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Abstract

Background: The equal headway instability phenomenon is pervasive in public transport systems. This instability is
characterized by an aggregation of vehicles that causes inefficient service. While equal headway instability is common, it has
not been studied independently of a particular scenario. However, the phenomenon is apparent in many transport systems
and can be modeled and rectified in abstraction.

Methodology: We present a multi-agent simulation where a default method with no restrictions always leads to unstable
headways. We discuss two methods that attempt to achieve equal headways, called minimum and maximum. Since one
parameter of the methods depends on the passenger density, adaptive versions—where the relevant parameter is adjusted
automatically—are also put forward. Our results show that the adaptive maximum method improves significantly over the
default method. The model and simulation give insights of the interplay between transport design and passenger behavior.
Finally, we provide technological and social suggestions for engineers and passengers to help achieve equal headways and
thus reduce delays.

Conclusions: The equal headway instability phenomenon can be avoided with the suggested technological and social
measures.
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Introduction

It is well known that public transport passengers arriving

randomly at stations are served best when the time intervals

between vehicles—also known as the headway—are equal

[1, p. 133]. In other words, the passing of vehicles at stations is

regular. This minimizes waiting times for passengers at stations.

However, the configuration where the headways are equal is

unstable. This is because of the following: if one vehicle is delayed,

then there will be a shorter headway with the vehicle behind and a

longer headway with the vehicle in front. Longer headways lead to

more passengers waiting at stations, which lead to more delays.

Also, shorter headways lead to less passengers waiting. Thus,

vehicles moving behind a delayed vehicle will go faster than

average. Even if a minimum waiting time at stations is established,

during times of high passenger demand, slower vehicles will be

reached by faster ones. After some time, several vehicles will be

‘‘platooning’’, i.e. traveling together. This makes the service

inefficient, since people need to wait more time for a platoon to

arrive than if the vehicles were equally spaced in time. Moreover,

when a platoon arrives at a station, there will be much more

people waiting, delaying the platoon flow. Figure 1 illustrates this

phenomenon.

We can distinguish two causes of losing equal headways:

1. Vehicles go faster than expected. In principle, this can easily be

rectified by forcing vehicles to wait at stations until their

expected departure time comes. In practice, some conductors

might be reluctant to abide this restriction.

2. Vehicles go slower than expected. This is more complicated to solve,

since in most cases the causes of the delay are external to the

vehicles. Depending on the type of transport, these can be

heavy traffic, poorly synchronized traffic lights, and passenger

behaviors.

The problem of having an equal headway instability is that it

makes transport inefficient. Many vehicles are used below their

capacity and adding more vehicles does not improve the situation,

as they simply aggregate to platoons. This leads to large wastes of

infrastructure and fuel. Moreover, from the passenger’s viewpoint,

platoons of public transport cause greater delays and make travel

less comfortable, as many passengers accumulate within few

vehicles.

Among the transportation systems that present equal headway

instability, we can distinguish two types: those that allow passing and

those that do not. In the latter category (no passing), there are metros,

trams, some trains, and bus rapid transit [2]. In the former category

(passing allowed), there are buses [3], some trains, and elevators [4,5].

Even when passing is allowed, equal headway instability is observed:
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If a fast vehicle passes a slow one, it will encounter at the next stop a

higher passenger volume, delaying its route. Therefore, another

vehicle will pass again the vehicle in front. There will be a shuffling of

positions within the platoon, but grouping is a stable configuration,

while equal headways is an unstable one.

Since the equal headway instability is a general phenomenon,

there have been several strategies proposed over the years in

particular domains, such as metros [6], buses [7,8], and elevators

[9]. For example, sometimes at rush hour in the Red Line of the

Boston metro (also known as ‘‘the T’’, operated by the

Massachusetts Bay Transport Authority), a delayed northbound

train will announce at Park St. station that it will not stop until

Harvard Sq. station. Thus, people who need a station before

Harvard Sq. exit the train at Park St. station and wait for the next

train, which comes close behind with free space. Like this, the

delayed train can transfer some of its load to the train behind it,

trying to regain equal headways. Independently of the inconve-

niences of this approach, it would be desirable to prevent the equal

headway instability altogether, instead of trying to restore equal

headways once they have been broken.

In this paper, we focus on equal headway instability as a

phenomenon, studying it with a simple computational model,

presented in the following section. Next, we show simulation

results of an implementation in a multi-agent simulation: a default

method always exhibits equal headway instability. We study two

methods that restrict vehicle behavior to attempt to achieve equal

headways. An adaptive version of these methods is also put

forward. Theoretically, one of the adaptive methods always

achieves equal headway stability unless the passenger density

saturates the system. However, our discussion indicates that equal

headway instability does not depend only on the method

regulating the public transport, but also depends on the passenger

behaviors. Recommendations for passengers and engineers

follows. An important thing to notice is that equal headway

instability can be avoided with appropriate passenger behaviors,

not only technological sophistications. Concluding remarks and

delineations for future work close the paper.

Methods

Recently there has been an increased interest in modeling

transport systems [10–15]. We developed a model to study the

main characteristics of equal headway instability in public

transport systems.

The simplest case is a metro-style system and we will restrict

ourselves to it for the rest of the paper. Since speed and acceleration is

regulated, and sometimes automatized, if everything works normally,

only time spent at stations can cause delay [1]. This time will depend

basically on passengers: how many are exiting, how many are entering,

and how efficiently they are doing so. Buses (including rapid transit) are

also delayed by traffic lights. Buses sharing streets with other vehicles

are moreover affected by common traffic.

Model
Our model uses abstract discrete time and space. Time t is

measured in ‘‘ticks’’ and space is measured in vehicle lengths l, i.e.

an abstract measure representing the length of one vehicle. In the

model, there is a single cyclic lane of traffic, with a set S of stations

and a set V of vehicles servicing passengers that board at one

station and leave at another station chosen randomly. The inflow

of passengers is random, where the intervals between the arrivals

of passengers at each station have a Poisson distribution with a

Figure 1. Illustration of equal headway instability. a) Vehicles with a homogeneous temporal distribution, i.e. equal headways. Passengers
arriving at random cause some stations to have more demand than others. b) Vehicle c is delayed after serving a busy station. This causes a longer
waiting time at the next station, leading to a higher demand ahead of c. Also, vehicle d faces less demand, approaching c. c) Vehicle c is delayed even
more and vehicles d and e aggregate behind it, forming a platoon. There is a separation between e and f , making it likely that f will encounter busy
stations ahead of it. This configuration causes longer waiting times for passengers at stations, higher demands at each stop, and increased vehicle
travel times. The average service frequency at stations is much slower for platoons than for vehicles with an equal headway.
doi:10.1371/journal.pone.0007292.g001
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mean of l ticks. For example, if l~3, on average a new passenger

will arrive at each station every three ticks, i.e.
Sj j
l

new passengers

per tick for the whole system on average.

A vehicle vi flows at a cruise velocity unless it reaches a station sj

or another vehicle is in front closer or equal than a minimum

separation distance dvmin
. Removing this last restriction models

transport systems that allow passing. At a station, passengers

onboard the vehicle vi scheduled to exit at station sj leave the

vehicle with a random order, taking one tick each. Once all

scheduled passengers leave the vehicle, passengers waiting at the

station board the vehicle with a random order, also taking one tick

each. The vehicle leaves the station when there are no more

passengers waiting to board or the maximum passenger capacity

Cv of the vehicle is reached. We assume stations have an infinite

capacity Cs, i.e. there can always be more passengers arriving.

Validation
We do not need to model several wagons per vehicle, nor even

several doors, since these are just scalings of the basic case of one

door per vehicle.

Stations can be spaced homogeneously or not. In the former

case, there is an equal interstation distance ds for all stations. Equal

headway occurs when the intervehicle times tvij
are equal. These

can be plotted in histograms, but a more concise measure of the

equal headway can be obtained with the standard deviation of the

distribution of tvij
, which is equivalent to the distribution of

intervehicle frequencies fvij
at a station chosen randomly. If this

standard deviation sf ~0, then all vehicles have an equal

headway, i.e. fvij
~x,Vi,j. We can also study the standard deviation

of the vehicle capacity usage sC . This reflects how evenly the

passengers are distributed among the vehicles. If sC~0, then all

vehicles have the same capacity usage. As sC increases, it implies

that some vehicles are more full and some are more empty. This

unbalance is a property of the equal headway instability.

The performance of the system can be measured in several

ways. We can look at the average travel times of vehicles or the

average travel times of passengers. Since the dynamics are

simplified, it is more illustrative to look at delays. This can be

measured as the actual travel time minus the minimum possible

travel time. Delays can be calculated for vehicles or passengers.

Vehicle delay Dv increases when stopped at stations, or between

stations, waiting for another vehicle to move. Dv values are reset

each time a vehicle goes around the cyclic track. Passenger delay

Dp increases while waiting at departure stations (for arrival and

boarding), within vehicles that are being delayed (see above), or

while waiting to exit a vehicle at their destination station.

At its simplest case, the main dynamics of the model could be

implemented with an elementary cellular automaton [16,17],

specifically rule 184 [18–20] with further restrictions for delays at

stations. However, a multi-agent description is more explicit and is

easier to extend, e.g. to allow passing. We used the NetLogo

environment [21] to implement the model. The reader is invited to

explore this simulation via web browser at the URL http://turing.

iimas.unam.mx/,cgg/NetLogo/metro.html (or for short, http://

tinyurl.com/EqHeIn).

A screenshot of the simulation where the vehicles reach an

equal headway instability configuration is shown in Figure 2. A

screenshot where equal headways are maintained (using an

adaptive method described below) is shown in Figure 3.

Table 1 lists the model variables and the values used in the

simulations.

As described above, the model represents a metro-style system.

It can be modified to allow passings and extended to include traffic

lights and other traffic.

Results

We used a scenario with five stations spaced homogeneously in a

cyclic track of 120l. All stimulations started with empty vehicles and

stations ( Pj j~0). The vehicles start positioned between stations with

an equal headway. Simulations ran for ten thousand ticks, unless a

maximum number of passengers Pj jmax§3000 was reached.

For each value of l, fifty simulations were run and aggregated in

boxplotsA boxplot is a non-parametric representation of a

statistical distribution. Each box contains the following informa-

tion: The median (Q2~x0:50) is represented by the horizontal line

inside the box. The lower edge of the box represents the lower

Figure 2. Screenshot of the simulation with equal headway instability, l~6. The track, vehicles and passengers are shown on the top,
where numbers indicate the passengers in vehicles or waiting at stations. Different parameters of the simulation (some not relevant to the results
presented here) can be adjusted. Different monitors, plots, and histograms show results in real time. The equal headway instability can be seen most
clearly in the histograms: the intervehicle frequencies are irregular, as well as the intervehicle distances (with a sharp peak at dv~1, i.e. vehicles
aggregated next to each other). This irregularity leads to high standard deviations. Notice also that the vehicle utilization (percentage of vehicle
capacity used) has a very broad distribution, i.e. there are some vehicles working at almost full capacity, while many vehicles have a very low capacity
utilization.
doi:10.1371/journal.pone.0007292.g002
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quartile (Q1~x0:25) and the upper edge represents the upper

quartile (Q3~x0:75). The interquartile range (IQR~x0:75{x0:25)

is represented by the height of the box. Data which is lesser than

Q1{1:5:IQR or greater than Q3z1:5:IQR is considered an

‘‘outlier’’, and is indicated with circles. The ‘‘whiskers’’ (horizontal

lines connected to the box) show the smallest and largest values

that are not outliers. Some of the boxplots presented in this paper

have notches, which extend to +1:58
IQR
ffiffiffi
n
p , where n is the number

of samples per box.

The results shown—except for the final number of passengers—

are averaged over all of the simulation run, transients included.

This was because for some cases, the equal headway is maintained

for some time and then it collapses. We were interested in how fast

this collapse occurs, which reflects the stability of the method and

this requires averaging from the initial state of each run.

Moreover, after the maximum passenger capacity of the system

is exceeded, the system will not settle in a characteristic

configuration that balances the passenger demand and the system

capacity, as more and more passengers accumulate. Thus, it is not

possible to decide at which point to exclude transient data, since

for these cases all data is transient.

For each set of simulations, we present the mean passenger

delay SDpT, the mean vehicle delay SDvT, the mean standard

deviation of intervehicle frequencies Ssf T, the final number of

passengers Pj j, the mean standard deviation of vehicle capacity

usage SsCT, and the mean number of passengers at stations

S Psj jT. We consider unstable headways when Ssf Tw5 and a poor

system performance when SDpTw60 ticks.

The default method
We explored different restrictions to try to regulate an equal

headway. The default case is without restrictions. In this case, the

equal headway is always unstable (See Figure 4, in particular, the

high standard deviations of intervehicle frequencies Ssf T shown in

Figure 4C). Since there are no restrictions on the vehicles, some

will spend less time at stations than others, varying their headways.

This causes the aggregation of vehicles, where the first one has a

heavy passenger load and the following ones have a light passenger

load, as indicated by the high standard deviation of vehicle

capacity usage SsCT (Figure 4E). Thus, all the vehicles go at the

speed of the slowest vehicle. Even if the passenger density is not so

high (e.g. lw9), the performance of the system will be comparable

to that of a high density (below saturation, l~6, See Figures 4A

and 4B), as the slowest vehicle will suffer from an unbalanced load.

Notice that for l~3 the system saturates, i.e. it is unable to serve

the amount of incoming passengers, indicated by the high number

of passengers in Figures 4D and 4F. For the default method, when

there is a very high passenger demand, the headways are actually

less unstable than with a low passenger demand (See Figure 4C).

This is because vehicles reach their full capacity before all

passengers at a station can be served. Thus, empty vehicles behind

them separate from the full vehicles while waiting passengers to

board. In this way, empty vehicles share some of the system’s load,

making the vehicle capacity usages slightly less unbalanced (See

Figure 4E).

The minimum method
To improve the system performance, one option is to add a

minimum station waiting time tmin, that will ensure that a vehicle

will not leave the station even if there are no passengers waiting.

This attacks the problem of vehicles going faster than expected.

We call this restriction the minimum method, similar to the holding

strategies described in [22]. The aim of this is to restrict faster

vehicles from reaching slower ones.

Results of simulations for varying l and tmin are shown in

Figure 5. We can see that the default method, i.e. with no

Figure 3. Screenshot of the simulation with equal headway stability, l~6. Notice that the intervehicle frequencies and distances are regular,
shown with a peak in the histograms and low standard deviations (notice y-axis scale). Because of this regularity, the vehicle utilization histogram has
a bell-shaped distribution, which reflects the passenger inflow interval probabilities.
doi:10.1371/journal.pone.0007292.g003

Table 1. Model parameters and values used in simulation.

Variable Description Value

Sj j number of stations 5

Vj j number of vehicles 5, [2,8]

ds interstation distance (homogeneous) 24l

l mean passenger inflow interval [3,15]

Cv vehicle capacity 50 passengers

Cs station capacity ?

dvmin
minimum separation distance 1l

vehicle cruise velocity 1l=tick

vehicle acceleration +1l
�

tick2

doi:10.1371/journal.pone.0007292.t001
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Figure 4. Simulation results for default method, varying mean passenger inflow intervals l and number of vehicles Vj j~5: (A) mean passenger
delay SDpT (data above horizontal dotted line indicates poor system performance), (B) mean vehicle delay SDvT, (C) mean standard deviation of
intervehicle frequencies Ssf T (data above horizontal dotted line implies unstable headways), (D) final number of passengers Pj j, (E) mean standard
deviation of vehicle capacity usage SsCT, and (F) mean number of passengers at stations S Psj jT. Notice log scale on y axis of all plots but (B).
doi:10.1371/journal.pone.0007292.g004
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Figure 5. Simulation results for minimum method, varying mean passenger inflow intervals l (lower x axis, separated by vertical dashed lines),
different minimum station waiting times tmin (upper x axis, also indicated by color of boxes), and number of vehicles Vj j~5: (A) mean passenger
delay SDpT (data above horizontal dotted line indicates poor system performance), (B) mean vehicle delay SDvT, (C) mean standard deviation of
intervehicle frequencies Ssf T (data above horizontal dotted line implies unstable headways), (D) final number of passengers Pj j, (E) mean standard
deviation of vehicle capacity usage SsCT, and (F) mean number of passengers at stations S Psj jT.
doi:10.1371/journal.pone.0007292.g005
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restrictions, performs poorly for all passenger densities compared

to the minimum method. However, different values of tmin give best

results at different passenger densities (See Figures 5A and 5B): For

l~6 (high passenger densities) the best value is tmin~30, for l~9
the best value is tmin~20, and for l§12 (low passenger densities)

the best value is tmin~10. If there are few passengers, a smaller

tmin value leads to smaller passenger and vehicle delays.

Nevertheless, larger values of tmin provide more stable equal

headway distributions. It is precisely when the standard deviation

of the intervehicle frequencies sf ‘‘jumps’’, i.e. sf w5 (See

Figure 5C) that the delays and the vehicle capacity unbalance

also jump (Dpw60 in Figure 5A and sCw15 in Figure 5E).

However, notice that more stable headways do not imply a better

performance. E.g. for l~15, more stable headways (lower sf ) have

greater passenger delays Dp. This is also the case for the unbalance

of vehicle capacity usage sC (Figure 5E), which is more correlated

with Dp than with sf . Still, we can say that the system ‘‘breaks

down’’ when the equal headway becomes unstable. The points at

which the system breaks down for different tmin values are

determined by the amount of passengers waiting at the stations: if

vehicles need to spend more than tmin time at stations to allow the

descent and boarding of passengers, some vehicles will be delayed,

platooning will occur, and the performance of the system will be

comparable to that of the default method. The cause of the equal

headway instability is that vehicles are delayed by passengers and

go slower than expected. At a value of l~3, the system capacity is

exceeded (see Figure 5D) and more passengers arrive at stations

than those the system is able to service.

The maximum method
Since the minimum method did not improve the system

performance consistently nor maintained always equal headways

for long periods of time, a further restriction was added: vehicles

stay a maximum time tmax at stations, unless there are passengers

still exiting the vehicle. When the waiting time at a station reaches

tmax, the vehicle departs, even if there are passengers waiting at the

station. This attacks the problem of vehicles going slower than

expected. We called this the maximum method. There is still a tmin

time, so vehicles will wait at stations sometime in the interval

tmin,tmax½ � if tmaxwtmin or exactly tmax if tmaxƒtmin, unless there are

more than tmax passengers exiting at a single station (remember

they take one tick each). In this case, the vehicle will depart as soon

as all the passengers have exited, without admitting any new

passengers.

We performed a similar set of simulations as for the previous

methods. The results are shown in Figure 6. For all cases, a

tmin~25 was used.

We can see from Figure 6C that when tmaxƒtmin~25, equal

headway is maintained for all l values. This leads to an even

vehicle capacity usage in most cases (See Figure 6E). However, low

values of tmax lead to an early saturation of the system (e.g. l~6,

tmax~10 in Figures 6D and 6F), since vehicles stop for reduced

times. Thus, passengers accumulate at stations. Even when the

goal of equal headway is achieved, the performance is bad when l
saturates the capacity of the system for a specific tmax value. Still,

using the best tmax value is chosen for a particular l, the maximum

method improves considerably the passenger delays Dp (See

Figure 6A) and vehicle delays Dv (See Figure 6B) compared with

the default method, except when the system saturates (l~3). For

tmaxwtmin, performance is similar to that of the minimum method.

In this case, equal headways are roughly maintained for l§9.

When lƒ6, the trains are delayed by the number of boarding

passengers waiting at stations, which is reflected in increased

vehicle delays Dv (See Figure 6B).

Another way of comparing the three methods presented so far is

with the mean number of passengers at stations S Psj jT for a given

l (See Figures 4F, 5F, and 6F). If S Psj jT is low, it implies that the

service is efficient.

We performed further simulations using heterogeneous inter-

station distances ds and obtained results similar as those presented

above.

Adaptive methods
A quick examination of Figures 5A and 6A shows that there are

different best values of tmin and tmax for different passenger

densities, i.e. l, for both minimum and maximum methods. To exploit

this feature, adaptive methods were developed to decide

automatically which values are best to use at a specific time.

Figure 7 shows the self-regulation mechanism for tmin. If the

total number of passengers Pj j in the simulation exceeds the total

capacity of the vehicles (this is the capacity of a single vehicle Cv

multiplied by the number of vehicles Vj j), multiplied by a factor

amin, then tmin is increased (line 2). This is because for more

passengers Pj j (inversely correlated with l), a higher value of tmin

performs best. On the other hand, if Pj j is lesser than the total

capacity of the vehicles multiplied by a factor bmin, tmin is

decreased (line 5). This occurs when there are few passengers

accumulating at stations, so vehicles can service them better with a

lower tmin. However, the tmin should be bounded, not to decrease

too much, so it cannot be lesser than a parameter tminmin
(line 8).

Correspondingly, tmax is bounded not to be greater than the time it

takes an empty vehicle to fill up. In our model, this is the vehicle

capacity Cv, as Cv passengers will fill up an empty vehicle in Cv

ticks. Even if there are passengers at a station, there is no point in

increasing tmin, since vehicles will be full by that moment.

The self-regulation for tmax is done in a very similar way,

described by Figure 8.

After a careful parameter exploration, the values chosen for the

simulations were amin~0:3, bmin~0:015, amax~0:15,

bmax~0:03, tminmin
~tmaxmin

~10 ticks, and Cv~50 passengers.

These parameters achieved a proper balance between the waiting

times and the passenger demand: if there are few passengers, the

waiting times should be low, whereas waiting times should be

extended for an increased passenger demand. The speed in which

these parameters are adjusted is also important: on the one hand,

if it is too slow, then there will be a waste of resources. On the

other hand, if the speed is too fast, the waiting times will be

adjusted before the system reaches a balance, so it might overshoot

the adjustments. The tmin or tmax values were updated with the

algorithms shown in Figures 7 or 8 every 100 ticks.

Figures 9, 10, and 11 show results of simulations comparing the

default, adaptive minimum, and adaptive maximum methods, for different

number of vehicles Vj j. The adaptive maximum method keeps a fixed

tmin~25 ticks. For these sets of simulations, the boxplots show

statistics of ten runs per box.

We can see from Figures 9D, 10D, and 11D that the system

saturates roughly independently of the method used for Vj j~2,

lƒ6 and Vj j~5, l~3. For Vj j~8 the system does not saturate

for the values of l explored.

The adaptive maximum method manages to maintain the most

stable headways (See Figures 9C, 10C, and 11C). Also, the best

performance is achieved by the adaptive maximum method, which is

reflected in the lowest passenger delays Dp (See Figures 9A, 10A,

and 11A), vehicle delays Dv (See Figures 9B, 10B, and 11B),

uneven vehicle capacity usage (See Figures 9E, 10E, and 11E), and

lower accumulation of passengers at stations (See Figures 9F, 10F,

and 11F). Note that the adaptive maximum method always achieves

an equal headway, unless the passenger density is high enough to

Equal Headway Instability

PLoS ONE | www.plosone.org 7 October 2009 | Volume 4 | Issue 10 | e7292



Figure 6. Simulation results for maximum method, varying mean passenger inflow intervals l (lower x axis, separated by vertical dashed lines),
different maximum station waiting times tmax (upper x axis, also indicated by color of boxes), and number of vehicles Vj j~5: (A) mean passenger
delay SDpT (data above horizontal dotted line indicates poor system performance), (B) mean vehicle delay SDvT, (C) mean standard deviation of
intervehicle frequencies Ssf T (data above horizontal dotted line implies unstable headways), (D) final number of passengers Pj j, (E) mean standard
deviation of vehicle capacity usage SsCT, and (F) mean number of passengers at stations S Psj jT.
doi:10.1371/journal.pone.0007292.g006
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force vehicles to wait at stations more than tmax due to exiting

passengers, as shown in Figure 11C. The adaptive maximum method

overcomes the problem of the maximum method where the system

was saturated when vehicles were departing stations too soon and

were not serving the passenger demand.

Since the default method offers similar delays independently of

the passenger density, adding more vehicles at peak hours has

negligible effects (see in Figure 9A that passenger delays Dp are

similar, independently of the number of vehicles Vj j), unless the

system saturates. However, since improvements over the default

method are greater for lower passenger saturation rates, adding

vehicles at peak hours offers much greater benefits with the adaptive

maximum method. With more vehicles available, the adaptive

maximum method is able to consistently reduce passenger delays.

Depending on the number of vehicles, the improvement can be

greater. For example, for eight vehicles, the passenger delays can

be reduced to about one sixth of the delay obtained with the default

method for l§6 (see Figure 12).

To observe how the adaptive versions of the minimum and

maximum methods regulate tmin and tmax respectively, Figure 13

shows their final values in the simulations discussed above. We can

see that for low passenger demands (i.e. high values of l), the

methods self-regulate to low values and vice versa. Note that this

seems not to be the case for Vj j~2 and l~3. This is because the

system saturates quickly and the simulation stops before the

parameters have reached their maximum value.

Notice also that the final values for tmin and tmax are very

similar. This suggests that the adaptive methods are able to find by

themselves values close to the optimal waiting times at stations for

a given l. In other words, for a given passenger density, the system

will maintain headways and be most efficient if each vehicle spends

a particular time at each station. On the one hand, vehicles will

not go faster or slower than average, maintaining equal headways.

On the other hand, vehicles will spend enough time at stations to

serve the current passenger demand: not more (wasting time idling

at stations) and not less (vehicles departing stations while

passengers accumulate). Thus, theoretically there are optimal

waiting times for different densities, and the methods presented

above are able to find values close to them, even as the passenger

demand changes. In practice, however, there might be other

things to be considered.

Discussion

The proposed model has similar aspects to Nagatani’s cyclic

tram model [23] and O’Loan et al. ’s bus route model [24]. They

observed a phase transition between a homogeneous phase, i.e.

equal headways and an inhomogeneous ‘‘jammed’’ phase, i.e.

unstable equal headways. This transition depends on the

availability of noise, which in our model is delivered by random

arrival of passengers. This is consistent with our results, where the

default method is always in the ‘‘jammed’’ phase (See Fig. 4C). The

above cited models and others, e.g. [25–28], have focussed on the

dynamic aspects of bus or tram systems, not so much on exploring

potential solutions to prevent equal headway instability. An

exception, Nagatani [29] studied the option of full buses not

Figure 8. Pseudocode for the self-regulation of tmax. The rationale for adjusting tmax is very similar to that of Figure 7: it is increased when there
are many passengers in the system, it is decreased when there are few, and it is bounded.
doi:10.1371/journal.pone.0007292.g008

Figure 7. Pseudocode for the self-regulation of tmin. If the total number of passengers in the system Pj j is greater than the total capacity of all
vehicles (Cv Vj j) multiplied by a factor amin, then tmin is increased (line 2). To decrease tmin (line 5), a similar relation is taken into account, namely when
the number of passengers is lesser than the system capacity multiplied by a factor bmin. Lines 7–12 bound tmin, not to be smaller than tminmin

nor
greater than the capacity of a single vehicle Cv .
doi:10.1371/journal.pone.0007292.g007
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Figure 9. Simulation results for default method, varying mean passenger inflow intervals l (lower x axis, separated by vertical dashed lines) and
number of vehicles Vj j (upper x axis, also indicated by color of boxes): (A) mean passenger delay SDpT (data above horizontal dotted line indicates
poor system performance), (B) mean vehicle delay SDvT, (C) mean standard deviation of intervehicle frequencies Ssf T (data above horizontal dotted
line implies unstable headways), (D) final number of passengers Pj j, (E) mean standard deviation of vehicle capacity usage SsCT, and (F) mean
number of passengers at stations S Psj jT.
doi:10.1371/journal.pone.0007292.g009
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Figure 10. Simulation results for adaptive minimum method, varying mean passenger inflow intervals l (lower x axis, separated by vertical
dashed lines) and number of vehicles Vj j (upper x axis, also indicated by color of boxes): (A) mean passenger delay SDpT (data above horizontal
dotted line indicates poor system performance), (B) mean vehicle delay SDvT, (C) mean standard deviation of intervehicle frequencies Ssf T (data
above horizontal dotted line implies unstable headways), (D) final number of passengers Pj j, (E) mean standard deviation of vehicle capacity usage
SsCT, and (F) mean number of passengers at stations S Psj jT.
doi:10.1371/journal.pone.0007292.g010
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Figure 11. Simulation results for adaptive maximum method, varying mean passenger inflow intervals l (lower x axis, separated by vertical
dashed lines) and number of vehicles Vj j (upper x axis, also indicated by color of boxes): (A) mean passenger delay SDpT (data above horizontal
dotted line indicates poor system performance), (B) mean vehicle delay SDvT, (C) mean standard deviation of intervehicle frequencies Ssf T (data
above horizontal dotted line implies unstable headways), (D) final number of passengers Pj j, (E) mean standard deviation of vehicle capacity usage
SsCT, and (F) mean number of passengers at stations S Psj jT.
doi:10.1371/journal.pone.0007292.g011
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stopping at certain stops, which helps reduce the equal headway

instability. However, this is problematic for passengers exiting at

those stops.

Since the default method always leads to an equal headway

instability, restrictions are required to prevent it. The minimum

method attacks the problem of vehicles going faster than expected

and works for low l values relative to tmin. Additionally, the

maximum method attacks the problem of vehicles going slower than

expected and achieves a better headway stability by forcing

vehicles to spend specific times at stations. However, this might be

difficult to implement (see below). Even when headway stability

can be maintained, a low tmax can lead to an early system

saturation. Thus, headway stability by itself does not imply a good

system performance. This is seen again in the case described in the

next paragraph.

One alternative to promote equal headways could be to keep a

longer minimum intervehicle distance dvmin
. The idea behind this is

to force equal headways via equal distances. This works if stations

are spaced homogeneously and Vj jƒ Sj j: if fast vehicles are forced

to wait behind fast ones (dvmin
slightly smaller than ds), then they

will not be able to aggregate and the stations loads will be

balanced, giving a similar performance to the adaptive maximum

method. However, if Vj jw Sj j or stations are not homogeneously

spaced, vehicles are forced to wait between stations, leading to

greater delays than those of the default method with dvmin
~1. If

dvmin
has a medium value, i.e. 1vdvmin

vvds then vehicles still

aggregate, although not as close as with dvmin
~1. Note that if

dvmin
~ds, then all vehicles go at the speed of the slowest one, i.e.

the delay of a single vehicle affects instantly the whole system.

Vehicles serving at full capacity deliver greater delays, i.e.

heterogeneous vehicle usage lead to heterogeneous headways. For

this reason, one ingredient to promote equal headways is to have

space available in arriving vehicles, i.e. similar loads will lead to

similar travel times for vehicles along a route, which will lead to

similar headways. An efficient method, such as the adaptive

maximum method, can use the availability of extra vehicles to

reduce passenger delays by balancing loads. A method without

restrictions, such as the default method, cannot exploit extra

vehicles, as these travel mainly empty, following closely slower

vehicles servicing at full capacity.

We have studied methods to maintain an equal headway

distribution in an abstract scenario. How to implement e.g.

Figure 12. Comparison of passenger delays Dp between default
and adaptive maximum methods, varying mean passenger inflow
intervals l and Vj j~8. For lw3, the mean delays for the default
method are about six times larger than those for the adaptive maximum
method (notice log scale on y axis).
doi:10.1371/journal.pone.0007292.g012

Figure 13. Simulation results for adaptive minimum and adaptive maximum methods, varying mean passenger inflow intervals l (lower x
axis, separated by vertical dashed lines) and number of vehicles Vj j (upper x axis, also indicated by color of boxes): (A) Final tmin, (B) final tmax

(tmin~25).
doi:10.1371/journal.pone.0007292.g013
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maximum waiting times at stations is a tough practical question,

since passengers may be eager to board a vehicle and not allow its

departure on time, risking their own safety. One could think of

physical barriers to regulate and mediate the boarding of

passengers. These might be costly and would need to be specifically

engineered for the passenger behaviors of different cultures. There

can be several mechanisms that promote equal headways, not

necessarily the ones explored here. We were not interested in

finding a practical method, but in studying the effect of equal

headways in public transport system performance. Moreover, such

methods need to consider the peculiarities of a specific implemen-

tation, absent in our model. Here we limit ourselves to suggest

recommendations that contribute to maintain an equal headway.

Recommendations
Based on the explorations of the equal headway instability

phenomenon with our model, we can suggest the following

recommendations.

For passengers:

N If a crowded vehicle arrives at a station after a long waiting

time, it is very probable that empty vehicles are coming close

behind. Do not board the crowded vehicle, contributing to its

further delay and of all the passengers within. If even some

people follow this advice, it is likely that crowded vehicles will

be able to go relatively faster, allowing the vehicles behind

them also to go faster, improving the performance of the whole

system. Waiting at the station for another vehicle might

actually contribute to a faster trip.

N Give way to people descending a vehicle before boarding.

Trying to ‘‘win’’ and enter before others will delay everybody.

Sometimes waiting for a second or a third vehicle is faster than

attempting to board a crowded one (especially in transport

systems that allow passing).

N Inside a crowded vehicle, go far from the doors. Giving space

to ascending and descending people will accelerate the travel.

Make way to the doors not too long before exiting.

For engineers:

N It makes little sense to add vehicles if these are not regulated to

maintain an equal headway.

N Design methods to regulate equal headways. This will improve

considerably the system performance. The most common

method is to have scheduled arrival and waiting times at

stations, with margins for adjustment along the route and also

at terminals.

N Educate passengers with publicity campaigns to promote equal

headways. In many cases these cannot be achieved because of

passenger behavior. Explain to passengers the equal headway

instability phenomenon, indicating that following certain

norms will help them arrive earlier and more comfortably at

their destination. Suggest recommendations as those outlined

above, adapted to the local culture.

Other transport systems
Equal headway instability can also be triggered by traffic or

traffic lights. Here we studied the simplest case, where delays are

caused only by passengers boarding at stations. This would apply

to metros, some trams, trains, and elevators. Buses and some trams

interact with traffic and this can affect considerably their

performance. Bus rapid transit systems and some trams have

dedicated lanes or tracks, so in principle they are not affected by

the traffic density. However, traffic lights can trigger an equal

headway instability. A tentative option would be to use self-

organizing traffic lights [30] to give priority to public transport

vehicles without affecting the flow of other vehicles in a city.

The recommendations posed above apply also to other types of

transport system. They will not prevent by themselves equal

headway instabilities, but different ingredients contribute to

improving the performance of systems by making equal headways

more stable.

Conclusions
Equal headway instability is a general phenomenon, indepen-

dent of peculiarities of the transport route and type. We presented

a model that is able to reproduce qualitatively the properties of the

equal headway instability. The two methods and their adaptive

versions proposed restrictions that promote equal headways,

reducing considerably delays and improving system performance.

This problem has many technological solutions. However, after

a careful examination, we can see that there is an additional social

problem: passenger behaviors. Recommendations were made for

passengers and engineers to promote equal headways. Technology

is not sufficient to achieve this. Social campaigns are required,

since passenger behavior affects considerably the time vehicles

spend at stations, in some systems their only source of delay.

As a future work, we intend to apply our results to different

public transportation systems in Mexico City: the Metro and the

bus rapid transit systems Metrobus and Pumabus (operating within

the UNAM’s main campus), all suffering from equal headway

instabilities. This will require a refinement of the model for the

specific domains, to compare simulation results with real data, to

study passenger behaviors, and to collaborate with the authorities

overseeing and regulating these systems.
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