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Abstract

Background: The serine/threonine kinase PIM2 is highly expressed in human leukemia and lymphomas and has been
shown to positively regulate survival and proliferation of tumor cells. Its diverse ATP site makes PIM2 a promising target for
the development of anticancer agents. To date our knowledge of catalytic domain structures of the PIM kinase family is
limited to PIM1 which has been extensively studied and which shares about 50% sequence identity with PIM2.

Principal Findings: Here we determined the crystal structure of PIM2 in complex with an organoruthenium complex
(inhibition in sub-nanomolar level). Due to its extraordinary shape complementarity this stable organometallic compound is
a highly potent inhibitor of PIM kinases.

Significance: The structure of PIM2 revealed several differences to PIM1 which may be explored further to generate isoform
selective inhibitors. It has also demonstrated how an organometallic inhibitor can be adapted to the binding site of protein
kinases to generate highly potent inhibitors.

Enhanced version: This article can also be viewed as an enhanced version (http://plosone.org/enhanced/pone.0007112/) in
which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a
web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are
available in Text S1.
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Introduction

The PIM2 kinase belongs to a family of three serine/threonine

kinases (PIM1-3) first identified as preferential proviral insertion sites

in Moloney Murine Leukemia Virus (MoMuLV) induced T-cell

lymphomas [1,2]. In humans PIM2 has been implicated in the

transformation of both T and B lymphocytes and is highly expressed in

human leukemia and lymphomas [3]. Importantly, expression of the

pim2 transgene predisposes mice to T-cell lymphomas and is highly

cooperative with the Em-myc transgene in the development of pre-B cell

leukaemia [4]. Located on the X chromosome the pim2 gene is highly

induced by growth factors and cytokines through STAT5 activation.

Indeed its downstream activation by oncogenes including JAK2,

v-ABL and FLT3-ITD appears essential for their ability to drive

tumorigenesis [5–7]. For example, cells transformed by FLT3 or

BCR/ABL mutations that confer resistance to small-molecule

inhibitors remain sensitive to PIM2 knockout by RNAi [8].

PIM kinases confer a growth advantage through a variety of

mechanisms. They promote growth factor-independent prolifera-

tion by phosphorylation of cell cycle factors such as p21Cip1/Waf1 [9],

cdc25A [10] and eIF4e-BP1 [11]. They protect cells from apoptosis

by phosphorylation of the pro-apoptotic protein BAD [12]. The

PIM1 kinase has also been shown to phosphorylate an ABC

transporter [13] promoting drug efflux and to co-activate MYC-

target genes by phosphorylation of histone H3 serine 10 [14]. PIM2

also confers resistance to rapamycin indicating a parallel signaling

pathway from the PI3K/Akt/TOR cascade [11,15].

The PIM2 kinase has therefore emerged as a key drug target to

restore apoptosis in drug resistant human cancers [16]. To date

structural information for the PIM kinase family is restricted to

PIM1 for which the majority of inhibitor development has also

been directed [17–20]. Interestingly, PIM kinases have an altered

hinge region which does not allow the formation of two hydrogen

bonds to ATP typically present in protein kinase ATP complexes.
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The presence of a proline residue in the PIM hinge sequence

(ERPXPX) removes the typical +3 hydrogen bond donor of the

hinge backbone resulting in considerably high Km values for ATP.

Inhibitors often mimic these hydrogen bonds leading to consid-

erable cross-reactivity with other kinases that all share this active

site feature. Thus, the considerably different active site of PIM

kinases provides potential for the design of PIM-specific inhibitors.

Subsequently, a series of imidazo[1,2-b]pyridazine inhibitors was

identified with anti-leukemic activity that bound PIM1 in an ATP

competitive but non-ATP mimetic manner [21]. Surprisingly,

PIM2 was markedly less susceptible to inhibition than PIM1.

We have developed a series of metal complexes inspired by the

staurosporine scaffold [22] that enable us to expand the available

small molecule chemical space and identify new inhibitors of

PIM2. In the designed organoruthenium complexes the coordi-

nate bonds are proven to be kinetically inert and are therefore

likely to be stable in vivo thus avoiding metal-related toxicity.

Here, we describe the crystal structure of human PIM2 bound to

one of these inhibitors, the (R)-enantiomer of compound 1 (Fig. 1).

In combination with our inhibition data, the structure and

specificity profiles highlight the view of the metal centre as a

‘‘hypervalent carbon’’ and further extend structural opportunities

for inhibitor design.

Results

Overview of the PIM2 structure
The PIM2 protein crystallized in spacegroup H3 with two

protein molecules per asymmetric unit and was refined to 2.8 Å

resolution (see Table 1 for data collection and refinement

statistics). Overall, PIM2 shows the typical bilobal kinase

architecture with a constitutively active closed conformation.

The main chain of both molecules is identical with the exception

of two flexible regions in the N-terminal lobe. At the N-terminus

residues Gly22 to Glu31 which are disordered in molecule A form

a short helix in molecule B while the loop preceding the aC helix is

disordered in molecule B (Asn66 to Val78), but partially ordered in

molecule A. In addition, the tip of the adjacent b4-b5-loop is not

defined in either molecule (Fig. 2).

Structural differences between PIM1 and PIM2
Human PIM2 shares 55% sequence identity with PIM1.

Overall the PIM2 structure is similar to the closely related PIM1

structure (PDB 2BZH, [23]) with the main chain atoms

superimposing with an r.m.s.d. of 0.9 Å. The PIM1 hinge-region

sequence ERPEPV is conservatively replaced by ERPLPA and

both kinases lack the typical +3 hydrogen bond donor. The

activation loops also show similar active conformations with a

conserved aspartate (PIM2 Asp196) mimicking the phosphory-

lated Thr288 in active Aurora-A (Fig. 3). In PIM2 both the

Asp196 and Asp198 side chains form salt bridge interactions with

Arg162 from the catalytic HRD motif, although this side chain

was disordered in molecule A. The activation segment is also

stabilized by hydrogen bonds formed between Tyr194 and the

Figure 1. Staurosporine as an inspiration for the design of
organoruthenium complexes 1–15. Shown is the (R)-isomer.
doi:10.1371/journal.pone.0007112.g001

Table 1. Crystallographic data and refinement statistics.

Data collection pdb-code: 2IWI

Space group H3

Cell dimensions [Å] a = 154.770, b = 154.770, c = 78.600

Resolution [Å] 2.8

Unique reflections 16017

Completeness** 99.69 (95.2)

Rmerge 4.9%

I/s** 21.0 (2.1)

Refinement

Rwork (Rfree*) (%) 24.4/28.9

Rmsd bond length [Å] 0.012

Rmsd bond angle [o] 1.265

Average B-factor (Å2) 35.2

Protein atoms 3687

Other 95

Ramachandran

allowed [%] 91.1

generously allowed [%] 8.9

dissallowed [%] 0

*using randomly selected 5% of data.
**values in last shell shown in brackets.
doi:10.1371/journal.pone.0007112.t001
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main chain of Leu188 (as well as His190 in molecule A) and

between Asp192 and the side chain of His190. However, the salt

bridge between the conserved aC Glu83 and the active site lysine

(Lys61) is not observed due to disorder of the lysine side chain.

Substrate binding residues identified from the structure of PIM1

in complex with a consensus peptide (RRRHPSG) [24] are also

strictly conserved in PIM2 consistent with their overlapping

substrate specificity.

The most significant difference between PIM1 and PIM2 is the

absence of the C-terminal aJ helix in PIM2 (Fig. 2A). The last 23

residues of PIM2 share little sequence identity with PIM1 and are

disordered. This PIM2 region contains 6 proline residues and is

not predicted to form helical structure. In PIM1 aJ packs below

the b8-b9-loop and the absence of this interaction might increase

flexibility in PIM2 within the N-terminal kinase lobe and

contribute to the disordered regions of the PIM2 structure. One

of these regions, the loop preceding helix aC, forms an unusual b-

hairpin in PIM1 (Fig. 2B). Some dozen residues are present in this

insertion in all three PIM kinases and the partial structure present

in PIM2 molecule A suggests a similar architecture. Additionally,

the loop following aC in both PIM2 and PIM3 contains a two-

residue insertion relative to PIM1 which changes the loop

conformation. In PIM2 this loop is potentially destabilized by

the sequence G-A-G-G-G which may further increase flexibility in

the N-terminal lobe.

Inhibitor synthesis and design
The organoruthenium complexes mimic the highly potent

inhibitor staurosporine with a distinctive globular structure more

similar to the shape of the kinase ATP pocket than many planar

kinase inhibitors. The indolocarbazole alkaloid scaffold is replaced

with a simple metal complex that retains the main features of the

indolocarbazole aglycon in a metal-chelating pyridocarbazole

ligand while the carbohydrate is replaced by a ruthenium

fragment. Utilizing new chemical space, this scaffold has shown

remarkable specificity for the PIM1 kinases [23] and glycogen

synthase kinase 3 (GSK-3) [25].

Binding mode of compound 1
The structure of PIM2 in complex with the (R)-enantiomer of

compound 1 [23,26] shows the perfect fit of the inhibitor to the

ATP pocket (Fig. 4). As designed the metal centre does not form

any direct interactions with the kinase domain but plays a

structural role organizing the organic ligands in the three-

dimensional space. Overall, the binding mode is conserved

compared to the structure of PIM1 in complex with the same

inhibitor (2BZH) [23]. The hinge region proline (Pro119) restricts

PIM2 to the formation of only one hydrogen bond with ATP and

ATP mimetic inhibitors. As expected, the maleimide of compound

1 establishes one hydrogen bond between the imide NH and the

backbone carbonyl oxygen of Glu117. An additional water-

mediated hydrogen bond in the equivalent PIM1-inhibitor

complex between the maleimide carbonyl and the backbone

amide of Glu186 from the DFG motif (PIM2 Glu182) is not

observed in PIM2, but could reflect the lower resolution of the

structure.

A key feature of both the PIM1 and PIM2 complexes is the close

contact of the CO ligand with the glycine rich loop (the distance in

PIM2 between the Gly39 carbon alpha and the CO group is just

3.1 Å) in which Gly39 together with Val46 and Phe43 in PIM2

Figure 2. Overall structure of PIM2 and comparison with PIM1. Overlay of the two proteins (shown in ribbon representation) reveals the
strong conservation of the kinase fold. A. PIM1 (2bzh, coloured orange) contains the C-terminal aJ helix that is absent in PIM2 (coloured green for b-
strand and red for a-helix). B. The view is rotated by 90u to highlight the unusual b-hairpin in the kinase N-lobe which is partially disordered in the
PIM2 structure.
doi:10.1371/journal.pone.0007112.g002
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form a small hydrophobic pocket for the CO ligand. The tight

binding of the inhibitor is further explained by the close

hydrophobic packing on the N-terminal lobe face from Leu38,

Phe43, Val46, Ala59 and Leu116 and on the opposite face from

Ile100, Ala122, Leu170, Ile181. All of these residues are conserved

in PIM1 with the exception of Ala122 which is replaced by Val126

in PIM1. This results in a small increase in the inhibitor packing

distance which is 3.5 Å from the PIM1 valine side chain and 4.0 Å

from the PIM2 alanine. The adjacent hinge substitution from

PIM1 Glu124 to PIM2 Leu120 could also introduce a subtle

change in the dynamics of the PIM hinge region, but does not

change the hinge structure. This region contains a two-residue

insertion relative to most kinases and consequently makes no

interaction with the inhibitor.

Structure-activity relationship (SAR) of Ru-based
inhibitors

The scaffold of compound 1 was further explored with an

additional 14 derivatives [27] (Fig. 1) and SAR was performed

against PIM1 and PIM2 using a radiolabeled in vitro phosphor-

ylation assay (Fig. 5). In the presence of either staurosporine or the

crystallized inhibitor 1 PIM2 retained ,70% activity at an

inhibitor concentration of 10 nM. The SAR suggests that the

addition of potential hydrogen bonding groups at the R1 and R2

positions dramatically increases potency against both kinases.

Similar substitution of the R3 position was less effective and

halogen substitution was even more disruptive. The majority of

compounds were slightly more potent against PIM1 than PIM2.

However, the most potent inhibitor for PIM2, compound 12,

Figure 3. Activation loop structure in PIM2. Residues stabilizing a constitutively active loop conformation via hydrogen bonding are shown in
stick representation.
doi:10.1371/journal.pone.0007112.g003
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which gave almost complete inhibition at a concentration of

10 nM, was marginally less effective against PIM1.

Discussion

The proto-oncogene PIM2 is a key mediator of hematopoietic

cell growth and apoptotic resistance and complements transfor-

mation by c-MYC and mutant tyrosine kinases including BCR/

ABL and FLT3-ITD. Importantly, PIM2 inactivation can restore

apoptosis to otherwise drug-resistant cancers and is therefore an

attractive therapy to supplement current drug regimes such as

GleevecTM. The structure of PIM2 reveals a constitutively active

conformation consistent with the view that PIM2 activity is

regulated principally at the transcriptional level [11]. Consequent-

ly, the oncogenic potential of PIM2 is greatly increased on

overexpression.

Overall, the structure is highly similar to PIM1, particularly in

the ATP pocket which is nearly completely conserved in

comparison to the overall sequence identity of 55%. The generally

reduced susceptibility of PIM2 to previously characterized PIM1

inhibitors such as LY3319531 [28] might instead result from a

change in protein dynamics as suggested here by several

disordered loops in the N-terminal kinase lobe. The main

structural distinction between the two kinases is the absence of

the aJ helix in PIM2 which removes a significant stabilizing

interaction close to the interface between the N and C-terminal

lobes as well as differences in the kinase hinge and P loop residues.

Based on the initial staurosporine scaffold the organoruthenium

complexes have provided marked specificity for the GSK3 and

PIM kinases by the introduction of the metal centre coordinated

by a cyclopentadienyl ring and a CO ligand [23,25,26]. The

structures of PIM1 and now PIM2 bound to 1 show a remarkable

fit between the inhibitor and the ATP pocket that explains the

inhibitor’s potency. Our SAR analysis highlights the promise for

further scaffold optimization with both kinases having particular

preference for a hydroxyl substituent at the R1 position

(compound 2) [27,29]. The structure of PIM1 in complex with

compound 2 showed similar positions for the maleimide group, the

cyclopentadienyl ring and the CO ligand, but a 180u flip in the

pyridocarbazole moiety that enables two water-mediated hydro-

gen bonds to form through the R1 hydroxyl with Glu89 [23].

This flexibility indicates further opportunity for inhibitor

derivatisation and indeed PIM2 was inhibited most strongly by

compound 12 containing an additional carboxyl group at the R2

Figure 4. Inhibitor interactions in the ATP pocket. The surface of the ATP pocket is shown in transparent green. The electron density (2FoFc,
contoured at 1s level) for inhibitor 1 is shown in orange.
doi:10.1371/journal.pone.0007112.g004
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position. Interestingly, the inhibitor LY3319531 also bound PIM1

in two conformations (PDB 2J2I [28]) and the imperfect fit may

partially explain its ineffectiveness against PIM2. The primary

LY3319531 conformation makes close contact with PIM1 Val126

(3.3 Å) and the subtle change to Ala122 in PIM2 may be sufficient

to destabilize this binding mode. The PIM kinases contain a two-

residue insertion in the hinge preceding this position and the

smaller PIM2 side chain may allow greater exploitation of this

available space.

Mouse knockouts lacking all three PIM genes remain viable and

fertile but show reduced body size with no hematopoietic response

to growth factors [30]. The PIM2 structure and inhibitor data

presented here provide further direction to develop well-tolerated

drug molecules that stop growth factor independence, limit drug

resistance and induce tumour apoptosis.

Materials and Methods

Protein expression and purification
Full length human PIM2 (34 kD isoform, gi 42821112) was

subcloned by ligation-independent cloning into a pET-derived

expression vector, pLIC, and expression performed in BL21(DE3)

with 0.15 mM isopropyl 1-thio-b-D-galactopyranoside induction

for 4 h at 18uC. Cells were lysed using a high pressure

homogenizer and cleared by centrifugation, and the lysate was

purified by nickel-sepharose chromatography. The eluted PIM2

protein was treated with l-phosphatase together with tobacco etch

virus (TEV) protease overnight to remove phosphorylation and the

hexahistidine tag, respectively. The protein was further purified on

a Mono Q column and by size exclusion chromatography. The

eluted protein was homogeneous and non-phosphorylated as

shown by ESI-MS. PIM2 protein was stored at 4uC in elution

buffer (50 mM HEPES, pH 7.5, 250 mM NaCl) with 10 mM

DTT or frozen in liquid nitrogen and stored at 280uC. Typical

crystals had dimensions of 156565 mm3.

Crystallization and Structure Determination
PIM2 was concentrated to 11 mg/ml in the presence of

compound 1 which was added to an initial concentration of

0.6 mM (from a 10 mM stock solution in DMSO). Crystals

were grown at 4uC in 1.5 ml sitting drops mixing 0.3 ml PIM2

with 1.2 ml mother liquor (90 mM HEPES pH 7.5, 1.44 M Na/

KPO4) and cryo-protected in mother liquor containing 30%

glycerol.

PIM2 diffraction data were collected on a flash-cooled crystal

(100 K) at the Swiss Light Source beamline SLS X10SA. Images

were indexed and integrated using MOSFLM, and scaled using

SCALA implemented in the CCP4 suite of programs. The

structure was solved by molecular replacement using the program

Phaser with the coordinates of PIM1 in complex with BIM1

(Protein Data Bank (PDB) code 1XWS). REFMAC5 was used for

refinement with iterative rounds of rigid-body refinement and

restrained refinement with TLS, against maximum likelihood

targets, interspersed with manual rebuilding of the model using

Xfit/XtalView.

Coordinates for the PIM2-inhibitor complex have been

deposited in the Protein Data Bank (PDB code 2IWI).

Measurement of Protein Kinase Inhibition
The synthesis of all compounds has been reported recently

[26,27]. PIM kinases (human) and substrate were purchased

from Upstate Biotechnology USA. 10 nM concentrations of

staurosporine or compounds 1–15 were incubated at room

temperature in 20 mM MOPS, 30 mM MgCl2, 0.8 mg/mL BSA,

5% DMSO (resulting from the inhibitor stock solution), pH 7.0,

in the presence of substrate (50 mM S6 kinase/Rsk2 substrate

peptide 2) and kinase (3.3 nM PIM1, 1.5 nM PIM2). After 15

minutes, the reaction was initiated by adding ATP to a final

concentration of 100 mM, including approximately 0.2 mCi/mL

[c-32P]ATP. Reactions were performed in a total volume of

25 mL. After 45 minutes, the reaction was terminated by spotting

17.5 mL on a circular P81 phosphocellulose paper (2.1 cm

diameter, Whatman), followed by washing four times (5 minutes

each wash) with 0.75% phosphoric acid and once with acetone.

The dried P81 papers were transferred to a scintillation vial, and

5 mL of scintillation cocktail was added, and the counts per

minute (CPM) were determined with a Beckmann 6000

scintillation counter. Each compound was measured in dupli-

cate. Percent activity was calculated by dividing the averaged

CPM for each compound by the control sample, corrected by

the background.

Note
For further details about this kinase strutcure, please refer to

SGC Material and Methods entry for PIM2.
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