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Abstract

Background: Many studies have quantified the indirect effect of hydrocarbon-based economies on climate change and
biodiversity, concluding that a significant proportion of species will be threatened with extinction. However, few studies
have measured the direct effect of new energy production infrastructure on species persistence.

Methodology/Principal Findings: We propose a systematic way to forecast patterns of future energy development and
calculate impacts to species using spatially-explicit predictive modeling techniques to estimate oil and gas potential and
create development build-out scenarios by seeding the landscape with oil and gas wells based on underlying potential. We
illustrate our approach for the greater sage-grouse (Centrocercus urophasianus) in the western US and translate the build-
out scenarios into estimated impacts on sage-grouse. We project that future oil and gas development will cause a 7–19
percent decline from 2007 sage-grouse lek population counts and impact 3.7 million ha of sagebrush shrublands and 1.1
million ha of grasslands in the study area.

Conclusions/Significance: Maps of where oil and gas development is anticipated in the US Intermountain West can be used
by decision-makers intent on minimizing impacts to sage-grouse. This analysis also provides a general framework for using
predictive models and build-out scenarios to anticipate impacts to species. These predictive models and build-out scenarios
allow tradeoffs to be considered between species conservation and energy development prior to implementation.
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Introduction

Global demand for energy has increased by more than 50 percent

in the last half-century, and a similar increase is projected between

2007 and 2030 ([1]). Energy production to meet this demand has

resulted in increased habitat fragmentation and increased pressures

on biological diversity worldwide ([2,3,4]). Such impacts are

anticipated to continue, as many renewable and non-renewable

energy sources cause habitat fragmentation and disturbance. Fossil

fuels will likely remain the largest source of energy with oil, natural

gas and coal accounting for 80 percent and non-hydro renewable

energy sources (i.e. solar, wind, geothermal) accounting for four

percent of global energy supplies in 2030 respectively ([1]). In the

United States (US), impacts to species are likely to increase as

domestic energy production is encouraged to reduce dependence on

foreign energy sources. In the Intermountain West, for example, a

doubling of oil and gas development occurred between 1990 and

2007 ([5]). If renewable energy can meet 20 percent of US energy

demand, as some predict, the land area required (assuming a

turbine density of 5 MW per sq. kilometer) for wind development

alone would fragment an estimated 50,000 km2 of land ([6]).

Many studies have quantified the indirect effect of fossil fuel

usage on climate change and on biodiversity, concluding that a

significant proportion of species will be threatened with extinction

as a result of increasing temperature ([7,8]). However, few studies

have measured the direct effect of new energy production

infrastructure on species ([9]), although many have warned of

widespread biodiversity loss resulting from increasing human

energy use globally ([10,11,12]). While diverse predictive modeling

techniques have been applied in recent years to project land cover

changes and residential development ([13,14,15]) and to predict

potential species habitat ([16,17]), similar techniques have not

been applied to model anticipated energy development and

impacts to species.

Here we employ land use change build-out scenarios for future

energy development demand to quantify future impacts on sage-

grouse across six western states. To illustrate this concept, we

created a map of oil and gas development potential for portions of

12 states in the Intermountain West and used this map and

published projections from federal land management agencies to

model future oil and gas build-out scenarios at two levels, as

opposed to using expert or stakeholder input to create normative

scenarios or ‘‘visions’’ (i.e. [18,19]). We measured the impacts of

the build-out scenarios on populations of greater sage-grouse

(Centrocercus urophasianus), hereafter referred to as sage-grouse, a

species for which energy development impacts have been well-
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documented ([20,21,22]), spatially-comprehensive and long-term

data is available, and which is currently being considered for listing

under the U.S. Endangered Species Act (ESA) ([23]). When

applied as part of the planning process, this approach could be

used to highlight areas of biological sensitivity or avoidance areas

([24,25]) necessary to achieve conservation goals for a species, or

to indicate if the proposed development will or will not have

significant impacts to a population across its range.

Methods

Forecasting oil and gas potential
Because a product of this type was not available, we created a

probabilistic classification model of oil and gas resource potential

to facilitate landscape-scale analysis. We generated a 1-km2

prediction (map) using the nonparametric method ‘Random

Forests’, developed to address statistical issues related to over-fit

and parameter sensitivity in CART (Classification and Regression

Trees) models ([26,27,28]). Random Forests uses an iterative

Bootstrap with replacement (64% of data per Bootstrap replicate)

to construct an ensemble of ‘‘weak learners’’ (CARTs based on a

random subsample of data). Prediction is made through a majority

vote across the ensemble and not by the familiar rule-set in a

traditional CART model. The derivation of a probabilistic output

from a classification-based model was introduced in Evans and

Cushman ([27]) as an extension of the original Breiman ([26])

algorithm. It has been shown that the Random Forests algorithm

can find signals in noisy data, handle large numbers of predictor

variables, avoid over fit, and is invariant to parametric

assumptions (e.g. spatial autocorrelation, normality) ([26,27,29]).

Our binary response variable included geospatial data on

producing and non-producing oil and gas wells, and a series of

topographic, geological and geophysical predictor variables.

Recent studies have demonstrated the strength and utility of

Random Forests when developing a continuous measure of the

probability of occurrence based on a suite of categorical or

continuous predictor variables ([27,29]). Nonparametric classifi-

cation algorithms such as Random Forests are also ideal for

modeling complex, non-linear relationships and avoiding prob-

lems of autocorrelation and unknown variable interaction across

spatial and temporal scales ([27,29]).

The six predictor variables used in the model were: geophysical

data showing aeromagnetic, isostatic gravity, and Bouguer gravity

anomalies, geology, topography and bedrock depth. We chose

these variables because they are used by geoscientists to predict

where hydrocarbon deposits may occur ([30,31,32]). Data on

aeromagnetic and gravimetric anomalies depict spatial variations

in subsurface rock density and magnetism and indicate features

such as buried faults and the depth and location of the sedimentary

rocks, both of which can be useful for hydrocarbon resource

mapping ([33]). The USGS has conducted low-elevation airborne

magnetic surveys since 1946; these data were stitched together by

the USGS to form a 1-km2 national aeromagnetic map. The

USGS generated the gravimetric datasets from thousands of

gravity observation stations across the US. The Bouguer gravity

anomaly map corrects the gravity station field values for influences

on the data such as the Earth’s tides and rotation, crustal density,

and topography. Isostatic residual anomaly data remove the long-

wavelength part of the gravity field to correct for distortions from

topographic loads and yield a map more appropriate for near-

surface gravity mapping. All geophysical data were downloaded

from the USGS at 1-km2 resolution for the Coterminous US

([34]). Bedrock geology maps ([35]) show the age, distribution and

character of bedrock that lies immediately beneath the soils or

surface. We represented bedrock geology using the 1:5,000,000

scale Generalized Geologic Map of the Coterminous United States

downloaded from the USGS national map atlas (http://

nationalatlas.gov). Topography data can indicate the location of

fold and thrust belts where sedimentary rocks have been deformed

by horizontal compression. Once compressed, tightly folded and

fractured, reservoir rocks may create pools for oil and gas to form

([36]). We represented topography using 30-m USGS National

Elevation Data also downloaded from the national map atlas

(http://nationalatlas.gov). The spatial distribution of the rock

basement can be approximated using depth to bedrock data from

the wells database and indicates, at a coarse-scale, where

subsurface valleys and peaks of the basement rock are located.

We created a 1-km2 cell surface model of depth to bedrock derived

from well depth information in the oil and gas wells database using

inverse distance weighted interpolation (power = 1; number of

points within radius = 12; maximum distance = 5000 meters).

We used data on the producing status of oil and gas wells within

a 1-km2 grid cell as the binary response variable in our model. We

acquired the oil and gas wells database from IHS Incorporated

(2007, www.ihsenergy.com) for all states in the study area

excluding California and southeast New Mexico, for which we

were unable to obtain data. The statewide wells records were

merged into a single seamless oil and gas wells file, and non-oil and

gas wells (e.g. injection, storage, and unclassified wells) and wells

without permits or with drilling in-progress were removed. Using

well status code information, wells were attributed as producing (1)

and non-producing (0). We created a 1-km2 spaced point grid for

the study area and each point attributed as producing or non-

producing. If both producing and non-producing wells occurred

within the 1-km2 space around each point, the point was still

considered producing. The prediction model was built using this

point grid, which was then converted to a raster dataset.

We built the oil and gas model using a Random Forests model

with 300 bootstrap replicates or classification trees (k) and using the

entire sample dataset for out-of-bag (OOB) testing with replace-

ment. The number of bootstrap replicates was chosen where OOB

error stabilization occurred (between k = 200 and k = 300 repli-

cates). We avoided software limitations by partitioning the study

area into coarse-scale geologic provinces ([37]) and ran the model

by province. We applied a balancing algorithm within the

Random ForestsTM program (Salford Systems, Inc.) to upweight

small classes to equal the size of the largest target class and avoid

any issues with imbalances between the number of presences and

absences with the data parsed by province. Model predictions

were first linearly rescaled between 0 to 100, applied to each 1-km2

grid cell, and mapped across the Intermountain West as oil and

gas development potential where 0 = low potential and 100 =

high potential (Fig. 1A).

Model validation was performed using OOB testing techniques

to produce standard Random Forests model error statistics (area

under the ROC curve (AUC) [38], Cohen’s kappa [39], OOB

error, and class error). The overall average weighted AUC for the

two models was 0.889. A model validation statistics summary is

presented in Table 1. Accuracy (total number of correct

classifications divided by the total number of sample points) varied

in the individual models from 79.2 to 86.6% with an overall

accuracy of 82.9%. Our cumulative model kappa was 0.61, which

shows it to be an acceptable model. As an additional test of our

model’s prediction ability and to show how well our model would

predict without the benefit of more recent data, we built a

predictive validation model [40] using well data from 1900–1986

and predictor variables identical to the full model. We tested

accuracy of the validation model with well data from 1986–2007.

Mapping Development Potential

PLoS ONE | www.plosone.org 2 October 2009 | Volume 4 | Issue 10 | e7400



Figure 1. Oil and gas development potential in the US Intermountain West. (A) This map shows the potential for oil and gas development
from low to high. Areas in red have the highest potential and tan have the lowest. Black dots show producing (active or inactive) well locations (IHS,
Inc.). (B) Percent of federal minerals leased by oil and gas potential category (C) Validation of oil and gas potential model comparing predictions
based on pre-1986 data to post-1986 wells drilled by quintile-derived oil and gas potential categories.
doi:10.1371/journal.pone.0007400.g001
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We found that 81 percent of wells producing during 1986–2007

were in areas the validation model predicted for development,

which suggests that our model accurately predicts where new wells

would be placed up to 20 years into the future (Fig. 1C).

Our model uses coarse-scale data and thus provides a landscape

or regional-scale assessment of oil and gas potential. It cannot

predict site-scale potential and model predictions are constrained

by the current technology at the time we acquired the wells data

(2007) and could be inaccurate if there are significant new

advancements in extraction technology.

Developing build-out scenarios
To predict and locate future oil and gas development, we ran two

build-out scenarios—anticipated and unrestrained—by seeding the

landscape with oil and gas wells according to the underlying

development potential. The US Bureau of Land Management

(BLM) is the federal agency responsible for managing mineral

development on 283 million acres (including surface and sub-

surface mineral estate) of public land in the US. The anticipated

scenario was based on 20-year reasonable foreseeable development

projections from the BLM’s resource management plans (RMPs).

Where reasonable foreseeable development projections were

unavailable, we calculated resource area estimates by doubling

the number of wells permitted from 1996–2007 within a resource

area. The unrestrained scenario allowed development in the highest

quintile of oil and gas potential (model scores = 75–100). The BLM’s

estimates have been historically conservative—Colorado’s White

River Resource Area 1997 RMP predicted 56 wells per year would

be drilled, while the actual rate of drilling was three times that since

2004 ([41]). The number of current oil and gas leases across the

study area is also indicative that more lands are expected to be

developed than RMPs would suggest. Using oil and gas leasing data

from the BLM ([42]), we calculated that 81 percent of federal lands

with potential for oil and gas development (as defined in this

scenario) have already sold their rights (been leased) for oil and gas

development (Fig. 1B). Hence, we developed the unrestrained

scenario to hedge against these uncertainties.

To place modeled oil and gas wells into the 1-km2 cells available

for development, we used Community Viz Scenario 360 Allocator

Tool (Placeways LLC, Boulder, CO) with the ‘‘strict-order

allocation’’ setting, which places wells into the highest probability

cells first (using the map of oil and gas potential), then the next

desirable, and so on, until all cells have met the specified demand at

the specified density. If wells existed in a given cell, the model

accounted for those wells in the demand calculation and added new

wells until it fulfilled density limitations. The result—the number of

wells expected in each cell—is written as an attribute to each 1-km2

cell. We excluded lands where oil and gas development is currently

prohibited, including National Parks and National Wilderness

Areas from the Federal Lands of the United States database ([43])

and ‘‘no surface occupancy’’ (NSO) BLM lands. We mapped NSO

lands using a combination of data from the BLM NILS database

(Colorado, Montana, North Dakota, South Dakota, Utah) and data

from BLM field offices in Wyoming (Wyoming does not contribute

this data to the NILS database).

In the anticipated scenario we allocated, per BLM field office, a

total 95,867 wells at 16 hectare spacing (32 hectares within coal-

bed methane areas of the Powder River Basin, as per current

regulations). The unrestrained scenario used the same constraints

as the anticipated scenario but placed 260,953 wells in all areas

with high oil and gas potential.

Assessing sage-grouse population and habitat impacts
To demonstrate an application of our predictive oil and gas

model, we used the two build-out scenarios to quantify impacts of

anticipated and unrestrained development on sage-grouse popu-

lations in their eastern range ([44]). Oil and gas development is

known to reduce sage-grouse populations at conventional well

spacing densities of 16 to 32 hectares ([20,45,46]).

To determine whether sage-grouse would be impacted in areas

where development occurred, Doherty ([46]) quantified losses of

both abundance and occurrence of sage-grouse populations due to

oil and gas development by investigating all leks in Wyoming, the

largest segment of sage-grouse experiencing oil and gas develop-

ment impacts in North America. The average responses of leks in

Wyoming to different development intensities and amount of time

in development compared to control populations experiencing no

development were calculated for leks that were active in the last 11

years ([46]: Tables 1 and 2: pp 86–87). We applied the average

responses from these tables to all leks throughout Management

Zones I and II to predict future losses of sage-grouse to

development. We restricted the application of this model to areas

within the eastern distribution that were within sage-grouse

Management Zone I (Great Plains: includes portions of MT,

WY, ND, SD, SA, and AB) and II (Wyoming Basin: includes

portions of ID, WY, UT, MT, and CO) ([44,47]) because these

populations are at greatest risk from energy development. We

discounted effects of current losses to energy development in

calculations of predicted future losses of development by

subtracting current losses at specific development intensities to

anticipated losses at future development intensities.

Using the build-out scenarios to model impacts to sage-grouse

leks as defined above, we predict a 7 percent population decline in

the anticipated scenario and 19 percent population decline in the

unrestrained scenario compared to 2007 lek population counts.

These declines are in addition to the estimated range-wide

population declines of 45–80 percent that have already occurred

([47]). The predictions for sage-grouse populations also imply

impacts to other sagebrush-dependent species with known

sensitivities to oil and gas development such as pronghorn

(Antilocapra americana) ([48]), mule deer (Odocoileus hemionus) ([49]),

Brewer’s sparrow (Spizella breweri), sage sparrow (Amphispiza belli)

and sage thrasher (Oreoscoptes montanus) ([50]).

Overall, the anticipated scenario estimates 2.3 million ha (four

percent of the study area), an area the size of New Hampshire, will be

directly impacted by oil and gas development versus unrestrained

Table 1. Accuracy statistics for the oil and gas prediction model.

AUC Kappa OOB Error Error Class = 0 (non-producing) Error Class = 1 (producing)

Model 1 0.891 0.60 0.203 27.24 13.40

Model 2 0.886 0.61 0.193 17.77 20.83

Cumulative 0.889 0.61 0.198 22.51 17.12

doi:10.1371/journal.pone.0007400.t001
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Figure 2. Oil and gas simulation results for the two scenarios. This map illustrates the location and extent of expected development in the
two scenarios. Areas in orange depict growth for the anticipated scenario. Areas in red depict growth for the unrestrained scenario. Bar graphs show
the quantity of development projected for each scenario. Core areas for sage-grouse are shown to highlight expected areas of future conflict ([46]).
doi:10.1371/journal.pone.0007400.g002
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scenario impacts of 5.5 million ha or 10 percent of the study area

(Fig. 2).We quantified habitat impacts by vegetation type for the

unrestrained scenario using Globcover, a regional land cover map for

North America ([51]). The habitats predominantly impacted are

sagebrush shrublands (3.7 million ha) and grasslands (1.1 million ha),

with the remainder a mosaic of hayfields and irrigated croplands.

Results and Discussion

Our analysis shows that we can expect a 7–19 percent

population decline in sage-grouse from future oil and gas

development and that the impacts within our study area will be

greatest to sagebrush (3.7 million ha) and grassland (1.1 million ha)

ecosystems and the species that inhabit them. These results are

based on the use of statistical models to forecast future change and

the many assumptions inherent to this process. We based our

build-out scenarios on projections from the most recent BLM

planning documents available at the time and on the oil and gas

potential model. BLM estimates are frequently revised from new

field discoveries and as technological advances influence resource

extraction methods. Forecasted impacts to sage-grouse populations

could be revised lower if directional drilling to reduce well pad

density at the surface became more commonplace ([52]). Our

build-out scenarios are applicable across whole landscapes

regardless of land tenure because we assumed that development

could occur on any parcel of land, public or private, with the

previously noted exceptions. Our estimates provide insights into

the trajectory and eventual endpoint of oil and gas development,

but the rate and exact location of development will be subject to

additional factors not considered such as market demand, the

capacity to transport oil or gas to consumers, and federal air and

water quality laws (e.g. Clean Air Act, climate change legislation).

The analysis presented here can be used to inform planners and

decision-makers about where oil and gas development is

anticipated and potential impacts to sage-grouse. It provides a

general framework for analyses using predictive models and build-

out scenarios to anticipate impacts to species and the type of

information needed for those making decisions about special

protections for species, such as ESA listing in the US, and for

biodiversity offsets ([53]). The US Fish and Wildlife Service, the

agency that oversees ESA listing, faces difficult and complex

decisions in determining if current or future risk of species

population declines warrants ESA protection. The economic

ramifications of listing species are substantial with estimated costs

of recovery plans and their implementation reaching into the

multi-millions ([54]), if not billions of dollars for wide-ranging

species such as sage-grouse. Prevention of listing through

thoughtful consideration of threats and possible avoidance or

mitigation strategies is likely to be less costly and more effective

([55]). In the case of sage-grouse, 14–19 percent of the study area

has high oil and gas development potential but the development

rights have not been sold; development in these areas could be

avoided by removing these leases for sale or mandating other

special protections by government management agencies (Fig. 3).

Areas already leased and important for sage-grouse could be

considered a priority for lease swaps or buy-backs, where

government, non-governmental organizations and other private

entities swap land or buy the lease back from the company that

bought the development rights. Alternatively, companies could

also be encouraged to forfeit their development rights with a

perpetual NSO agreement, as part of the negotiation for enhanced

access to exploration and development in other areas. Done in the

right places, a creative combination of approaches could yield

maximum benefit to species.

For many species experiencing population declines, multiple

stressors are affecting their populations. The framework we present

could be modified to consider not just one type of energy

development, in this case oil and gas, but also wind, solar, coal,

oil shale and uranium, along with other stressors such as residential

development, invasive species, and pathogens. Because many of

these stressors do not correlate spatially, this approach would

account for cumulative impacts. Models and maps of multiple future

threats are needed to fully quantify the future risk to biodiversity.

The case of sage-grouse and oil and gas development in the

Intermountain West is a preview of confrontations likely to occur

across the globe with profound implications to biodiversity.

Incorporating the likelihood of future change into land-use

planning can alleviate uncertainty and ultimately make societal

adaptation to change more efficient and less costly. Quantifying

anticipated future impacts can help to justify proactive protection

of places important to biodiversity and to underscore the

ecological consequences of failing to do so. We hope to inspire

regulatory agencies and land mangers to use technologies available

in mapping and modeling to forecast new impacts and for

policymakers to use this information to avoid business-as-usual

development ([56,57]), in favor of proactive efforts to predict and

avoid impacts in places crucial for species conservation. In the long

run, this is likely to be the more ecologically sound, less costly, and

more efficient—the more sustainable—course of action.
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