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Abstract

The Tower of London Test (TOL) used to assess executive functions was inspired in Artificial Intelligence tasks used to test
problem-solving algorithms. In this study, we compare the performance of humans and of exploration algorithms. Instead
of absolute execution times, we focus on how the execution time varies with the tasks and/or the number of moves. This
approach used in Algorithmic Complexity provides a fair comparison between humans and computers, although humans
are several orders of magnitude slower. On easy tasks (1 to 5 moves), healthy elderly persons performed like exploration
algorithms using bounded memory resources, i.e., the execution time grew exponentially with the number of moves. This
result was replicated with a group of healthy young participants. However, for difficult tasks (5 to 8 moves) the execution
time of young participants did not increase significantly, whereas for exploration algorithms, the execution time keeps on
increasing exponentially. A pre-and post-test control task showed a 25% improvement of visuo-motor skills but this was
insufficient to explain this result. The findings suggest that naive participants used systematic exploration to solve the
problem but under the effect of practice, they developed markedly more efficient strategies using the information acquired
during the test.
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Introduction

The Tower of London (TOL) [1] was designed to assess deficits of

planning in patients with lesions of the frontal lobe. In Shallice’s

rationale, these lesions damage the Supervisory Attentional System (SAS)

responsible for the non-routine selection of action schemes. In the

TOL, ‘‘the subject must construct a stack of objects from a starting

configuration in series of individual moves’’ ([1], p. 203). Three

beads placed on three rods are moved one by one in order to reach

a given configuration. The subject performs twelve tasks requiring

between 2 and 5 moves. With four moves or more, the SAS is

presumably engaged, thus deficits are expected in patients with

frontal lesions. Since then, the TOL has been used as a clinical

tool, e.g., as part of the CANTAB (Cambridge Neuropsychological

Test Automated Battery) computerized tests [2] and for research

on executive functions and cognitive skills. For instance, the

PubMed database contains 53 articles on the TOL (March 20,

2009; keywords ‘‘Tower London’’ and/or ‘‘TOL’’ in title;

irrelevant references removed manually)

In the original TOL, the difficulty was graded by the number of

moves. However, there is empirical evidence that the difficulty can

vary markedly among the tasks with the same number of moves

(see Section Discussion). It is now accepted that what really

mediates the difficulty is the search space (also called problem space)

[3,4]. The search space is a graph that represents the possible

configurations as nodes and the transformations (or moves) as

edges. A task is defined by means of two nodes (initial and final

configurations). A solution is a path of minimal length between

these nodes. The search space allows determining the number of

alternative paths, the configurations to examine, as well as several

factors that may affect performance like the presence of conflictive

moves or sub-goals [5]. Facts and figures on the search space of the

TOL can be found at the web site that presents support

information for this article [6].

The impact of the search space on the performance of problem-

solving programs (problem solvers) has been known for long in

Artificial Intelligence [7]. The search space determines the

combinatorial dimension, i.e., the number of possibilities that problem

solvers have to examine. The impact depends on the algorithm, i.e.,

the predetermined sequences of decisions and operations executed

by the program. It also depends on the a priori information and on

the memory resources. For instance a program with a priori

information and no memory limitations can use a look-up table that

contains a predetermined solution for each task. The solution is

found in the table and the combinatorial dimension does not affect

performance. Conversely, a program that has no memory and no

specific exploration method will explore randomly the search

space therefore the average execution time grows quickly with the

combinatorial dimension.

It may seem straightforward to transpose explanations and results

from problem solvers to human performance. In fact, Shallice [1]

states explicitly that the architecture of the Supervisory Attentional
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System and the TOL itself were inspired from an earlier problem

solver [8]. However, unless the contrary is proven, it would be

premature to assume that human solve combinatorial problems like

programs, i.e., by means of a predetermined strategy (in a broad

sense, i.e., a way to solve a problem). It would also be premature to

assume that human are systematic, i.e., that they employ the same

strategy for all the tasks of a protocol. In fact, there is evidence of the

contrary (see Section Discussion). Also, human performance may be

affected by contextual and psychological factors (see Section

Discussion). In summary, whether the search space affects in the

same way programs and humans is unclear.

However, a simple approach issued from the field of Algorithmic

Complexity allows comparing usefully human and program perfor-

mance on a given search space. The objective is to determine the degree

of efficiency of humans by placing the human performance curve

(execution time as a function of the number of moves) on a discrete

scale used to rate the efficiency of algorithms: constant, logarithmic,

linear, polynomial, exponential… The numerical execution time of an

algorithm is unimportant because it can be improved with faster

computers. Conversely the pattern of variation is irreducible. For

instance, algorithms with exponential patterns of variation are

unusable for large-scale problems, whatever the computer.

In order to build a scale of efficiency, we select a few algorithms

that solve the TOL efficiently in different conditions (a priori

information or not, bounded vs. unbounded memory) and we

determine their patterns of variation. We then perform correlation

analysis. The pattern of variation with the highest correlation

coefficient corresponds to the degree of efficiency of humans,

whatever the method they employ to solve the problem. We can

refine the method by using measures of performance of real

algorithms (task by task) instead of patterns of variations (that only

consider the number of moves).

In case of success, the approach will provide insights on the

efficiency of human strategies and a fair comparison between humans

and algorithms. Because the approach is based on correlation

analysis, it works in spite of the facts that humans are several orders of

magnitude slower, human strategies and their neuronal realizations

are unknown, and human performance is affected by contextual and

psychological factors of difficulty. Inasmuch as the correlations are

strong, we may even use the patterns of variations as algorithmic indexes

to predict quantitatively the degree of difficulty due to the search

space. This would be a valuable outcome for experimental research

using the TOL. Indeed, the approach may fail, for instance if human

strategies are not constant during a test, if inter-individual differences

are too important and/or if other factors of difficulty have more

impact than the search space.

We nonetheless applied the approach to the data of healthy

aged participants (from the study presented in [9]). Their

performance fitted nicely with the algorithmic index of efficient

algorithms using bounded memory resources and no a priori

information. This result was promising but it was not considered a

sufficient validation, among other reasons because the tasks were

limited to 5 moves (like in the original TOL) whereas the search

space allows tasks up to 8 moves. We thus conducted an

experiment with healthy young volunteers. Because all participants

had a high education level, we assumed that they were cognitively

skilled and we included difficult tasks in the protocol.

Materials and Methods

In the following, we refer to the original TOL [1]. We present

the search space of the TOL and the algorithmic indexes, the

experimental protocols for elderly and young participants and

finally the data analyses.

1. Search space of the TOL
The search space of the TOL (Figure 1) contains 36

configurations and 108 licit moves (i.e., 36 nodes and 54 bi-

directional edges). The number of licit moves from a given

configuration (branching factor) is 2, 3 or 4 (average = 3). The

configurations present 6 spatial patterns and for each spatial pattern,

there are 6 color patterns (i.e., the order in which the colors are

painted on the balls). We use the nomenclature of [3] for the

configurations and the patterns. There are 1296 possible tasks,

requiring between 0 (trivial tasks) and 8 moves. The number of

solutions per task range from 1 to 8. More information about the

search space is available at [6]

2. Exploration algorithms and Algorithmic Indexes
The objective was to build a scale to which the strategies of

participants can be compared. Each element of the scale

corresponded to a class of algorithms that have the same pattern

of variation. We represented this pattern by means of an algorithmic

index, i.e., a curve giving the average execution time as a function

of the number of moves (recall that the numerical values of the

curve are unimportant, given that it will be used only for

correlation analysis).

For practical reasons, we limited ourselves to a minimal scale

composed of 3 indexes (see below). We assumed that it was

sufficient to validate the method, and this limitation entailed no

simplistic assumption on actual human strategies (the scale is only

used to rate their efficiency; actual strategies may be quite different

from the algorithms used to build the scale).

We considered exploration algorithms, capable of finding the

shortest path between two configurations of the search space.

Exploration algorithms are defined as follows.

The algorithms receive as entry the search space of the

TOL and the task to solve, i.e., a pair of configurations CI,

CF at a distance N

They return a sequence of N moves between CI and CF, i.e.,

a shortest path.

They have no explicit information on the TOL, i.e., no

predetermined data. Otherwise the problem could be solved

in one step, with a look-up table.

They embed no implicit information, i.e., they are not

designed especially for the TOL. In other terms, they work

with any (finite) search space.

They are optimal given the constraints imposed to each

family of algorithms, i.e., within each family, their pattern of

variation has the slowest increase.

In other terms, the exploration algorithms are naive (like human

participants that have not been exposed to the test) and they solve the

general problem of the shortest path. We then computed four algorithmic

indexes: U(N), B(N), I(task) and I(N). Their properties are summarized

in Table 1. The numerical values of the indexes and the programs used

to compute them can be found in the supporting web site [6].

U(N): algorithms with unbounded memory. These algorithms can store

all the intermediate results. This speeds up the execution.

Although unbounded memory is unrealistic for humans (this

would be like using the long-term memory interactively) this family

is of interest because it contains the most efficient algorithms for

the general problem of the shortest path. The algorithmic index

U(N) giving the average execution time T as a function of N

increases as the number of nodes+arcs at distance N or lower. For

the search space of the TOL, U(N) is almost linear. This can be

attained for instance by means of labeled broad-first exploration [10].

Humans vs. Algorithms - TOL
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Here is the sketch of such an algorithm

to explore X ~ initial configuration CIf g

for C in X

if C ~ final configuration CF return

label C as explored

for A in possible moves from C

if not A labeled as explored and

not target configuration of A, T, labeled as explored

label A and T as explored

add T to X

B(N): algorithms with bounded memory. These algorithms cannot store

all the examined nodes and arcs because memory overflow may

occur. These algorithms are therefore slower, but they are of

interest because humans also have a bounded working memory

[11,12]. With bounded memory, it is at most possible to store the

path under construction (here, 8 nodes or less). Because the paths

have nodes and arcs in common, there is a considerable amount of

repetition. B(N) increases as the number of paths of length N or

lower, which in general grows as bN, b being the average

branching factor [13]. This was verified for the search space of the

TOL, i.e. B(N) grows exponentially with exponent close to 3

(Table 1). This can be attained for instance by means of depth-first

exploration. Here is a sketch of depth-first algorithm.

function explore Cð Þ : path

if C ~ final configuration CF return C

for A in possible moves from C

X ~ explore Tð Þ, where T is the target configuration of A

if not empty Xð Þ return C, X

return empty path == failure

the solution is found by calling explore

initial configurationCIð Þ

I(task): task -specific index. The indexes U(N) and T(N) do not

discriminate among the tasks of N moves, whereas the combina-

Figure 1. Search space of the TOL. A: configurations using nomenclature of [3]. B: search space. The nodes represent the configurations. The
edges represent licit moves that transform a configuration into another (bi-directional).
doi:10.1371/journal.pone.0007263.g001

Table 1. Algorithmic indexes.

index description pattern of variation

U(N) unbounded memory, no a priori information Linear, U(N),11N

B(N) bounded memory, no a priori information Exponential, B(N),e1.15N, i.e.3.16N

I(task) bounded memory no a priori information, measured from a random algorithm distribution around exponential, I(N),e1.12N, i.e.3.06N

Pattern of variation: indicates the trend line of the curve. Complete data available at [6].
doi:10.1371/journal.pone.0007263.t001

Humans vs. Algorithms - TOL
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torial properties (and human performance) may differ markedly

from task to task. We thus computed a task-dependent index I(task)

that represents task by task the average execution time of efficient

algorithms with bounded memory. To do so:

We implemented a random broad-first exploration algorithm with

bounded memory that explores the nodes randomly in order of

increasing distance from the initial configuration. The

memory is used only to store the current path in order to

avoid circuits (i.e., moving to a previous position. This

requires at most 8 nodes), i.e., the algorithm uses bounded

memory. Here is the sketch of the algorithm (complete

algorithm can be found at [6]).

current distance D ~ 0

forever

examine in random order the paths P of length D

starting from CI

if P contains a loop, skip

if P ends on final configuration CF, return P

increment D

I(task) was computed as the average number of steps

(examined nodes + arcs) of the algorithm on 2048

repetitions. The number of steps is a robust indicator of

the actual execution time (see barometer instruction technique

[14]). Because at each repetition, the algorithm behaves

differently, the average represents the performance of a

collection of deterministic algorithms.

For validation, we computed I(N) as the average of I(task)

for the tasks of N moves. We verified that I(N) was similar to

B(N). This was expected, because the random algorithm

uses bounded memory. Note that I(N) increases slightly

slower than B(N), possibly because the algorithm does not

examine the paths that contain loops (see exponents in

Table 1, bottom right and Figure 2). However this small

difference does not justify using I(N) as a separate

algorithmic index.

3. Experiment 1 - elderly participants - protocol
The participants were tested in the context of a study presented

in [9]. The group was composed of 35 healthy elderly volunteers

randomly selected from a list of beneficiaries of a pension fund (14

males; age 72.4 s= 4.4; education: 8.3 years, s= 1.5). All of them

were naive with the TOL and none presented history of cognitive

and/or neurological diseases (exclusion criteria: stroke, Parkinson’s

disease, severe trauma with loss of consciousness for 48 h or more,

depression and chronic alcoholism).

Ethic statement. All the participants gave written informed

consent, according to the regulations of the Ethic Advisory Board

of Université Bordeaux 2.

The TOL was presented under the form of two identical kits

(initial and target configuration), made of a wooden base

(226662 cm) with 3 rods of 12 cm, 8 cm, 4.5 cm, and 3 balls

(yellow, red and blue), 3 cm in diameter.

Two tasks of 2 moves were first executed by the examiner. The

following instructions were then given to the participants: a)

reproduce the target configuration in a minimum number of moves;

b) move only one ball at a time; c) place at most one ball on the

shortest peg, and two balls on the middle one; d) each ball can only

move from one peg to another (i.e., do not lay the balls on the table

or keep them in the hand). The participants were instructed to work

out the minimal number of moves to reach the target configuration

and to execute the corresponding sequence i) without errors and ii)

as fast as possible. There were no time limits. They were asked to tell

the examiner when they had finished, or when they abandoned.

They performed 15 tasks presented in order of increasing number of

moves, from 1 to 5 (Table 2). Each task corresponded to a unique

trial. The number of moves was not indicated.

The execution time (precision 61 s) and the number of moves

executed by the participant were measured by the examiner. The

result (target configuration attained or not, abandon) was noted, as

well as the rule violations that may have been committed.

4. Experiment 2 - young participants - protocol
Like in the original test [1], the tasks of Experiment 1 required 5

moves or less. In contrast, Experiment 2 was designed to cover

more thoroughly the search space of the TOL, with tasks of 2 to 8

moves. This was presumably possible because the participants

Figure 2. Algorithmic indexes. Horizontal: number of moves. Vertical: execution time (normalized). A: unbounded memory, U(N). B: bounded
memory, B(N), I(task) (grey zone) and I(N), i.e., average of I(task), C: detail: all indicators together, N, = 4. According to Shallice (1982), with 4 moves or
more, the supervisory attentional system is engaged.
doi:10.1371/journal.pone.0007263.g002

Humans vs. Algorithms - TOL
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were young adults with high educational level, which were

expectedly faster than the elderly participants of Experiment 1.

Because the objective was not to compare the performance of

young and elderly, it was of little interest to include the set of tasks

of Experiment 1. The material (wooden kits, yellow, read and blue

balls), the way of presentation and the instructions were similar to

experiment 1.

The group was composed of 30 healthy young volunteers (13

males; age 22.9 s= 3.2; education: 15.6 years, s= 2.4). All of

them were naive with the TOL. The exclusion criteria were:

history of neurological diseases (like in Experiment 1), depression,

motor deficits affecting hand movement, uncorrected vision or

hearing deficits.

Ethic statement. All participants gave written informed

consent according to the regulations of the Ethic Committee of

IUGM (ethic certificate No. 20060101).

Participants executed a total of 35 tasks requiring between 2 and

8 moves (Table 3), in order of increasing number of moves, with 5

tasks per number of moves. Like in experiment 1, the number of

moves was not indicated to the participant. The tasks of 1 move

were not included because they were considered too easy. The

tasks were selected pseudo-randomly so that the difficulty was

balanced for each number of moves, i.e., the average of I(task) for

the 5 tasks of N moves was close to I(N).

During the test, the examiner recorded manually the total

execution time (precision 1 s) and also the preparation time, i.e.,

the time elapsed between the presentation of the task and the first

move. The difference represented the movement time. Note that

on-line planning may occur during the movement time [15,16]. In

order to document the variation of visuo-motor performance

(without planning demands), before and after the test, participants

executed a sequence of 20 self-determined moves as fast as

possible. The time was recorded manually by the examiner

(precision 1 s). Note that the possible variation results from the

opposite effects of fatigue and motor skill acquisition.

5. Data analysis
The execution time T was calculated for the valid trials, i.e., final

configuration attained without rule violation whatever the number

of moves.

The correlation coefficients (Pearson r) were computed on the

set of tasks, between the averaged T (across participants) and the

indexes U(N), B(N), and I(task). The indexes were then ranked in

order of decreasing correlation coefficients.

For young participants, the correlations were initially computed

for the whole set of tasks, but at the light of preliminary results, we

computed them piecewise, i.e., on two subsets of tasks: easy (2 to 5

Table 2. Tasks and algorithmic indexes for elderly
participants.

Task
Initial
configuration

Final
configuration N U(N) B(N) I(task)

1 12 13 1 7.00 3.00 2.00

2 53 52 1 7.00 3.00 3.00

3 23 24 1 7.00 3.00 3.00

4 12 15 2 17.33 9.67 9.00

5 23 36 2 17.33 9.67 11.00

6 53 65 2 17.33 9.67 11.00

7 23 35 3 31.67 30.67 36.00

8 53 64 3 31.67 30.67 37.00

9 12 16 3 31.67 30.67 29.00

10 53 16 4 44.33 97.67 118.00

11 12 64 4 44.33 97.67 94.00

12 23 33 4 44.33 97.67 92.00

13 12 63 5 56.17 310.67 275.00

14 53 15 5 56.17 310.67 362.00

15 23 32 5 56.17 310.67 293.00

The tasks are in the order of presentation. The configurations are identified
according to Figure 1. N: number of moves.
doi:10.1371/journal.pone.0007263.t002

Table 3. Tasks and algorithmic indexes for young
participants.

Task
Initial
configuration

Final
configuration N U(N) B(N) I(task)

1 23 12 2 17.33 9.67 11.00

2 21 15 2 17.33 9.67 7.00

3 14 22 2 17.33 9.67 9.00

4 26 12 2 17.33 9.67 6.00

5 56 43 2 17.33 9.67 6.00

6 33 44 3 31.67 30.67 36.00

7 34 43 3 31.67 30.67 29.00

8 53 63 3 31.67 30.67 28.00

9 63 53 3 31.67 30.67 28.00

10 64 14 3 31.67 30.67 23.00

11 46 34 4 44.33 97.67 67.00

12 22 65 4 44.33 97.67 86.00

13 33 23 4 44.33 97.67 91.00

14 22 34 4 44.33 97.67 95.00

15 65 11 4 44.33 97.67 117.00

16 22 62 5 56.17 310.67 303.00

17 31 23 5 56.17 310.67 183.00

18 52 32 5 56.17 310.67 302.00

19 44 26 5 56.17 310.67 230.00

20 32 23 5 56.17 310.67 276.00

21 21 31 6 68.67 988.67 591.00

22 32 11 6 68.67 988.67 970.00

23 23 45 6 68.67 988.67 924.00

24 22 31 6 68.67 988.67 881.00

25 41 12 6 68.67 988.67 654.00

26 14 31 7 81.00 3145.67 3050.00

27 25 53 7 81.00 3145.67 3840.00

28 36 65 7 81.00 3145.67 1932.00

29 46 15 7 81.00 3145.67 1929.00

30 63 31 7 81.00 3145.67 3678.00

31 22 46 8 89.50 10009.67 6542.00

32 24 51 8 89.50 10009.67 7324.00

33 26 62 8 89.50 10009.67 4260.00

34 35 65 8 89.50 10009.67 7271.00

35 56 21 8 89.50 10009.67 5053.00

The tasks are in the order of presentation. The configurations are identified
according to Figure 1. N: number of moves. U(N), B(N), I(N): defined in Section
Material and Methods.
doi:10.1371/journal.pone.0007263.t003

Humans vs. Algorithms - TOL
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moves, n = 20) and difficult (5 to 8 moves, n = 20). The easy subset

has a level of difficulty (or a number of moves) comparable to [1]

and Experiment 1. The difficult subset contains the tasks of higher

difficulty (or number of moves). The subsets are not disjoint (5

moves) so that both contain 20 tasks.

Within each set or subset of tasks, the significance of the

differences between the correlation coefficients of the indexes was

assessed by means of T-tests, using equation (1) [17].

t~ r1T{r2Tð Þ:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n{3ð Þ: 1zr12ð Þ=2 1{r12

2{r1T
2{r2T

2z2r12:r1T :r2Tð Þ
q

for eachpair of indexes I1, I2, where

riT, is the correlation coefficient between T and index i

rij is the correlation coefficient between indexes i and j

n is thesize of the sample

ð1Þ

In order to determine whether inter-individual variability affect

the ranking of the indexes, we also computed the correlation

coefficients (Pearson r) between T (non-averaged, i.e., variable

across participants) and the indexes U(N), B(N) and I(task) on the

set of valid trials (Participants6Tasks).

Finally, for the young participants, in order to determine to

what extent the variation of movement time may affect the total

execution time (and the correlations), we compared the execution

time of pre- an post-session visuo-motor tasks (20 self-determined

moves) by means of a T-test.

Results

1. Elderly participants - performance curve
The execution time T as a function of the task is presented in

Figure 3 with the algorithmic indexes. Two preliminary observa-

tions are of interest. 1) There were marked differences of average

execution time between tasks with the same number of moves. The

differences were so important that a task of 3 moves took on

average longer than some tasks of 4 moves and the same occurred

with some tasks of 4 and 5 moves. 2) There were a visual

resemblance between the curves or T and I(task): both presented

peaks (long execution times) for the same tasks of 4 and 5 moves.

However, the foregoing observations are qualitative and cannot be

generalized. In fact, given the high variability of execution times,

we verified that some visually marked differences were not

statistically significant.

The correlation coefficients (Pearson r) between the execution

time and the algorithmic indexes are presented in Table 4. On the

set of tasks (n = 15), I(task) presented the highest correlation

coefficient (p = 0.92), followed by U(N) (0.86) and B(N) (0.81). All

correlations were significant at p = 0.01. All the differences

between correlation coefficients (as computed with Equation 1)

were significant at p = 0.05. On the set of valid trials (n = 525) the

correlation coefficients were lower because of the inter-individual

variability. However all correlations were significant at p = 0.01.

I(task) again presented the highest coefficient (p = 0.47) but the

difference with B(N) (p = 0.46) was not significant. U(N) presented

the lowest coefficient (p = 0.44).

In order to ensure that there was no better and simpler

predictor of performance from the number of moves, we

performed curve fitting for logarithmic, linear (like U(N)),

polynomial, power law and exponential (like B(N) and I(task))

models. This confirmed that the best fit was for the exponential

model (Pearson R of best fit: exponential: .94, power law: .90, 2nd

order polynomial: .86, linear: .81, logarithmic: .73). Note that all

the models have the same number of free parameters (2) except the

polynomial (3). The exponential would therefore remain the best

model for measures of quality of fit like the AIC or the Deviance

2. Young participants - performance curve
The execution time T as a function of the task is presented in

Figure 4. A visual examination provides the following preliminary

observations. 1) Like for elderly participants, for easy tasks (2 to 5

moves) the execution time increased but 2) it presented no clear

trend for the difficult tasks (5 to 8 moves). 3) The execution times

were markedly shorter for young than elderly participants and the

steepness of the curve for easy tasks was markedly lower. 4) Like

for elderly participants, there were marked differences of execution

time among tasks with the same number of moves. 5) There was a

visual resemblance between the curves I(task) and T: both

Figure 3. Elderly participants, execution time as a function of
the task. Horizontal: tasks in the order of presentation. The scale
indicates the number of moves. Vertical: latency (s). The indexes I(task),
U(N) and B(N) are presented above (normalized amplitude, for clarity)
doi:10.1371/journal.pone.0007263.g003

Table 4. Elderly participants - correlation coefficients for the set of tasks and the set of valid trials.

I(task) U(N) B(N) Difference I-U Difference I-B Difference U-B

tasks n = 15 r = 0.92 ** r = 0.86 ** r = 0.81 ** t = 4.64 *** t = 1.84 * t.100***

valid trials n = 525 r = 0.47 ** r = 0.44 ** r = 0.46 ** t = 5.13 *** t = 0.52 n.s. t.100***

Leftmost columns: Pearson r between the execution time T and the algorithmic indexes. All correlations are significant at p = 0.01. Bold: best match. Rightmost columns:
significance of the differences of correlation coefficients of pairs of indexes. t-values computed with Equation 1. Confidence levels: *: p = 0.05; **: p = 0.01; ***: p = 0.001.
doi:10.1371/journal.pone.0007263.t004
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presented peaks (long execution times) for the same tasks of 5

moves. The differences of slopes and execution times are

illustrated on Figure 5. However, the foregoing observations are

qualitative and require a quantitative validation before any

generalization (see below).

The correlation coefficients (Pearson r) between the execution

time and the algorithmic indexes are presented in Table 5

separately for easy tasks (2 to 5 moves) (N = 20) and difficult tasks

(5 to 8 moves). For easy tasks, I(task) presented the highest

correlation coefficient (p = 0.92), followed by U(N) (0.90) and B(N)

(0.80). All correlations were significant at p = 0.01. The differences

between correlation coefficients (as computed with Equation 1)

were not significant between I(task) and U(N), but significant at

p = 0.001 between I(task) and B(N). On the set of valid trials

(n = 596) the correlation coefficients were lower because of the

inter-individual variability. However all correlations were signif-

Figure 4. Young participants, execution time as a function of the task. Horizontal: tasks in the order of presentation. The scale indicates the
number of moves. Vertical: latency (s). The indexes I(task), U(N) and B(N) are presented above. For clarity, the vertical scale is adjusted for tasks of 2 to
5 moves. Snapshot (upper right): indexes on the entire set of tasks.
doi:10.1371/journal.pone.0007263.g004

Figure 5. Slopes of the performance curves. A: elderly, B: young. Each dot represents a task. Horizontal: number of moves. Vertical: execution
time(S). The trend lines and the equations are presented on the chart. For young participants, trend lines are determined separately for easy tasks (2–
5 moves) and difficult tasks (5–8 moves).
doi:10.1371/journal.pone.0007263.g005
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icant at p = 0.01. I(task) again presented the highest coefficient

(p = 0.56) but the difference with U(N) (p = 0.54) was not

significant. The difference was significant with B(N) (p = 0.48) at

p = 0.001.

As a validation, we performed curve fitting for logarithmic,

linear, polynomial, power law and exponential models. This

confirmed that the best fit was for the exponential model (Pearson

R of best fit: exponential: .92, power law and 2nd order

polynomial: .89, linear: .82, logarithmic: .76)

The results changed completely for the difficult tasks. None of

the correlation was significant, whether on the set of tasks (n = 20)

or the set of valid trials (n = 597). Note that this is a mere

consequence of the flatness of the performance curve as depicted

by Figure 5. It was thus pointless to compute the significance of the

difference between correlation coefficients.

3. Young participants - preparation and movement time
In this section, we present minimal results on the preparation

and movement times of young participants. The only objective is

to provide cues to interpret the foregoing results because it has

already been mentioned that there is on-line planning during the

movement phase. Figure 6 depicts preparation and movement

time as a function of the number of moves and the corresponding

trend lines computed separately for easy tasks (2 to 5 moves) and

difficult tasks (5 to 8 moves). For easy tasks, preparation and

movement time increase with the number of moves. For difficult

tasks, the preparation time increases but the movement time

decreases slightly.

A t-test on the execution time of the pre- and post test visuo-

motor tasks (execute 20 self-determined ball displacements as fast

as possible) on the set of participants (n = 30) showed a significant

decrease (pre: m= 24.8 s s= 7.1; post: m= 19.8 s s= 3.8; t = 5.7,

significant at p = 0.01 bilateral). The amplitude of the decrease is

about 5 s, i.e., 25%. In order to avoid misinterpretations of

Figure 6, this decrease has to be contrasted with the 400% increase

of the required ball movements (from 2 to 8) that tend to increase

the total execution time.

Discussion

1. Naive human strategies are as efficient as optimal
exploration algorithms

For simple tasks (5 moves or less), humans and exploration

algorithms with bounded memory had similar performances

curves, i.e., the execution time increased exponentially with the

number of moves. This result initially obtained with healthy

elderly persons was conclusively replicated with young partici-

pants, on tasks of 5 moves and less.

The algorithms used as reference are optimally efficient under

the same constraints than naive human participants: no a priori

information, and bounded memory, similar to human working

memory. These algorithms explore the configuration broad first,

i.e., in order of increasing distance. However, this does not mean

that humans use the same order. Any systematic exploration in

which a node is examined a fixed number of times has a similar

performance curve. In summary, the results support the view that

naive humans use systematic exploration to solve the TOL.

We can reasonably discard that these results are artifacts. For

easy tasks, the exponential indexes I(task) and B(N) were

significantly more correlated to human execution time than the

linear index U(N). Even when correlation coefficients were

computed on the set of trials (accounting for the inter-individual

variability), the index I(task) presented the highest correlation

coefficient. This was verified for young and elderly, and on

different sets of tasks.

2. Similar difficulty for naive humans and exploration
algorithms

Due to the combinatorial properties of the search space of the

TOL, the execution time may vary markedly across tasks with the

same number of moves. This is true for humans, as depicted by

performance curves (Figures 3 and 4) and for exploration

algorithms as shown by the numerical values of the index I(task)

that characterizes the average execution time of exploration

algorithms on each task [6].

In addition, the results support the view that naive human

strategies and exploration algorithms are similarly affected by the

combinatorial properties of the search space. In both experiments,

the specific index I(task) (r = 0.92) had a significantly higher

correlation coefficient than the general indexes B(N) and U(N).

Note that I(N), the task-independent version of I(task) is similar to

B(N), and its correlation coefficients would have been similar, i.e.,

significantly lower than those of I(task). This shows conclusively

that there is a significant benefit in using a task-dependent

algorithmic index.

The results also show conclusively that the number of moves N

is a poor predictor of human performance, at least in comparison

with I(task). Note that the index U(N) (that corresponds to

algorithms with unbounded memory) is almost a linear function of

the number of moves. Thus N would have obtained correlation

coefficients similar to those of U(N) (about 0.80 for both groups),

significantly lower than those of I(task).

Table 5. Young participants - correlation coefficients for the set of tasks and the set of valid trials.

I(task) U(N) B(N) Difference I-U Difference I-B difference U-B

2–5 moves

tasks n = 20 r = 0.92 ** r = 0.90 ** r = 0.80 ** t = 1.24 n.s. t = 2.74 ** t.100 ***

valid trials n = 596 r = 0.56 ** r = 0.54 ** r = 0.48 ** t = 1.60 n.s. t = 4.39 *** t.100 ***

5–8 moves

tasks n = 20 r = 0.14 n.s. r = 0.10 n.s. r = 0.24 n.s.

valid trials n = 597 r = 0.04 n.s. r = 0.03 n.s. r = 0.08 n.s.

Results are presented separately for tasks of 2 to 5 moves and 5 to 8 moves. Leftmost columns: Pearson r between the execution time T and the algorithmic indexes. All
correlations are significant at p = 0.01. Bold: best match. Rightmost columns: significance of the differences of correlation coefficients of pairs of indexes. t-values
computed with Equation 1. Confidence levels: *: p = 0.05; **: p = 0.01; ***: p = 0.001.
doi:10.1371/journal.pone.0007263.t005
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This suggests that practitioners and researchers working with

the TOL could beneficially use I(task) instead of N in order to

grade the difficulty of the tasks. This index can be found at [6].

I(task) represents the combinatorial difficulty, i.e., the difficulty due to

the configuration of the search space, which is constant whatever

the features of the participants, the protocol and the environment.

However, it is worth underlining that I(task), like the number of

moves is only a coarse predictor of difficulty. It cannot account for

the variety of factors that may affect human performance.

Some of these factors can be obtained from the search space,

like the presence of positive or negative triggers (i.e., initial moves

that place a ball immediately in its final position; triggers tend to

be intuitive moves for naive participants, but only positive triggers

lead to some solution) [9] or the presence of conflictive moves or

sub-goals [4,5]. Other factors are related to the protocol, like the

physical model, i.e., the nature of objects and actions used to

present the task [18], the instructions [16,19], the way of

presentation, computer screen vs. real objects [20] or the presence

of prior information [19]. Finally, some factors of performance are

external to the task and the protocol, e.g., mood [21].

3. Non-naive human strategies more efficient than
exploration algorithms

The surprising result occurred during the second half of the

session of young participants: their execution time did not increase

although they had to solve tasks of increasing difficulty (as graded

by the number of moves). This means that humans became

markedly more efficient than the exploration algorithms that best

described their naive performance. It is unlikely that this result is

an artifact. All the correlations between human execution time

and algorithmic indexes that were significant during the first half

of the test became non-significant on tasks of 5 moves and more, as

an effect of the flatness of the performance curve (Figure 5).

The change of efficiency is in line with the general literature on

automaticity [22,23,24] and skills acquisition [25,26]. It is

admitted that general intelligence (and/or controlled execution

and/or executive functions) is employed to execute a novel task.

Conscious control and attention are required, and the execution is

slow, sequential and effortful. With practice, the execution requires

less attention, less conscious awareness, and becomes more

efficient. However, the gain in efficiency may come from a shift

towards ‘expert’ strategies (in line with the Principle of Rationality,

[27]) and/or a faster execution of the basic operations while

strategies remain unchanged.

In the present case, it is unlikely that the strategies remained

identical while basic operations became more efficient (e.g., visual

check and mental representation of configurations, mental

rehearsal of moves, physical movements). If this was the case,

the execution time would have decreased during the sequences of

5 tasks with the same number of moves, and this did not occur

(Figure 4). Also, the performance at the pre- and post-test visuo-

motor control task only increased about 25%, but this is unlikely to

compensate for the increase of the number of ball movements, i.e.,

400% on the whole test (2 to 8 moves) and 60% on the second half

(from 5 to 8 moves). Although the number of required movements

only determines indirectly the visuo-motor demands, we may

expect that such demands increased more than 25%.

The change in efficiency is more likely due to a change of

strategies. This explanation is in line with evidence obtained from

changes in brain activation related to cognitive skill acquisition

[28]. It is also in line with evidence obtained by the patterns of

gaze [29] that suggests that the difference between good and bad

performers corresponds to a difference in strategy (although it may

also come from a more thorough planning, [30]).

Indirect evidence from the algorithmic indexes provides

additional insights about the strategies employed in the second half

Figure 6. Preparation and movement times of young participants. Each dot represents a task. Horizontal: number of moves. Vertical: latency
(averaged across participants). The trend lines and the equations are presented on the chart. The trend lines are determined separately for easy tasks
(2–5 moves) and difficult tasks (5–8 moves).
doi:10.1371/journal.pone.0007263.g006
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of the test. The algorithms used as reference are optimal given the

conditions of no a priori information and bounded memory. The

only possibility to improve efficiency is thus to release these

constraints, and in the case of humans, the most likely explanation is

the presence of a priori information. Non-naive participants may

collect information (in a broad sense) during the test and employ it

to improve their efficiency. If this is the case, the new theoretical

limit is settled by algorithms with total a priori information and no

memory limitations (e.g., using a look-up table that contains the

solutions). In the best case, trained humans could solve the TOL in

(almost) constant time whatever the task.

4. What are the non-naive strategies?
The type of information acquired during the test and the

differences naive and non-naive strategies remain open issues. The

evidence from [29,30] is about good vs. bad performers. In a case

study on the tower of Hanoi (TOH), information on the strategies

was obtained from observation and verbalization [31]. However,

the search spaces of the TOL and the TOH are markedly

different. In addition, the TOH can be solved by applying

systematically the same sequence of operations [32]. This recursive

algorithm is often used as example in Computer Science, e.g.,

[14]. Such a systematic method does not exist for the TOL.

From the verbalizations of TOL (students that used the TOL in

academic projects at ETS, 2001 to 2003), we may hypothesize that

some of them recognize intermediate sub-goals and use stereo-

typed subsequences to attain them, like permuting two balls on the

same peg (‘‘inversion’’) or moving a stack of balls from a peg to

another (‘‘translation’’). This was also informally observed by the

authors in different experiments. After the ‘‘inversion method’’

(which requires four moves) was discovered by a participant,

posterior inversions were rapidly identified and executed. Chunking

(i.e., the decomposition of the task in intermediate sub-goals and

sub-sequences) reduces the number of intermediate configurations

to examine and increases efficiency.

An indirect evidence of chunking is obtained from the data on

preparation vs. movement time. The movement time results from

overlapped visuo-motor activity and on-line planning [15,16]. On-line

planning is a manifestation of chunking, i.e., intermediate sub-goals are

solved on-line, not during the preparation phase. The present data, i.e.,

small increase of preparation time with the number of moves and

movement time almost independent of the number of moves in the

second half of the test, are compatible with the presence of chunking:

the number of sub-goals increase moderately with the number of

moves (preparation time to determine sub-goals), and the sub-goals are

attained by means of stereotyped sequences (no need to plan them

completely, which may explain why the on-line planning time does not

increase exponentially). However, as said before, these evidences are

only indirect and require further research.

5. Against over-generalization and over-interpretation
The reader should be warned against over-generalization of the

foregoing results. For historical reasons, the TOL is a common

playground for humans and algorithms. To humans, the TOL offers

a familiar physical model (balls and pegs) and a reasonable

gradation of difficulty. To algorithms, the TOL offers a crown-

shaped search space that allows efficient algorithms to make the

difference. Although the present results may be of interest for

researchers and practitioners using the TOL, from a theoretical

viewpoint, they are only illustrative, i.e., they document a case

where human strategies are more efficient than optimal algorithms.

A second risk is over-interpretation, i.e., to extend the analogy

between humans and computers beyond the fact that they use

similar basic operations to solve the TOL, i.e., examine configu-

rations and moves, build a sequence of moves. Brain-Computer and

Mind-Computer analogies are pervasive, whether computers are

used as metaphors to explain the brain [33], as a tool to reproduce

brain functions [34] or simply as a source of explanation schemes,

e.g., ‘‘programs’’, ‘‘functional blocks’’, ‘‘memory registers’’, ‘‘paral-

lelism’’, ‘‘networks’’. Here, we only compared the performance of

humans and algorithms. In fact, the present results are a clear

warning against unfounded computer metaphors.

6 Concluding remarks
The present study was initiated after a discussion in which two

of the authors shared their experiences on the TOL. One of the

authors (CR, neuropsychologist) focused on the psychological

factors and the deficits that affect human performance. The other

(EF, computer scientist) focused on the search space and the

algorithmic complexity. It became clear that both perspectives

were useful but not self-sufficient. Administering a TOL test

without considering the combinatorial difficulty and the search

space may lead to misinterpretations. Conversely, reducing the

tasks to an exploration of the search space is at best simplistic.

During the gestation of this study, several articles established

relationships between computational and/or combinatorial as-

pects of the TOL and the difficulty of the tasks, e.g., [3,4,5]. The

contribution of the present study is a new method to compare

human strategies and algorithms on the basis of their efficiency.

Although this contribution may be modest, it provides at least a

simple way to compare humans and computers without using

simplistic analogies.
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