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Abstract

The reliable estimation of animal location, and its associated error is fundamental to animal ecology. There are many
existing techniques for handling location error, but these are often ad hoc or are used in isolation from each other. In this
study we present a Bayesian framework for determining location that uses all the data available, is flexible to all tagging
techniques, and provides location estimates with built-in measures of uncertainty. Bayesian methods allow the
contributions of multiple data sources to be decomposed into manageable components. We illustrate with two examples
for two different location methods: satellite tracking and light level geo-location. We show that many of the problems with
uncertainty involved are reduced and quantified by our approach. This approach can use any available information, such as
existing knowledge of the animal’s potential range, light levels or direct location estimates, auxiliary data, and movement
models. The approach provides a substantial contribution to the handling uncertainty in archival tag and satellite tracking
data using readily available tools.
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Introduction

Estimating the movements of animals is a fundamental

requirement for many ecological questions. These include

elucidating migratory patterns, quantifying behavior in terms of

the physical environment and understanding the determinants of

foraging success, all of which can influence larger population

processes [1–3]. Types of movement data can range from simple

mapping of positions to behavioral models that attempt to account

for unlikely estimates, provide estimates of behavioral states and

predict latent variables.

There are two common methods for obtaining position

estimates, which can be broadly categorized as remote and

archival. Remote methods use techniques such as radio or satellite

telemetry to locate a tag attached to an animal. Archival methods

require the tag to record aspects of the animal’s environment over

time (such as light levels and water temperature) which are then

processed to infer location [1,4,5].

Before any analysis can be done, position estimates require

some quantification of precision and accuracy to provide statistical

confidence in results [6–8]. Quantification of location precision,

and crucially, the incorporation of these into synoptic spatial

representations of animal movement, is an important problem

common to both methods that many authors have attempted to

address in recent studies [9–14].

Location precision is generally lower in archival methods due

both to the theoretical basis and practical problems of the location

estimation [15,16]. To overcome this limitation, archival methods

routinely integrate primary location estimation with auxiliary data

sets [4,12,17,18]. In principle this enables the integration of the

estimation and error estimation processes but this remains an

under-utilized opportunity: published uses of archival methods

usually separate the estimation of the quality of position estimates

from their derivation. Satellite-derived estimates provide less

opportunity in this regard, as the process is proprietary and

information regarding error is minimal. However, satellite

locations still require a modeling framework to incorporate

auxiliary information and provide the best possible estimates

[11] including a quantification of precision.

The simplest analysis of movement data is to visualize the

sequence of locations visited by the animal. It is slightly more

complex to provide a path estimate of the animal, which requires

the ability to determine position both from available data as well as

for latent times where no data were measured. An obvious simple

model is to ‘‘join the dots’’, assuming that movement is both linear

and regular between measured positions. A more realistic

approach demands that estimates of an animal’s path consider

both direct and latent location estimates, because in general there

are open-ended scenarios that could occur between direct

estimates. There are a multitude of methods for achieving this

[14,19–22], but none have been directly integrated with the

estimation process from raw data.

Once an estimate of an animal’s path is obtained biologists often

need to calculate speed of and distance of travel, generate spatial

representations of an animal’s use of space in terms of time spent

in geographic regions, metabolic effort or other measure of
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resource allocation. More sophisticated analyses aim to determine

behavioral states more exactly [11,23], or to differentiate

migration from foraging behavior. These aims are beyond the

present work, where we will be focusing on the first step in the

process—description of an animal’s path and the precision with

which this can be estimated.

Earlier work has attempted to account for spatial uncertainty by

choosing a scale for interpreting location data [14], or spatial

smoothing [24]. These techniques fail to estimate statistical

uncertainty for individual estimates, and provide only an overall

average of precision. Other techniques are used to estimate latent

position by interpolation or similar technique [21], but these must

assume that positions are known.

Given the diversity of questions asked of movement data, there

are understandably many approaches to data analysis. Many

existing techniques are specific to particular questions and species

and have little scope outside the given application. Further, each

application has its own problems of scale, location error, data

quality and summarizing of behavior. In this context, sophisticated

model approaches are seeing greater use in tracking studies [13],

but these have only been applied to pre-derived positions and

leave the problem of location estimation from raw data

unaddressed. No study has yet provided a general approach to

dealing with the twin issues of estimate precision and accuracy for

both archival and satellite location data. There is a growing need

for just such an approach as more large multi-species studies are

being undertaken [25–27]. Such multi-species studies inevitably

utilize a range of tracking techniques as no one method is suitable

for all species. For example, fish which rarely come to the surface

are not usually suitable for satellite tracking [28].

Here we present a Bayesian framework for the analysis of

movement data that directly addresses the estimation of location

from raw data collected by archival tags and can also be applied to

other datasets of pre-derived position estimates such as Argos

locations. We apply the approach to both an archival tag dataset

and a satellite tag dataset. Our primary goal is to integrate all

available sources of information for estimating location. Using all

available information may sound obvious, but it is a missed feature

of many applications. Secondarily, we aim to integrate the location

estimation and the estimation of location precision. The approach

should also be able to provide all of the desired end-uses of

tracking data as mentioned above. In the Bayesian context, each of

these measures, including appropriate confidence intervals (CI)

[29,30], can be determined by specifying appropriate priors and

distributions for each data source and calculating the posterior.

Materials and Methods

Ethics Statement
Data were collected under permits from the University of

Tasmania Animal Ethics Committee (A6790 and A6711).

Assumptions
We propose a Bayesian approach to the tag location problem

that uses Markov Chain Monte Carlo methods to approximate the

posterior.

There are three main elements to the process of Bayesian

estimation; the prior, the likelihood and the posterior. The prior

distribution p hð Þ represents our knowledge of the parameters h
before any data is observed. The likelihood p yjhð Þ is the probability

of observing data y for a given set of parameters h, and represents

our knowledge of the data collection process. From these we

calculate the posterior distribution p h jyð Þ via Bayes’ rule

p h jyð Þ~ p yjhð Þp hð ÞÐ
p yjhð Þp hð Þdh

: ð1Þ

The posterior p h jyð Þ represents our knowledge of the

parameters after the data y have been observed. In essence,

Bayes’ rule provides a consistent mechanism for updating our

knowledge based on observed data.

The data available for forming location estimates can be

classified into four broad types.

Prior knowledge of the animal’s movements. Invariably

something is known of an animal’s home range, migratory pattern

or habitat preference, and any location estimate should be

consistent with this information. This information can range

from being quite specific such as the species generally stays over

the continental shelf (e.g. shy albatross [31]) or more vague such as

the species often heads south (e.g. southern elephant seals [32]).

Primary location data. The primary location data y is data

collected primarily for the purposes of location estimation, and

directly inform about the locations x~ x1,x2, . . . ,xnf g of the tag at

a sequence of (possibly irregular) times t~ t1,t2, . . . ,tnf g.
Examples include the light levels recorded by an archival tag, or

for an Argos tag the locations provided by the Argos service.

Auxiliary environmental data. Many tags also record

additional environmental data q, and this data may be

compared to external databases to further constrain location

estimates [4,12,13,17,18]. For example, in the marine context

depth and temperature measurements can be compared to

remotely sensed or modelled sea surface temperature (SST) data

to confine locations to regions where SST is consistent with the

temperatures observed by the tag.

Movement models. Movement models constrain the

trajectory of the animal, reducing or removing the occurrence of

location estimates that correspond to improbable or impossible

trajectories. Several forms of movement models appear in the

literature; at the simplest level is speed filtering which prohibits

estimates that imply impossible speeds of travel [33,34], while

other authors propose more complex state space approaches that

model correlation between successive legs of the trajectory [11,23].

Several authors have noted the advantages of Bayesian methods

in complex problems in ecological research [35–39]; for the tag

location problem one principal advantage is that four disparate

data sources can be systematically incorporated into a single

unified estimator of location.

The novel aspect of the method we propose is the adoption of a

simple yet powerful representation of the movement model that

not only constrains the animal’s trajectory, but also allows this

trajectory to be estimated. Between each pair of successive

locations xi and xiz1, introduce a new latent point zi representing

the location of the tag at a time ti uniformly distributed in the

interval ti,tiz1½ �, and let di be the length of the dog-leg path from

xi through zi to xiz1. The movement model then simply

prescribes the joint distribution p d j tð Þ of the dog-leg distances

d~ d1,d2, . . . ,dn{1f g. For example, adopting a model where the

di are independently uniformly distributed

di*U 0,s tiz1{tið Þð Þ

implements a simple speed filter that limits the maximum speed of

travel to s. Alternately, migration and large scale consistency of

motion can be modelled by adopting a distribution that allows for

more complex patterns of dependence between the successive di.

Estimation of Animal Movement
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Note there is no explicit expression for the zi, they are defined

implicitly through the dog-leg distances di. However, any choice of

p d jtð Þ that places realistic bounds on each di is sufficient to ensure

that the zi are estimable (in a Bayesian sense), while also

constraining location estimates. Most importantly, as ti is

uniformly distributed in the interval ti,tiz1½ �, the posterior

distribution for zi describes the possible paths between xi and

xiz1. In a sense, zi is not intended to refer to the tag location at

one particular time in the interval ti,tiz1½ �, but all times in the

interval ti,tiz1½ �.
The second key assumption of the method is that the primary

location data, the auxiliary environmental data and the behav-

ioural model are all independent, and so the likelihood

p y,q,d jx,t,Eð Þ reduces to a product of contributions from each

of these three sources

p y,q,d jx,t,Eð Þ~p y jx,tð Þp q jx,t,Eð Þp d jtð Þ:

Here p y jx,tð Þ is the likelihood of observing the primary location

data y given locations x at times t, p q jx,tð Þ is the likelihood of

observing the environmental data q given locations x at times t
and a database E of known environmental data, and p d j tð Þ is the

distribution of dog-leg distances between the successive locations

described above. The exact form of p y jx,tð Þ and p q jx,tð Þ will

depend on the precise nature of the data collected by the tag, and

several common examples are discussed below.

The prior for x and z reflects knowledge of the animal’s home

range, habitat preference, migratory patterns or other fundamen-

tal environmental considerations. For example, a known home

range can be modelled by adopting a prior of the form

p x,zð Þ!P
n

i
I xi[Vð ÞP

n{1

i
I zi[Vð Þ

where V is the known home range and I is the indicator function

I xð Þ~
1 if A is true

0 if A is false:

�

Migration can be accommodated by allowing V to vary with

season, while habitat preference can be incorporated by assigning

greater probability density to more favourable habitat. We must

also supply a prior for t that simply reflects our assumption that

ti U ti,tiz1ð Þ. The form of p y jx,tð Þ as the contribution of the

primary location data to the total likelihood depends on the nature

of the tag in question.

Satellite tags
For satellite tracked tags, the primary location data y consists of

direct estimates X~ X1,X2, . . . ,Xnf g of the true tag locations

x~ x1,x2, . . . ,xnf g at times t~ t1,t2, . . . ,tnf g provided by a

remote sensing service, possibly augmented with some indicators

of location reliability r1,r2, . . . ,rnf g. In this case the contribution

p y jx,tð Þ to the total likelihood is determined by assuming the

observed locations Xi are bivariate Normally distributed about the

true locations xi,

Xi*N xi,s
2 rið Þ

� �
with a variance s2 that is a function of the reliabilities ri. For less

consistent services, longer tailed distributions such as the bivariate

t can be used to accommodate the occasional erroneous location

[29].

Archival tags
For archival tags there are no initial estimates of tag location;

the primary location data consists of light intensities recorded by

the tag at regular intervals over the day. The tags’ location can be

estimated from the light level data by the methods of [40] and

[15]. We use a version of the template-fitting method [40] to

provide a location estimate for each twilight. The full computa-

tional details are complex and will be the subject of a future

publication, but in essence the method is as follows. The time

series of light levels corresponding to each twilight recorded by the

tag is extracted, and for marine applications, corrected for

attenuation due to depth. This yields a sequence of time series;

one time series li~ li1,li2, . . . ,limf g for each twilight, where lik is

the corrected light level recorded at time tik. A function l hð Þ that

maps solar elevation h to the (unattenuated) log light level l
recorded by the tag is determined by laboratory calibration. The

contribution p y jx,tð Þ to the total likelihood is determined by

assuming the log corrected light levels are distributed as

loglik*N logl h xi,tikð Þð Þzki,s
2

� �
,

where h x,tð Þ is the Sun’s elevation at location x and time t, and ki

is a constant to allow for attenuation due to cloud. The variance s2

is determined by the recording error in the tag.

Similarly, the contribution p q jx,t,Eð Þ the auxiliary environ-

mental data q makes to the total likelihood will depend on the

nature of the data recorded by the tag and the availability of a

suitable reference database E with which to compare.

For example, for marine tags that record both water

temperature and depth, for each xi an estimate si of the SST

can be derived from the temperature and depth data recorded by

the tag in some small time interval ti{Dt,tizDt½ � surrounding ti.

This estimate might then be assumed to be Normally distributed

about a reference temperature S xið Þ determined from a remotely

sensed SST database E,

si*N S xið Þ,s2
s

� �
where the variance s2

s is determined by the accuracy of both the

tag and the remotely sensed database. Alternately, a more

conservative approach similar to that employed by [41] is to

suppose that the temperature si measured by the tag is a very poor

indicator of average SST, but could be no greater than an upper

limit S xið ÞzDS and no lower than S xið Þ{DS and assume si is

uniformly distributed in this interval

si*U S xið Þ{DS,S xið ÞzDSð Þ:

Again DS is determined by both the accuracy of the tag and

database.

As a second example, for marine applications the depth data

recorded by a tag can be exploited by noting that the maximum

depth recorded in a time interval ti{Dt,tizDt½ � surrounding ti

provides a lower bound hi for the depth of the water column at xi.

We can then refine the estimate of xi comparing hi xð Þ to a high

resolution topography database E and excluding regions that are

too shallow by including in the likelihood a factor of the form

Estimation of Animal Movement
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P
n

i~0
I hivHh xið Þð Þ

where Hh is the bottom depth determined from the database and I

is again the indicator function.

Posterior estimation
Once the prior and likelihood have been defined, the posterior

p x,z,t jy,q,t,Eð Þ is determined by Bayes’ rule

p x,z,t jy,q,t,Eð Þ~ p y,q,d jx,t,Eð Þp x,zð Þp tð ÞÐ
p y,q,d jx,t,Eð Þp x,zð Þp tð Þdxdzdt

:

Typically however, the integral in the denominator is

computationally intractable, and instead we resort to Markov

Chain Monte Carlo (MCMC) to approximate the posterior.

MCMC [30] is a family of methods that allows us to draw

random samples from the posterior distribution. Summarizing

these samples approximates the properties of the posterior, in the

same way that a sample mean is an approximation to a population

mean. In principle, the approximation can be made arbitrarily

accurate by increasing the number of samples drawn.

For the tag location problem we use a block update Metropolis

algorithm based on a multivariate Normal proposal distribution

[30]. The Metropolis algorithm was chosen for its simplicity and

genericity – it is easily implemented and the implementation is not

strongly tied to particular choices of likelihood and prior. We have

used a block update variant of the algorithm, where each xi and

each zi are updated separately. Using a block update improves

computational efficiency provided parameters from separate

blocks are not strongly correlated. For the time intervals between

locations typical of satellite and geolocation data and reasonable

choices of movement model p d jtð Þ, we have not found the

correlation between successive locations estimates to be so great as

to greatly impede the mixing of the chain.

Examples
To illustrate this basic framework, we present two simple

examples.

The first example is a Weddell seal tagged at the Vestfold Hills

(78oE, 68oS) tracked with a satellite tag (9000X SRDL; Sea

Mammal Research Unit, St. Andrews, Scotland) with locations

provided by the Argos service [42].

The Argos service provides approximate locations X~

X1,X2, . . . ,Xnf g and corresponding location qualities r1,r2, . . . ,rnf g
for a sequence of times t~ t1,t2, . . . ,tnf g. This forms the primary

location data. Each ri categorizes the corresponding Xi into one of

seven quality classes based on the number of satellites used in its

determination [42]. We translate the ri into approximate positional

variances s2 rið Þ based on the results of [43] and assume

Xi*N xi,s
2 rið Þ

� �
:

So that the contribution to the likelihood from the primary

location data is

p y jx,tð Þ~ P
n

i~1
2ps2 rið Þ
� �{1

exp
{ Xi{xið ÞT Xi{xið Þ

2s2 rið Þ

 !
:

This particular tag recorded no environmental data, and so the

corresponding contribution to the likelihood is p q jx,t,Eð Þ~1.

For this example a very simple movement model was adopted.

We choose p d j tð Þ so that the mean speeds di= tiz1{tið Þ between

successive locations are independently log Normally distributed

p d jtð Þ~ P
n{1

i
2ps2

s

� �{1=2
exp

{ log di= tiz1{tið Þð Þ{msð Þ2

2s2
s

 !

with ms~0:25ms{1 and ss~0:8ms{1, where these figures were

chosen conservatively based on an examination of Argos data of

the highest quality class.

Finally, we adopted a prior p x,zð Þ for x and z that was uniform

over the ocean, that is

p x,zð Þ!P
n

i
I xi [Vð Þ P

n{1

i
I zi [Vð Þ

where V is the ocean. This was implemented by comparing x and

z to a high resolution land/sea raster mask generated from A

Global Self-consistent, Hierarchical, High-resolution Shoreline

Database [44]. Creating a raster mask to indicate sea/land allows

the prior to be computed very efficiently by avoiding complicated

point-in-polygon tests.

The second example is a mature southern elephant seal (Mirounga

leonina) tagged at Macquarie Island (158o 579E, 54o 309 S), with data

from a time-depth-recorder (Mk9 TDR; Wildlife Computers,

Seattle, WA, USA). The data were collected using methods

described by [45]. This tag provides regular time series of measure-

ments of depth, water temperature, and ambient light level.

In this case the primary location data consist of the time series of

depth and ambient light level. As outlined above, the depth adjusted

light level is assumed to be log Normally distributed about the log

expected light level for the sun elevation adjusted for cloud cover so that

p y jx,tð Þ~ P
n

i~1
P
ni

k~1
2ps2
� �{1=2

exp
{ loglik{logl h xi,tikð Þð Þzkið Þ2

2s2

 !
:

For this example, the depth and water temperatures recorded

by the tag were used to estimate sea surface temperatures that

were then compared to NCEP Reynolds Optimally Interpolated

SST. For each twilight, estimates of minimum Li and maximum

Ui SST observed in the surrounding 12 hour period were derived

from the depth and water temperature records. These estimates

form the auxiliary environmental data q, and p q jx,t,Eð Þ was then

chosen as

p q jx,t,Eð Þ~ P
n

i~1
p Li,Ui jxi,ti,Eð Þ

where

p Li,Ui jxi,ti,Eð Þ~
1 if LiƒS xi,tið ÞƒUi

0 otherwise

�

and S x,tð Þ is the NCEP Reynolds Optimally Interpolated SST.

This example shows the great difficulty in choosing p q jx,t,Eð Þ –

typically the data from the tag and the data from the reference

database are recorded on wildly disparate spatial and temporal scales,

making it very difficult to make any reasonable comparison of the two.

Estimation of Animal Movement
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Again the movement model p d jtð Þ is chosen so that the mean

speeds di= tiz1{tið Þ between successive locations are indepen-

dently log Normally distributed

p d j tð Þ~ P
n{1

i
2ps2

s

� �{1=2
exp

{ log di= tiz1{tið Þð Þ{msð Þ2

2s2
s

 !

In this case we use ms~1:4ms{1 and ss~0:8ms{1, and these

figures were chosen conservatively based on knowledge of elephant

seal behaviour.

Finally, just as for the satellite tag example a prior p x,zð Þ
uniform on the ocean was adopted x and z, but in this case the

land/sea raster mask generated from the 2-Minute Gridded

Global Relief Data (ETOPO2).

Figure 1. Satellite tag data and estimates. Panel A: The sequence of original Argos estimates for an adult female Weddell seal tagged in the
Vestfold Hills, with time scale from red to blue. All location classes are shown. The different length scale bars for north and east represent
10 kilometers. Panel B: Posterior means for x from the Argos dataset plotted spatially, with time scale from red to blue as in panel A. The sequence is
far more realistic, without the noise and positions on land. Panel C: Map of time spent from full path estimates from the Argos dataset. The density
represents a measure of time spent per area incorporating the spatial uncertainty inherent in the model. Bin size is 150 m by 140 m.
doi:10.1371/journal.pone.0007324.g001
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The primary rationale behind our choices for examples was to

show the application of our approach to both satellite locations

and archival tag data. Further to this, for the satellite example we

wish to demonstrate the use of our approach for a situation

involving a complex inshore coastline and the handling of existing

estimates that occur on land. We are not attempting to show the

best possible application for our examples, but demonstrating a

consistent approach that is able to use all available sources of data.

Results

For the satellite tag example an initial 10,000 samples were

drawn and discarded to allow for both burn-in and tuning of the

proposal distribution [30]. A further 300,000 samples were then

drawn, and standard convergence tests applied [46]. The same

strategy was adopted for the archival tag example, with 30,000

samples drawn for burn-in, and a further 800,000 samples drawn.

In neither case was there any evidence that the chains had failed to

converge, but it must be realized that these are problems of

extremely high dimension, and as such a subtle convergence

problem may be difficult to detect.

The provided Argos Service locations for the satellite tag

example are displayed in Figure 1a, showing the primary location

data. This includes all raw positions from Argos, including every

location quality class. The time-series of locations, is quite noisy

and many of the positions fall on land. The sequence suggests that

Figure 2. Estimates and time spent for archival dataset. Panel A: Posterior means for x from the archival dataset plotted spatially, with time
scale from red to blue. The sequence provides a realistic trajectory for an elephant seal. The dashed grey line shows the (approximate) position of the
Southern Boundary of the Antarctic Circumpolar Current. Panel B: Map of time spent from full path estimates from the archival dataset. Bin size is
5.5 km by 9.3 km at 54 S and 3 km by 9.3 km at 72 S.
doi:10.1371/journal.pone.0007324.g002

Estimation of Animal Movement
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the animal has begun in the southern region of the area, with

excursions into and out of various inlets, traveling to the north

overall, but with an excursion returning to the south somewhat

offshore. The record ends in the northern region. From this plot it

is clear that there are many unlikely locations given the presence

on land and the implied tortuous path. The outputs of our

modelled estimates for this data set are discussed below. Posterior

mean locations for x from the archival tag dataset may be seen in

Figure 2a. Unlike the Argos example, there are no ‘raw locations’

to present as the primary location data are light level measure-

ments. The range of the track estimate has no local topographic

features (coastline or bathymetry) that constrains the locations, as

the area visited is for the most part deeper than 22000 m [44].

However, we know that these locations are consistent with the

matching sea surface temperature data, under the assumptions of

our model.

Argos tag dataset
In Figure 3 the posterior means for x are plotted separately for

longitude and latitude with the sequence of original Argos Service

Figure 3. Individual longitude, latitude estimates for Argos. Posterior means for x from the Argos dataset for longitude and latitude, with
time scale from red to blue as in Figure 1. The grey line shows the implied sequence of the original Argos estimates. Also shown is the range of the
95% CI of each estimate (km), determined with the mean by directly summarizing the posterior.
doi:10.1371/journal.pone.0007324.g003
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positions overplotted as a line. Also shown are the individual

confidence interval (CI) estimates (95% level, presented as a range

in kilometers). The sequence of estimates is clearly more realistic

than the original Argos locations in terms of likely movement, even

though no time steps have been discarded. The confidence

intervals in Figure 3 are summarized from their 2-dimensional

versions and plotted here with longitude and latitude separated to

easily show the relative precision of each. Most of the estimates

have a range of less than 5 km, with a maximum above 30 km.

This simple plotting of individual parameters with CIs leaves out a

lot more information than exists in two dimensions. A supporting

information file (Figure S1) provides an animation of the full path

with the implied path of the original Argos locations to illustrate

the improvement provided by our approach. The posterior means

for x longitude and latitude are presented spatially in Figure 1b.

The main differences with the raw estimates is that there are now

no estimates that fall on land, and the sequence of positions is far

more realistic in terms of likely movement. The 1124 original

Argos locations included 179 that fell within the bounds of the

coastline data used. The overall travel to the north can be seen in

more detail, with an excursion into the main large inlet and then

movement around the bay into the region of islands to the north.

There are two large excursions when the animal has returned

briefly to the southern region, first to the large inlet, then to an

island further south, but the more extreme outliers are no longer

present. This journey is typical for these seals, as shown by [47].

(We do not present the points connected by lines as this would be

visually messy and also imply impossible trajectories based on the

simplistic ‘‘join the dots’’ model. The connectivity, or full-path, of

estimates is provided by the intermediate estimates.) A map of time

spent per unit area is shown in Figure 1c. This density plot shows

the ‘‘full path’’ estimate using the intermediate locations,

summarized by binning the posterior and weighting each segment

by the time difference between each original Argos time step. The

full track estimate is shown here providing a single view of the

entire trip. Again, this neglects a lot of information that is available

from the posterior, as any segment of the path may be

interrogated, down to the level of individual estimates. The bin

size here is 150 m by 140 m, simply chosen for convenience given

the image plot size. This image portrays the areas of most time

spent by the animal, with the spatial precision of estimates implicit

in the spread of time-spent density. Importantly, the transition

between time in the water and the position of land is smooth as the

estimation takes the presence of land into account as it proceeds.

There is no artificial clipping of the distribution as would be

required if a simple spatial smoother was used on raw estimates.

This achieves the shared goals of smoothing techniques such as

kernel density [48] and cell gridding.

A summary of the precision of estimates for longitude and

latitude for each original Argos class estimate is presented in

Table 1. This summary shows that our estimates are consistent

with and often better than the expected precision given by the

Argos class and, while that point is slightly circular given our use of

the class information in the model, our approach is able to

combine the contribution of the Argos class with other information

and show that the precision of estimates is not necessarily directly

related to the class assigned.

Finally in Figure 4 we can see the relationship between the direct

estimates (plotted individually with CI ranges) and CI range of

intermediate estimates (plotted as a continuous band) for a short

period between 23–26 February 2006. The intermediate estimates

provide a continuous path estimate, with latent times of no data

‘‘filled in’’ with estimates constrained only by the movement model

and the environmental data. This figure also shows the utility of the

method in terms of providing overall full path estimates, as well as

individual point estimates with a measure of precision. Figure 4 also

shows a deficiency of the assumed movement model - the estimated

path at each ti tends to be more variable than the corresponding xi.

This is because there is no constraint on the individual legs of the

dog-leg path from xi to xiz1. So it is possible for zi to be a great

distance from xi an instant after ti or from xiz1 an instant before

tiz1, provided the total distance traversed over the dog-leg path is

reasonable. It is difficult to resolve this issue without requiring a

much more detailed understanding of the animal’s behaviour.

Archival tag dataset
Posterior means for x longitude and latitude are plotted

separately with accompanying confidence intervals Figure 5. This

includes a location for every local twilight, as seen in the raw

light data. The sequence seems consistent with the time steps

involved (12 hourly, on average), with no extreme or obviously

problematic movements. The confidence interval of each

estimate is also plotted, with a spatial range that is usually less

than 30 km for longitude and 40 km for latitude. A summary of

the precision of estimates for longitude and latitude is presented

in Table 2.

These estimated location are plotted spatially in Figure 2a. This

animal has left Macqurie Island (1 February, 2005) and traveled

directly to the southeast to a region north of the Ross Sea. Here it

spends the period from early March to mid September with a

short excursion to the south during April. Finally the animal

reverses its outward journey, returning to Macquarie Island on 8

October 2005. The sequence of locations seems reasonable, with

no obviously extreme estimates, and this is a fairly typical journey

for these seals [32]. In Figure 2b a density map shows more clearly

the spatial precision of the estimates and the areas where most

Table 1. Estimate precision for Argos dataset.

Longitude

class Min: 1stQu: Median 3rdQu Max

Z 0.27 1.09 1.90 2.99 22.05

B 0.27 0.95 1.77 3.95 36.20

A 0.27 1.09 2.18 3.78 15.38

0 0.13 1.36 2.30 4.08 25.86

1 0.27 0.82 1.23 2.04 5.99

2 0.14 0.41 0.61 0.95 2.31

3 0.14 0.27 0.41 0.54 1.50

Latitude

class Min: 1stQu: Median 3rdQu Max

Z 0.45 1.21 1.97 3.79 17.13

B 0.15 1.21 2.12 4.40 37.75

A 0.30 1.52 2.27 4.40 13.64

0 0.15 1.52 2.50 4.66 19.56

1 0.15 1.06 1.67 2.73 14.86

2 0.15 0.60 0.99 1.67 5.00

3 0.15 0.45 0.61 1.06 3.03

Summary of precision calculated from the posterior for x by original Argos class

(km). Each row presents a quantile summary for the CI ranges (95%) from each

Argos class for longitude and latitude. The seven classes are an attribute

provided with the original Argos locations [42].
doi:10.1371/journal.pone.0007324.t001
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time has been spent. It is clear that this region south of the

Southern Boundary of the Antarctic Circumpolar Current [49] is

an important feeding area for this animal.

A summary of the precision of estimates for longitude and

latitude is presented in Table 2. We can see the distinction

between the direct and intermediate estimates plotted in Figure 6.

This time the difference between the direct and intermediate

estimates is less than with the satellite tag example.

Discussion

The flexibility provided by Bayesian methods for complex

problems [36,38,50] proved fruitful in this study. We have

demonstrated a general approach for estimating true locations

from both archival tag data and satellite fixes, accepting either

source as raw data. This approach handles erroneous existing

location estimates and other problems by incorporating all

available sources of information in one unified process. We have

shown how this approach can be used to obtain all of the common

measures of interest in tracking studies by summarizing the

posterior. These are path estimates, estimate precision, latent

estimates, combinations and diagnostics of location estimates.

Path
The likely (posterior mean) path for a basic representation of

position over time. These can be used to plot simple tracks, or to

query other datasets (such as productivity measures) for corre-

sponding information at that location and time.

Precision
For each estimate we can obtain precision estimates (CI). These

probability densities are bivariate and can be obtained separately

for each time step in the sequence, or for combined durations as

required. This information can be used for more nuanced

interrogation of other datasets to obtain representative values

based on the spatial precision of the estimate.

Latent estimates
Estimates of latent locations can be obtained, representing the

intermediate positions between those explicitly measured. These

represent each period between Argos locations or times between

each twilight for archival tags: in general they represent periods

between those of (primary) data collection relevant to location

estimation. Latent estimates may also be summarized as a mean and

CI, and used to provide estimates of the full path between individual

time steps. The density of intermediate locations provides a model of

the possible range of the track, similar in intention to the spatial

smoothing mechanisms employed in other studies.

While direct estimates are constrained by likely movement

regimes as well as the available data, the latent estimates represent

the residual possible movement in-between.

Unlike some studies using techniques that require subsequent

clipping [14,25], time spent estimates can be made without

spurious presence on land or other out-of-bounds areas. Also,

there is a more realistic probability transition from land to marine

areas even for complexly shaped coastlines.

Figure 4. Intermediate estimates for Argos Posterior means for x of longitude and latitude for a short period (23–26 Feb 2006) with
CI ranges shown. The CI range for intermediate estimates (full path) is shown as a continuous band.
doi:10.1371/journal.pone.0007324.g004
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The use of latent estimates utilization distributions is better than

either cell gridding or kernel density as there is no dependence on

the choice of grain size or kernel. The final step to quantize values

into a density grid can be done directly from the posterior, without

intermediate processing.

Combinations
The structure of our estimates enables us to combine estimates

from different animals for spatial measures of resource usage. This

may be done for arbitrary time periods and groups of individuals.

Also raw coordinates may be projected for summaries based on an

appropriate coordinate system for particular groups or areas of

interest.

Updating the models
Time spent maps and track summaries (mean and CI values)

were generated by summarizing the posterior for each example.

The intermediate locations represent the ‘full path’ and hence are

appropriate for time spent maps and similar spatial summaries.

The direct locations are estimates for each time step from the raw

Figure 5. Posterior means for archival dataset. Posterior means for x from the archival dataset for longitude and latitude, with time scale from
red to blue as in Figure 2a. Also shown is the range of the 95% CI of each estimate (km), determined with the mean by directly summarizing the
posterior.
doi:10.1371/journal.pone.0007324.g005
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location data - individual twilights for the archival tag, Argos times

for the satellite tag. Interrogating individual x or z estimates

provides feedback on the performance of the model run that may

be used to identify problems or areas that require improvement.

An example of this feedback was discussed with Figure 4 where we

see how the movement model requires an improved implemen-

tation for the satellite tag. This is one of the most powerful aspects

of our approach, more important than the results presented here

as it provides a foundation from which remaining problems with

location estimates may be identified and related to deficiencies in

source data, model specification or model assumptions.

Other studies have successfully applied Bayesian methods to

tracking problems with similar success [11,51], but applied only to

pre-derived location estimates, and it is not clear how archival tag

data could be incorporated in such an approach. The quantities of

data involved and the non-linear complexity of the models

involved are difficult to implement with more efficient statistical

sampling regimes such as Gibb’s sampling. Our approach enables

the use of the raw archival tag data and incorporation of

independent environmental databases. High quality location

methods such as satellite tracking can also benefit from our

approach. For example: similar to the satellite example presented

here, [52] also report dealing with large numbers of Argos

locations that were clearly deficient as they place marine animals

on the land. Our approach allows the systematic use of the

appropriate coastline to data account for this inconsistency.

The advantages of our approach are relevant to all users of

tracking data including tag manufacturers, ecological researchers

and environmental decision makers. The key benefits are:

1. A convenient mechanism for separating large complex

problems into manageable components, enabling the use of

all available information sources.

2. Obviously incorrect locations are avoided, and when data are

absent or of poor quality the estimates will have a lower precision.

3. Estimates are continuous in the posterior and may be

summarized as required, rather than being discretized or

otherwise simplified.

While we have illustrated our approach using seals, these

techniques clearly have broader implications for the tracking of

Table 2. Estimate precision for archival dataset.

Longitude

Min: 1stQu: Median 3rdQu Max

3.74 15.52 18.51 21.42 57.03

Latitude

Min: 1stQu: Median 3rdQu Max

3.74 15.52 18.51 21.42 57.03

Summary of precision calculated from the posterior for x from the archival tag.

A quantile summary for the CI ranges for longitude and latitude.
doi:10.1371/journal.pone.0007324.t002

Figure 6. Intermediate estimates for archival dataset. Individual mean estimates of longitude and latitude for a 10 day period in February with
CI ranges shown, as well as the CI range for intermediate estimates (full path) shown as a continuous band.
doi:10.1371/journal.pone.0007324.g006
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other species and other tagging methods. This approach to

location estimation better enables multi-species ecosystems

comparisons irrespective of the methods used to collect data. A

particularly important area of application is in fishery studies,

which have large quantities of archival tag data e.g. [53] and [12],

or satellite data e.g. [25–27]. The improvement of location

estimation will enable further research aimed at relating fisheries

management to that of other marine species and processes.

While our approach can provide location estimates with

confidence intervals based on the data model, there remains the

need for independent validation of the techniques with known

locations. The assessment of accuracy of these techniques is crucial

to their use, and opportunities exist with double-tagging

experiments, recapture studies and experimental validation.

The relationship between tag-measured temperatures in near-

surface waters and remotely sensed surface temperature remains

largely unexplored in animal tracking studies [54]. This is due to the

discrepancy between traditional physical oceanographic interests

and those of biological studies. Access to hierarchical datasets of

SST [18], models of surface and at-depth water temperature and

sources of higher quality local environmental data will improve the

contributions from this auxiliary information. A more detailed

approach would match auxiliary data values in a probabilistic sense

similar to methods employed by [12], enabling the application of

distributions to account for error in all measurements.

The use of depth and temperature at depth also remains a

largely unexplored aspect, no further work has been published

since [4] and [41]. The utility of this data source obviously

depends on the environment visited and the animal’s diving

behavior, but also highlights the breadth of opportunities that are

available for various species.

Many of our implementation decisions have been deliberately

based on simplistic, first-pass practicalities in order to demonstrate

the generality of our approach to a wide range of problems. The

application of MCMC demands careful diagnosis of model

convergence [55] and we have omitted this important but onerous

aspect from the present work in order to focus on the primary goal

of integrating all the available data. While our movement model is

flexible it does not account for movement regimes that are auto-

correlated or seasonal. Auto-correlation of speed is recognized as

an important aspect of modelling movement, also missing from

our initial implementation. For example, in both examples we

have assumed that the successive di are independent. However, we

can model serial correlation in the track by choosing the joint

distribution of distances so that successive di are correlated. The

impact of a variety of correlation models could be explored

[11,56].

In this study we applied a single scheme to the derivation of

location estimates from two very different tracking datasets. Each

dataset was composed of separate sources of information

integrated using our four-part approach. This was used to derive

location estimates from raw archival tag data, as well as from pre-

derived location estimates from a satellite service. In each case,

where limitations from a particular source could have produced

problematic estimates, this was augmented by the strengths of

others.

This method is clearly practically applicable to the real-world

problem of analyzing behavior from many large archival tag

datasets employed by marine animal studies, and is appropriate for

the tracking data from many species. It is also useful for applying

behavioral constraints to the latent aspects of nearly error-free

location estimation such as GPS.

Supporting Information

Figure S1 Argos full path estimates with raw location track.

Animation of full path estimates constructed from the posterior for

z. The sequence consists of a rolling 2 day window for every

10 hour interval of the tagging period. The matching sequence of

original raw Argos locations is overlaid as a line.

Found at: doi:10.1371/journal.pone.0007324.s001 (0.47 MB GIF)
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