seen after incubation of mCD36ED with LTA or Pim2, but no shift is observed with Pam2CSK4 or Pam3CSK4.
Molecular weight standards were run in parallel to determine the apparent change in molecular weight of mCD36ED. (D) The presence of LTA in the
mCD36ED-LTA size exclusion chromatography fractions was confirmed by dot blot analysis using an anti-LTA antibody. Lanes 1- PBS; 2- Pam2CSK4; 3-
anti-LTA antibody; 4- LTA; 5- mCD36ED; 6- mCD36ED- LTA. (E) KRN TCR with a C-terminal His-tag does not bind ligands of TLR2. Lanes 1- 1 mg of
Pam3CSK4; 2- 1 mg of LTA; 3- 1 mg of FSL-1, 4- 1 mg of Pim2, 5- 1 mg of Pim4, 6- 10 mg of KRN TCR; 7- 10 mg of KRN TCR incubated with 1 mg of
Pam3CSK4; 8- 10 mg of KRN TCR incubated with 1 mg of LTA, 9- 10 mg of KRN TCR incubated with 1 mg of FSL-1, 10- 10 mg of KRN TCR incubated with
1 mg of Pim2, 11- 10 mg of KRN TCR incubated with 1 mg of Pim4.
doi:10.1371/journal.pone.0007411.g002

CD36 Role as TLR2 Co-Receptor
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Figure 3. Expression of TLR2, CD14 and CD36 in murine macrophages are relevant for secretion of TNF-a by the following bacterial
components: (A) lipomannan from M. smegmatis, (B) FSL-1 fluorescein, and (C). LTA from S. aureus. Macrophages from C57BL/6 mice, heedless,
insouciant (int), oblivious (obl), Tlr22/2, Tlr12/2 were exposed to different concentrations of lipomannan from M. smegmatis, LTA from S. aureus and
FSL-1 fluorescein for 4 hours at 37uC. The amount of TNF-a secreted to the supernatant was determined by an L929 cell cytotoxic assay. Values are
expressed as mean values +/2 SEM (n = 2 mice).
doi:10.1371/journal.pone.0007411.g003
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Figure 4. TNF-a secretion by macrophages with LTA. (A) mCD36ED increases secretion of TNF-a by low LTA concentrations in C57BL/6
macrophages. (B) mCD36ED restores secretion of TNF-a in oblivious (obl) macrophages. (C) Denatured mCD36ED did not restore secretion of TNF-a
by oblivious (obl) macrophages. Macrophages from C57BL/6 and oblivious were exposed to different concentrations of LTA plus a constant amount of
mCD36ED, or heated denatured mCD36ED (for oblivious macrophages) for 4 hours at 37uC. The amount of TNF-a secreted to the supernatant was
determined by L929 cytotoxic assay. Values are expressed as mean values +/2_SEM (n = 3 mice).
doi:10.1371/journal.pone.0007411.g004

CD36 Role as TLR2 Co-Receptor
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Figure 5. mCD36ED does not rescue deficient TNF-a secretion by LTA in the case of macrophages extracted from (A) heedless, (B)
tlr22/2 and (C) insouciant (int) mice. Macrophages from tlr22/2, heedless and insouciant macrophages were exposed to different concentration
of LTA plus a constant amount of mCD36ED for 4 hours. The amount of TNF-a secreted to the supernatant was determined by an L929 cytotoxic
assay. Values are expressed as mean values +/2 SEM (n = 3 mice).
doi:10.1371/journal.pone.0007411.g005

CD36 Role as TLR2 Co-Receptor

PLoS ONE | www.plosone.org 7 October 2009 | Volume 4 | Issue 10 | e7411



receptors class B, SRB-I and SRB-II, have been implicated in the

uptake of Mycobacterium fortuitum into non-phagocytic cells [30], no

role has been assigned to CD36 in innate immunity. We previously

showed that CD36 is a selective co-receptor of TLR2 [16]. The

role of CD36 as a co-factor for transmembrane proteins appears to

be evolutionary conserved among species. Sensory neuron

membrane protein (SNMP), a Drosophila melanogaster CD36

homolog, has a role in pheromone detection and acts as a co-

factor for the OR67d/OR83 receptor [31]. However, the

mechanisms underlying these interactions remain unclear.

In this study, we addressed the mechanism by which CD36

cooperates with TLR2. To investigate the role of CD36 as a TLR2

co-receptor, mCD36ED was cloned and expressed using a

baculovirus expression system. Highly purified mCD36ED was

Figure 6. mCD36ED and TLR2. (A) mCD36ED does not interact with an mTLR2ED/Fc chimera. SDS PAGE of the samples from immunoprecipitation
using protein G beads. Lanes: 1- Protein G incubated with mTLR2ED/Fc chimera and mCD36ED; 2- Protein G incubated with mTLR2ED/Fc chimera
alone; 3- Protein G incubated with mCD36ED; 4- mCD36ED; 5- mTLR2ED. (B) Model of CD36-dependent activation of the TLR2 signaling pathway.
CD36 binds LTA (step 1) which is transferred to CD14 (step 2). Alternatively, the soluble ectodomain of CD36 binds LTA (step 1a), and transfers it to
CD14 (step 2a). Subsequently, CD14 transfers LTA to TLR2/TLR6 (step 3) and the MyD88 pathway is activated (step 4).
doi:10.1371/journal.pone.0007411.g006

CD36 Role as TLR2 Co-Receptor
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obtained after three purification steps: immobilised metal

affinity chromatography (IMAC), cationic exchange chroma-

tography and size exclusion chromatography. Purified

mCD36ED behaved as a monomer in gel filtration chromatog-

raphy and its CD spectrum was consistent with folded protein

with a-helical and b-sheet secondary structure. We also showed

that recombinant mCD36ED contains N-linked glycans and

disulfide bonds. We employed native PAGE, which has been

successfully applied to investigate the binding of toll-like

receptor 4/ myeloid differentiation factor 2 (TLR4/MD-2)

with LPS (lipopolisaccharide) [32] and CD14 with LTA [33], to

show that mCD36ED binds Pims, LTA, FSL1-fluorescein, but

not Pam3CSK4. This selective binding displayed by mCD36ED

explains the enhanced NF-kB activation by specific TLR2

ligands, but not others. Thus, the monomeric form of

mCD36ED can bind TLR2 ligands in the absence of any other

receptors or co-receptors. Furthermore, it was recently reported

that monomeric transmembrane rat CD36 binds acetylated and

oxidized low density lipoproteins [34].

The substantial increases in electrophoretic mobility shown by

LTA-CD36 and Pim2-CD36, and several bands shown for the

Pim4-CD36 complex, indicate that CD36 is able to bind more

than one molecule of each of these ligands which was also

confirmed by shifts in size exclusion chromatography for

mCD36ED-Pim2 and mCD36ED-LTA complexes. These re-

sults are consistent with the role of CD36 as a scavenger receptor

that sequesters glycolipid ligands. This selective binding dis-

played by mCD36ED explains the enhanced NF-kB activation

by specific TLR2 ligands, but not others. Comparison of TLR2

ligands that were able to bind mCD36ED, versus those that were

not, reveals that mCD36ED ligands have negatively charged

moieties (polyglycerophosphates and myo-inositol phosphate for

LTA and Pims, respectively), in agreement with reports that

CD36 binds negatively charged ligands, such as phospholipids

and phosphocholine [12]. These combined results are consistent

with the role of mCD36ED as a scavenger receptor that

sequesters polyanionic ligands [35]. Although CD36 binds

Pim2 and Pim4, these synthetic phosphatidylinositol mannosides

could not stimulate secretion of TNF-a by macrophages from

C57BL/6 mice. Lipoarabinomannan (LAM) and its precursors

have been reported to activate cells via the TLR2/TLR1

heterodimer [36]. Thus, this lack of activity for Pim2 and Pim4

may arise from the lack of the third acyl chain in these synthetic

Pims that is necessary for interaction with TLR1 [37]. Although

these synthetic Pims were not active, lipomannan from

Mycobacterium smegmatis could induce TNF-a secretion in a

TLR2- and CD36-dependent manner.

Because of the importance of TLR2 in the control of

mycobacterial infections [38,39], it will also be important to

evaluate the role of CD36 in the pathogenesis of Mycobacterium

tuberculosis and Mycobacterium leprae. In CD36 binding studies, we

employed the same synthetic Pim2 that was loaded onto CD1d for

determining the crystal structure of the Pim2-CD1d complex [40]

and the same Pim4 structure that was reported to be a natural

ligand of CD1d [41]. Furthermore, CD36 may also play a role in

the endocytosis of Pims for presentation by CD1d, as with

mannose receptor in the presentation of LAM by CD1b [42].

Pim2 shares the phosphatidylinositol diacylglycerol structure with

the glycosylphosphatidylinositol (GPI) anchors from Toxoplasma,

Plasmodium, Leishmania and Trypanosome, that could result in binding

of GPI to mCD36ED. In fact, a recent report showed that

secretion of TNF-a by GPI from P. chabaudi chabaudi AS is

impaired in Cd362/2 macrophages, compared with wild-type

macrophages. Cd362/2 mice also showed a higher level of

parasitemia and mortality than wild-type mice [18]. Therefore, it

is highly possible that CD36 cooperates with TLR2 in the

recognition of GPI by binding and accumulating GPIs from

parasites. It would be relevant to investigate if Cd362/2 mice

infected with Leishmania major, Toxoplasma gondii and Trypanosoma

cruzi, display higher levels of parasitemia and/or mortality, such as

for P. chabaudi chabaudi AS.

Although the relevance of CD36 in the control of infection has

been demonstrated, little is known about the mechanism by which

CD36 enhances the response to TLR2 ligands. Our data reveal

that response to lipomannan, LTA and FSL-1-fluorescein is

dependent on the presence of TLR2, CD14, and CD36. In the

case of LTA, loss of expression of functional CD36, CD14 or

TLR6 caused a decrease in the ability of macrophages to activate

the MyD88 signaling pathway. Furthermore, addition of either 50

or 100 ng/ml of mCD36ED increased the sensitivity of C57BL/6

macrophages to low concentrations of LTA , and restores the

secretion of TNF-a by LTA from oblivious macrophages, but failed to

restore the secretion of TNF-a from either heedless or insouciant

macrophages. Increase in TNF-a secretion by LTA in the

presence of mCD36ED is TLR2-dependent, as no increase in

TNF-a secretion was observed in macrophages from Tlr2 2/2

mice. Recently, soluble CD36 in plasma was reported to be

increased in type II diabetic patients and patients with polycystic

ovarian syndrome [43,44]. Because our data indicate enhance-

ment of TNF-a secretion in C57BL/6 mice by mCD36ED at low

concentrations of LTA, the presence of high levels of soluble

CD36 in plasma from type II diabetic patients could contribute to

exacerbation of the inflammatory response of macrophages in the

presence of negatively charged diacylglycerol ligands and,

therefore, may play a role in atherosclerosis development in

diabetic patients.

Interestingly, our data indicate that mCD36ED is not able to

restore TNF-a secretion in the absence of CD14. Thus, the main

function of CD36 is to bind and transfer diacylglycerol ligands

onto TLR2, in a CD14-dependent manner. This transfer of

ligands onto CD14 by CD36 is also consistent with our

immunoprecipitation results which show that mCD36ED does

not directly interact with mTLR2ED/Fc.

Furthermore, CD14 also binds LTA, as well as LPS [34,45].

The crystal structure of the murine CD14 ectodomain shows a

possible hydrophobic pocket in its N-terminal region, which

could be involved in ligand binding [46]. Soluble CD14 or

transmembrane CD14 can bind monomers of LPS and transfer

them to TLR4/MD2 complex [47-49]. In a similar way, CD14

could be a ‘‘shuttle’’ that takes monomers of diacylglycerol

ligands, which are bound to CD36, and transfer them to TLR2/

TLR6. Addition of mCD36ED did not restore TNF-a secretion

by insouciant macrophages, indicating that CD36 cannot replace

the function of TLR6 as a TLR2 co-receptor. In summary, we

show that the TLR2 co-receptor role of CD36 is dependent only

on the ectodomain of CD36, but not dependent on either

signaling or endocytosis mediated by the intracellular domains

of CD36. Therefore, our data are consistent with activation of

the TLR2-dependent MyD88 signaling pathway by LTA from

the plasma membrane [19,20]. Similarly, activation of the

MyD88 signaling pathway by LPS was also reported to be

independent of LPS internalization [50,51]. Based on our data,

we propose a model in which CD36 binds diacylglycerol

ligands, transfers them to CD14, which then loads these ligands

onto TLR2/TLR6 (FSL-1, MALP-2, and LTA), or TLR2/

TLR1 (lipomannan). Whether the transfer of pheromones from

SNMP to OR67d is a direct or an indirect process remains to be

shown.
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Materials and Methods

Ligands, H5N1 Viet04 hemagglutinin and KRN TCR
employed in native PAGE

Pam2CysSK4, Pam3CysSK4, Pam3CysSK4-fluorescein, FSL-1 -

fluorescein were obtained from EMC Microcollection (Tubingen,

Germany). Purified LTA from S. aureus, lipomannan and FSL-1

was obtained from Invivogen (San Diego, CA, USA). Influenza

hemagglutinin from the H5N1 Viet04 strain was a gift from Dr.

James Stevens in our laboratory. The hemagglutinin precursor,

corresponding to the H5N1 Viet04 strain, with a C- terminal His-

tag was cloned in pAcGP67A (BD Biosciences, USA) for

expression in insect cells. A thrombin site was included to release

the C-terminal His-tag and a foldon was also included to help in

the trimerization process. H5N1 Viet04 hemagglutinin was

expressed using a baculovirus/ insect cell expression system and

purified from culture supernatants, as previously described [27].

Synthetic phosphatidylinositol mannosides (Pim2 and Pim4) were

synthesized as described previously [52]. cDNA for the a and b
chain of KRN TCR were individually subcloned into the fly TCR

expression vector pRMHa3. The final constructs code for the

a1a2 and the b1b2 domains, respectively, followed by a linker

sequence (SSADL), a thrombin site (LVPRGS), a leucine zipper

(acidic for the a chain, basic for the b chain) and a hexa-histidine

tag (C-terminal His-tag). Vectors were co-transfected into

Drosophila Scheneider-2 insect cells along with a vector encoding

a puromycin-resistance gene and stable cell-lines were established.

Soluble TCRs were purified from culture supernatants, as

previously described [53].

Cell culture and cell lines
Sf-9 and Hi-5 insect cells were purchased from Invitrogen (USA)

and employed for baculovirus generation and protein expression,

respectively. Cell lines were cultured in suspension cultures in

serum-free HyQ media (Hyclone, USA) at 27uC shaking at 225

rpm. Drosophila Scheneider-2 insect cells (Invitrogen, USA) were

cultured in serum-free SFX insect express media (Hyclone, USA) in

roller bottles. DMEM supplemented with 5% FCS and 2%

penicillium streptomycin was used for culturing macrophages.

Mice
C57BL/6, insouciant (TLR6int), oblivious (CD36obl), heedless

(CD14hdl), Tlr12/2 and Tlr22/2 mice were maintained and bred

in The Scripps Research Institute Vivarium under the supervision

of the Department of Animal Resources. All studies involving mice

were performed in accordance with the rules of Institutional

Animal Care and Use Committee of The Scripps Research

Institute. All experiments were performed according to the US

National Institutes of Health guidelines.

Cloning and expression of mCD36ED
The mCD36ED was amplified by PCR from a vector harboring

the complete murine CD36 DNA (CMV CD36-pCDNA3.2/V5-

DEST2) and the following primers:

Forward primer: GTG TGT GGA TCC CGG AGA CAT

GCT TAT TGG GAA GAC AAT CAA AAG GG and Reverse

primer: GTG TGT GAA GCGGCC GC TCA GTG ATG ATG

ATG A TG ATG CTTG ATT TTC CCA GTC ACT TGT

GTT TTG AAC. In the forward primer, a BamHI restriction

enzyme site was included (indicated in bold), while in the reverse

primer a NotI (indicated in bold) restriction site and a stop codon

(indicated by underline) was inserted. PCR amplification was

performed using GC- rich DNA polymerase (Roche, USA) and

the following steps were carried out: initial denaturation at 95uC

for 4 minutes, denaturation for 35 cycles of 45 seconds at 95uC,

annealing for 1 minute at 65uC, polymerization for 4 minutes at

72uC, final elongation for 7 minutes at 72uC.

The PCR product was purified by gel extraction, cloned into

XL PCR Topo cloning vector (Invitrogen, USA) and subsequently

subcloned into the BamHI and NotI sites of the baculovirus transfer

vector pAcGP67A (BD Biosciences, USA) for expression of

mCD36ED with a C-terminal His-tag (Gen Bank accession

number: GQ227601). The correct mCD36ED DNA sequences

were confirmed at each step by sequencing both DNA strands.

2 mg of mCD36ED pAcGP67A plasmid DNA was co-transfected

with 2 mg of Profold ER1 baculovirus DNA (AB vector, USA) in

Sf-9 cells. After 5 rounds of viral amplification, a titer of

16109 virus/ml was obtained as determined by an end point

dilution assay. Baculovirus infection was monitored by GFP

expression, which was encoded in the Profold ER1 baculovirus

DNA. For large scale mCD36ED protein expression, 3 liters of Hi-

5 cells were infected with mCD36ED Profold ER1 baculovirus at

an MOI of 3 and harvested after 7 days. The first purification was

done by IMAC using Ni-NTA beads (Qiagen, USA) and a

Western blot was performed to confirm the presence of

mCD36ED in the elution from the Ni-NTA beads. After SDS

PAGE, the proteins were transferred to a PVDF membrane by

electro-blotting for 1 hour at 100 volts. The membrane was

blocked with 1 % BSA, 0.1% Tween 20 for 1 hour at room

temperature and incubated overnight at 4uC with an anti penta-

His tag antibody (1/100 dilution; Calbiochem, USA). A second

incubation with an anti-mouse IgG-peroxidase conjugated anti-

body (1/5000 dilution; Pierce, USA) was performed for 1 hour at

room temperature. After developing the Western blot with ECL

(Pierce, USA), a band between 50 and 75 kDa was observed.

CD spectroscopy of mCD36ED
mCD36ED at a concentration of 0.14 mg/ml in 50 mM NaCl,

10 mM TrisCl pH 8 was used for circular dichroism (CD)

experiments. CD spectra of mCD36ED were recorded at 25uC
using an AVIV 202 spectropolarimeter (Hellma, Mullheim,

Baden, Germany). The scans were performed in triplicate from

260 to 195 nm with 1 nm resolution. The spectra from triplicate

scans were averaged and the final spectra were obtained by

subtracting the buffer measurement spectra obtained under

identical conditions. Results are expressed as molar ellipticity per

residue. Protein concentrations were determined using the

Bradford method (Bradford solution, Pierce, USA). Typical CD

spectra of proteins rich in a-helical (Che a 3, [54]), b-sheet (human

TLR-2 ectodomain, [55]), and mixed a/b secondary structure

(Bet v 1, [56]) are shown as reference.

Determination of N-linked glycosylation and disulfide
bonds in mCD36ED

To investigate the presence of disulfide bonds in mCD36ED,

20 mg of mCD36ED was incubated at 100uC in SDS buffer with

or without b-mercaptoethanol for 5 minutes and the samples were

subjected to SDS PAGE for 1 hour at 200 volts. To demonstrate

the presence of N-linked glycosylation, 10 mg of mCD36ED was

deglycosylated with 50 units of PNGase F under native conditions.

The difference in electrophoretic mobility was indicative of the

presence of N-linked glycans in mCD36ED.

Native PAGE and gel filtration experiments
To determine binding of mCD36ED to different ligands, 10 mg

of mCD36ED was incubated overnight at 37uC with 1 mg of

synthetic Pim4, 1 mg Pim2, 1 mg LTA, 1 mg of Pam3CSK4
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fluorescein, 10 mg of Viet 04 hemagglutinin, or 1 mg FSL-1

fluorescein. The molar ratio of trimeric hemagglutinin to

mCD36ED is approximately 0.3 and the molar ratio of the

monomeric HA to mCD36ED is approximately 1. In the case of

the lipid ligands, it was added an excess of ligands respect to

mCD36ED. The molar ratios ligand/mCD36ED were: 3.9

(Pam3CysSK4), 5.6 (FSL-1 fluorescein), 3.2 (Pim2), 3.9 (Pim4),

2.5 (LTA). For negative control, 10 mg of KRN TCR was

incubated for one hour at 37uC with 1 mg of synthetic Pim4, 1 mg

Pim2, 1 mg LTA, 1 mg of Pam3CSK4, or 1 mg FSL-1. The molar

ratios of ligand/ KRN were: 4.0 (Pam3CysSK4), 5.8 (FSL-1), 3.3

(Pim2), 4.0 (Pim4), 2.6 (LTA). The samples were run for 4 hours at

100 volts in a native 4–20% polyacrylamide gel (Criterion Tris

HCl gel, Biorad) at room temperature with a Glycine Tris running

buffer at pH 7.4. Fluorescence was determined using a Versadoc

imaging system and the gel stained with Coomassie Blue. To

determine if binding altered the retention volume of mCD36ED,

100 mg of mCD36ED were incubated overnight at 37uC with 1 mg

of LTA, Pam3CSK4 or Pam2CSK4. The samples were loaded on a

Superdex 200 10/30 column (Pharmacia). The gel filtration

chromatography was performed at room temperature using PBS

pH 7.4 as running buffer at a flow rate of 0.5 ml/min and a

fractionation volume of 0.5 ml

Dot blots experiment to detect LTA in mCD36ED-LTA
complex purified by size exclusion chromatography

The collected fractions of CD36-LTA and CD36 from Super-

dex 200 10/30 were used for dot blots with an anti LTA antibody

(clone 55, Hycult, Netherland) that detects the LTA polyglycer-

ophosphate moiety. The first step was to blot 3 mL CD36 LTA,

3 mL of CD36 in a PDVF membrane, previously activated with

100% methanol. The membrane was blocked with 1 % BSA,

0.1% Tween 20 for 1 hour at room temperature and incubated

overnight at 4uC with a 1/1000 dilution of an anti-LTA antibody

(1/1000 dilution; clone 55, Hycult, Netherland). A second

incubation with a goat anti-mouse, IgG -peroxidase conjugated

antibody (1/5000 dilution; Pierce, USA) was performed for 1 hour

at room temperature. The dot blot was developed with ECL

(Pierce, USA). The anti-LTA antibody and LTA were employed

as positive controls, while Pam2CSK4 and PBS were employed as

negative controls in the dot blot experiment.

Determination of secretion of TNF-a by macrophages
Macrophages from the different mutant mice were induced by

addition of 3% thyoglycollate. After 3 days, peritoneal macro-

phages were harvested and 50,000 macrophages per well

(macrophages harvested from the same mouse were seeded in

duplicate wells) were incubated in DMEM with 5 % FCS and 2 %

penicillium streptomycin at 37uC, after which culture media were

discarded and replaced with 100 microliters of fresh media and

incubated for 4 hours with different concentrations of bacterial

ligands or different concentrations of LTA plus a constant amount

of active mCD36ED (50 or 100 ng/ml), or heated denatured

mCD36ED (100 ng/ml). Subsequently, the supernatants were

harvested and the values of TNF-a were determined by an L929

cytotoxic assay. An average value of TNF-a was obtained for each

duplicate wells (TNF-a duplicate wells) and the reported TNF-a
values were the average values of the TNF-a duplicate wells.

Because the data of each duplicate wells represent the secretion of

TNF-a from macrophages of a particular mouse, the duplicate

wells are independent of each other. Therefore, the number of

independent replicates per experiment is the number of mice per

experiment. In order to determine the effect of the different

mutants in the response to lipomannan, FSL-1-fluorescein and

LTA, and for determination of the activity of mCD36ED,

macrophages were extracted from two and three mice, respec-

tively. Values are expressed as mean values +/2 SEM. All

experiments were repeated three times. Therefore, the data are

representative from three independent experiments.

Immunoprecipitation
To determine any direct interaction between the ectodomains of

murine CD36 and TLR2, 24 mg of mCD36ED was incubated

with 10 mg of mTLR2ED/FC chimera overnight at room

temperature in PBS pH 7.4, and then incubated with 50 ml of

magnetic protein G beads (NEB, USA) for 1 hour at 4uC. The

supernatant was removed and the protein beads were washed 5

times with PBS. The proteins were eluted from the beads by

heating for 5 minute at 100uC with reducing loading buffer and

run on an SDS PAGE.

Supporting Information

Figure S1 Characterization of recombinantly expressed

mCD36ED. (A) Western blot showing the presence of mCD36ED

after Ni-NTA purification of supernatants of Hi-5 cells infected

with mCD36ED ER1 Profold baculovirus. Lanes: 1- Molecular

weight markers; 2- Supernatant of non-infected Hi-5 cells; 3-

Elution from Ni-NTA beads of supernatant from Hi-5 cells

infected with mCD36ED ER1 Profold baculovirus. (B) The

identity of mCD36ED was confirmed by mass spectrometry. To

confirm that the purified protein was indeed mCD36ED, the gel

bands from figure 1B were excised, reduced with DTT (10 mM),

digested with trypsin overnight before being analyzed by nano LC-

MS/MS (TSRI Center for Mass Spectrometry). The 6 peptides,

which were identified using MASCOT, are depicted in red.

Found at: doi:10.1371/journal.pone.0007411.s001 (1.03 MB TIF)

Figure S2 mCD36ED has intramolecular disulfide bonds and

N-linked glycosylation. (A) SDS PAGE of mCD36ED under

reducing and non-reducing conditions. Lanes: 1- mCD36ED

under reducing conditions; 2- mCD36ED under non-reducing

conditions. (B) 10 mg of purified mCD36ED (native and

denatured) was digested with 50 units of PNGase F overnight at

37uC. The samples were reduced and run on an SDS PAGE.

Found at: doi:10.1371/journal.pone.0007411.s002 (1.41 MB TIF)
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