
The Feasibility of Using High Resolution Genome
Sequencing of Influenza A Viruses to Detect Mixed
Infections and Quasispecies
Muthannan A. Ramakrishnan1, Zheng Jin Tu4, Sushmita Singh3, Ashok K. Chockalingam1, Marie R.

Gramer1, Ping Wang1, Sagar M. Goyal1, My Yang1, David A. Halvorson2, Srinand Sreevatsan1,2*

1 Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America, 2 Department of Veterinary and Biomedical

Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America, 3 Biomedical Genomics Center, University of Minnesota, Saint Paul, Minnesota, United

States of America, 4 Minnesota Supercomputer Institute, University of Minnesota, Saint Paul, Minnesota, United States of America

Abstract

Background: The rapidly expanding availability of de novo sequencing technologies can greatly facilitate efforts to monitor
the relatively high mutation rates of influenza A viruses and the detection of quasispecies. Both the mutation rates and the
lineages of influenza A viruses are likely to play an important role in the natural history of these viruses and the emergence
of phenotypically and antigenically distinct strains.

Methodology and Principal Findings: We evaluated quasispecies and mixed infections by de novo sequencing the whole
genomes of 10 virus isolates, including eight avian influenza viruses grown in embryonated chicken eggs (six waterfowl
isolates - five H3N2 and one H4N6; an H7N3 turkey isolate; and a bald eagle isolate with H1N1/H2N1 mixed infection), and
two tissue cultured H3N2 swine influenza viruses. Two waterfowl cloacal swabs were included in the analysis. Full-length
sequences of all segments were obtained with 20 to 787-X coverage for the ten viruses and one cloacal swab. The second
cloacal swab yielded 15 influenza reads of ,230 bases, sufficient for bioinformatic inference of mixed infections or
quasispecies. Genomic subpopulations or quasispecies of viruses were identified in four egg grown avian influenza isolates
and one cell cultured swine virus. A bald eagle isolate and the second cloacal swab showed evidence of mixed infections
with two (H1 and H2) and three (H1, H3, and H4) HA subtypes, respectively. Multiple sequence differences were identified
between cloacal swab and the virus recovered using embryonated chicken eggs.

Conclusions: We describe a new approach to comprehensively identify mixed infections and quasispecies in low passage
influenza A isolates and cloacal swabs and add to the understanding of the ecology of influenza A virus populations.
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Introduction

Influenza A virus is an enveloped RNA virus belonging to the

family Orthomyxoviridae with a genome spanning 13.5-kilobases and

consisting of eight single stranded RNA segments. The individual

RNA segments range in length from 890–2341 nucleotides and

encode 11 proteins [1]. There are 144 possible combinations of

two surface glycoproteins, hemagglutinnin and neuraminidase,

that determine the antigenic properties and subtype classification

of the virus.

Influenza A viruses are zoonotic and as a group of viruses, they

possess a wide host range including humans, at least 105 bird

species, pigs, horses, dogs, cats, ferrets, mink and marine

mammals. In the United States alone, more than 200,000

hospitalizations and 36,000 deaths annually are due to compli-

cations from seasonal influenza in humans. Globally, it is

estimated that influenza causes 300,000 to 500,000 human

deaths annually [2]. Multiple cases of human infections with

H1N1, H5N1, H7N7, and H9N2 avian influenza viruses (AIV)

have been reported since 1997, raising concerns over potential

zoonosis of AIV [3].

From April 2009 a pandemic caused by a novel H1N1 virus has

been ongoing. As of August 2009, there have been more than

182,000 laboratory confirmed cases of pandemic influenza H1N1,

1799 deaths, in 177 countries and territories have been reported

to WHO (http://www.who.int/csr/don/2009_08_21/en/index.

html). Therefore, enhanced surveillance of avian and swine

influenza A viruses is necessary to provide an understanding of

the ecology and evolution.

Influenza viruses have a high error rate during the transcrip-

tion of their genomes because of the low fidelity of RNA

polymerase [4]. The high error rate produce quasispecies, a
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phenomenon where many different viral genotypes co-circulate

in the host, with each virus subtype potentially associated with

varying levels of fitness for that host [5]. As defined by Domingo

et al, ‘‘viral quasispecies are closely related (but nonidentical)

mutants and recombinant viral genomes subjected to continuous

genetic variation, competition, and selection’’ [6]. This high

error rate in replication operates as a double-edged sword -

improving the ability of the virus to rapidly adapt to a new host

via genetic changes that aid in replication and transmission

efficiency while leading to the production of defective subtypes

that have reduced fitness for the current host. Some or most of

these quasispecies or mixed subtypes may be missed during viral

culture because a ‘‘host’’ (chicken embryo or cell culture)

adaptation pressure [7].

The frequency of infection with multiple subtypes of the virus

in wild birds or swine populations that may contribute

significantly to the emergence of new viruses with altered host

specificities is not known. Complete genome sequencing of

influenza A viruses by the current method (RT-PCR followed

by classical dye terminator chemistries) is time and resource

demanding. For example, in the recent large-scale influenza

sequencing project, 95 overlapping one-step RT-PCR were

performed per sample to obtain the complete viral genome

sequence [1]. Newly developed sequencing-by-synthesis tech-

nology has simplified the world of genomics by circumventing

the need for individual segment amplification, cloning, and

shotgun library preparation [8]. Pyrosequencing approach is

useful for the identification of previously undetected and/or

uncultured viruses [9] and has been applied in the detection of

antiviral resistance markers [10,11,12,13,14,15,16,17,18,19],

detection of human virulence signatures in H5N1 [20],

diagnosis [21] and sequencing of the full genome of high

pathogenic H5N1 [22]. We used this de novo approach to

sequence the entire genome of 10 virus isolates (eight avian

influenza viruses and two swine influenza viruses) and two

primary cloacal swabs. We tested the hypothesis that quasis-

pecies and mixed infection among avian and swine influenza

viruses can be identified by the new next-generation pyrose-

quencing.

Results

Pyrosequencing using Genome Sequencer FLX platform
Twelve samples including 10 virus isolates (eight avian

influenza viruses and two swine influenza viruses propagated in

embryonated chicken eggs and in MDCK cells with trypsin,

respectively) and two cloacal swabs, were processed for

pyrosequencing. Complete genomes (.99% Open Reading

Frame) were obtained for all eight segments of each virus isolate

and a cloacal swab (Table 1). For these 11 samples, the mean

influenza sequence reads per small PicoTiterPlate (PTP) region

was 7075, with an average read length of 232 bases. A complete

ORF region (100% genome length) was obtained for five avian

H3 isolates (Table 1). Both swine virus isolates yielded a clean

full-length genome. For the other five virus isolates and one

cloacal swab [cloacal swab of A/green-winged teal/Minnesota/

Sg-00131/2007(H3N2)], 2–41 nucleotides were missing in some

segments at the 39 end but rarely at the 59 end. Overall, ,13400

bases (.99% of the total genome size) were covered for eleven

samples with 20–787 X coverage depth. A representative

coverage depth map is shown in Figure 1. For the second cloacal

swab [cloacal swab of A/mallard/Minnesota/Sg-00133/

2007(H4N6)], 15 influenza reads were realized with an average

read length of 230 bases.

Comparison of sequences of cloacal swab and virus
recovered using embryonated chicken eggs system
reveals extensive variability

Complete genome sequences were obtained from the cloacal

swab of A/green-winged teal/Minnesota/Sg-00131/2007(H3N2)

and virus recovered using egg system. A comparison of sequences

from each segment revealed 80–91% nucleotide identities (PB2,

90%; PB1, 87%; PA, 90%; HA, 80%; NP, 83%; NA, 82%; M, 91%;

and NS, 86%) suggesting extensive variability or existence of

quasispecies in the cloacal swab. In the second cloacal swab-virus

isolate pair, complete sequences were obtained from the virus

isolate, whereas only 15 influenza sequence reads were obtained

from the cloacal swab. These 15 reads of ,230 bp included

sequences of PB2 (two reads), PB1 (four reads), PA (three reads), HA

(three reads; one read each for H1, H3, and H4), NP (one read), and

NS (two reads). Four sequences (one each for PB1, PA, H4, and NP)

had 100% identity with the virus recovered using embryonated

chicken eggs, A/mallard/Minnesota/Sg-00133/2007(H4N6).

Comparison of Sanger sequences with pyrosequencing
to resolve polymorphisms

Whole genome sequences using standard dye terminator

chemistry were also available for four H3N2 viruses. Comparison

of these sequences against the pyrosequencing data revealed eight

single nucleotide mismatches (Table 2). Six substitutions (5 in NP

and 1 in M genes) were observed in A/mallard/South Dakota/Sg-

00125/2007(H3N2) isolate. Among the five NP gene polymor-

phisms, four were synonymous and one (A149G) led to an amino

acid change (N50S). The G715A nucleotide substitution identified

in the M gene of this isolate led to T239A amino acid change. A

silent single nucleotide change was observed in the NP gene of A/

northern pintail/South Dakota/Sg-00126/2007(H3N2) and A/

mallard/South Dakota/Sg-00127/2007(H3N2) viruses. Both

Sanger and pyrosequencing results were identical in all segments

of A/mallard/South Dakota/Sg-00128/2007(H3N2) isolate.

Evidence of quasispecies in cloacal swab and virus
recovered using eggs and cell culture systems

A series of genomic subpopulations or quasispecies as identified

by single nucleotide polymorphisms (SNP) at specific nucleotide

positions was identified in five virus isolates (four egg grown avian

influenza viruses and one cell cultured swine influenza virus) and a

cloacal swab. All the above samples are H3N2 subtype and all

quasispecies populations observed in this study originated from

mutations in NP, PB1, PA, M, and NS genes (Table 3). One

example of the evidence of quasispecies in codon 715 of the M gene

of A/mallard/South Dakota/Sg-00125/2007(H3N2) is shown in

Figure 2A. Figure 2B shows codon 441 of the M gene of the same

isolate with computational complexity of a false deletion that needed

to be corrected as T/G quasispecies by manual curation. There was

good agreement between polymorphic loci identified in chromato-

grams generated using Sanger sequencing and pyrosequencing

methods. When single nucleotide polymorphisms at a particular

base were present, mixed peaks were observed in Sanger’s

chromatogram, whereas variant populations were identified in the

assembled pyrosequencing reads (Figure 2B).

Identification of mixed infections
A bald eagle isolate, A/bald eagle/Virginia/Sg-00154/

2008(H1N1/H2N1) that was originally typed by sequencing segments

of HA and NA as H2N1 showed evidence of mixed subtypes by whole

genome analysis. Analysis of the HA sequences from the 454 data

revealed that this isolate carried both H1 (Figure 3A) and H2

Influenza A Genomes
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(Figure 3B) subtypes, suggesting that this was a mixed infection. In

addition, NA sequences of this isolate revealed two different lineages of

N1 and .96% identities with each other (Figure 3C).

As described above, from 15 influenza reads (,230 bases each)

that were realized for cloacal swab of A/mallard/Minnesota/Sg-

00133/2007(H4N6), there was evidence of mixed infection with

H1, H3, and H4 subtypes.

Discussion

Complete genome sequencing of influenza A viruses is essential

to determine the genetic basis of pathogenicity, antiviral resistance,

and understanding the evolution of viruses in a variety of hosts and

environments. Previous studies on sequence-based detection of

Table 2. Comparison of the Sanger and GS FLX
pyrosequencing.

Virus Base substitution in the indicated genea

NP M

A/mallard/South Dakota/
Sg-00125/2007(H3N2)

a149g (N50S)
t441g (silent)
g642a (silent)
g1017a (silent)
a1321c (silent)

g715a (A239T)

A/northern pintail/South Dakota/
Sg-00126/2007(H3N2)

t441g (silent)

A/mallard/South Dakota/
Sg-00127/2007(H3N2)

t1191c (silent)

A/mallard/South Dakota/
Sg-00128/2007(H3N2)

aNo differences were identified in polymerase genes, HA, NA, or NS segments.
doi:10.1371/journal.pone.0007105.t002

Figure 1. Shown is a representation of sequence coverage
depth of segment 6 (NA gene) of A/mallard/South Dakota/Sg-
00128/2007(H3N2) based on GSMapper (Roche, Germany).
Sequence coverage varied between 2X to 1300X depending on the
region of segment 6. The average redundancy of 468.1X was achieved
for this segment.
doi:10.1371/journal.pone.0007105.g001

Table 3. Co-infection and quasispecies population in different viral samples.

Sample ID Quasispecies and positiona Remarks

PB1 PA NP M NS

A/mallard/South Dakota/Sg-00125/2007(H3N2) 1725-R 423-K 149-R
441-K
642-R
1017-R
1321-M

715-R 809-R

A/northern pintail/South Dakota/Sg-00126/
2007(H3N2)

1725-R 419-Y
423-K

149-R
441-K
642-R
1017-R
1321-M

715-R 809-R

A/mallard/South Dakota/Sg-00127/2007(H3N2) 1725-R 419-Y 149-R
441-K
642-R
1017-R
1191-Y

A/mallard/South Dakota/Sg-00128/2007(H3N2) 1725-R 1191-Y

cloacal swab of A/green-winged teal/Minnesota/
Sg-00131/2007(H3N2)

174-Y 1021-Y
1026-R
1029-M
1125-Y
1140-R

cloacal swab of A/mallard/Minnesota/Sg-00133/
2007(H4N6)

Co-infection with three HA subtypes - H1, H3
and H4

A/bald eagle/Virginia/Sg-00154/2008(mixed) Mixed isolate full length sequence of two
clade - H1N1 and H2N2 - were obtained

A/swine/North Carolina/R08-001877-D08-013371/
2008 (H3N2)

174-Y 201-R

aNucleotide numbering begins at each ORF; R = A/G Y = C/T M = A/C K = T/G.
doi:10.1371/journal.pone.0007105.t003
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Figure 2. Detection of quasispecies using pyrosequencing. (A) Sequence polymorphisms in the matrix (M) gene at codon 715 of isolate:
A/mallard/South Dakota/Sg-00125/2007(H3N2) is shown. The consensus sequence shows ACC (T239). However, alternate populations with GCC (A239)
are present in the same position. The sequence trace of this same region generated by Sanger sequencing is also shown. This polymorphism was not
called by the latter algorithm and had to be manually examined to identify the mixed peaks; (B) Polymorphisms in codon 441 of NP gene from the same
isolate is shown. The consensus sequence shows a false deletion at nucleotide position 441 that was resolved by manual editing of the sequence traces.
Two possible nucleotides (G and T) were identified in the same position. This polymorphism was confirmed by standard dye terminator sequencing and
manual examination of chromatograms show mixed peaks at position 441 (chromatograms in both orientation are presented).
doi:10.1371/journal.pone.0007105.g002
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Figure 3. Phylogenetic analysis of HA and NA sequences from A/bald eagle/Virginia/Sg-00154/2008(H1N1/H2N1) show HA lineages of H1
(Panel 3A) and H2 (Panel 3B), and at least two lineages of N1 segment (Panel 3C). Evolutionary associations were inferred in MEGA 4.0 using the
maximum parsimony algorithm with Kimura-2P correction and 1000 bootstrap replications (confidence of the branches are shown on branch bifurcations).
doi:10.1371/journal.pone.0007105.g003
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antiviral resistance and diagnostics routinely used amplification of

short portion of NA or HA genes followed by pyrosequencing.

Hoper et al. [22] developed the pyrosequencing protocol for

complete genome sequencing of H5N1 avian influenza using locus

specific PCR products. In other words, all H5N1 segments were

amplified with specific primers prior to sequencing. We reasoned

that segment specific amplifications would lose information

regarding mixed infections or quasispecies, if present in the

sample. We used a preanalytical enrichment of influenza A virus

genomes from several sample types including primary samples

(cloacal swabs), chicken embryo grown avian and cell cultured

swine influenza viruses. Enrichment was followed by de novo

sequencing to enable an unbiased realization of all possible

sequences in the sample. The protocol for cDNA library

generation we describe is independent of locus specific amplifica-

tion primers and can be used for sequencing any unknown type of

influenza A viruses. This approach is consistent with the

metagenomics approaches that have helped elucidate microbial

(and viral) population structures from complex matrices such as

marine water, soil, feces, respiratory secretions, serum and plasma

[9,23].

Application of GS De novo Assembler or GS Reference

Mapper software for our 454 sequence analysis failed to identify

full-length contigs. GS assembler yielded several short contigs and

GS Reference Mapper produced a few false insertion/deletions

(Figure 2B). We, therefore, developed an algorithm that combines

three software packages (GS De nova Assembler, GS Reference

Mapper and Sequencher) to efficiently assemble the genomes and

detect quasispecies. The length of genome covered was ,13400

bases (.99% of total genome size) with high confidence at 20 to

787-X coverage. This depth coverage was sufficient for the

identification of quasispecies and mixed infections.

Presence of mixed infection and quasispecies in influenza

viruses has also been demonstrated by others using RT-PCR of

a short segment of HA from cloacal samples [7], serial limiting

dilutions of virus isolates followed by RT-PCR [24], an RT-

PCR/electrospray ionization mass spectrometry (RT-PCR/ESI-

MS) [25], or by serological analysis [7]. In the present study, we

used pyrosequencing for the identification of mixed populations

of viruses as either a viral quasispecies or co-infections with

multiple strains. Finding H1, H3, and H4 in one cloacal sample

[cloacal swab of A/mallard/Minnesota/Sg-00133/2007(H4N6)]

indicates there was the possibility of a mixed infection in the bird

from which the cloacal swab was collected compared to a clean

single H4 subtype that was recovered in egg grown virus.

This is in agreement with the study of Wang et al. [7,26] who

reported up to five HA subtypes in a cloacal swab sample whereas

only one HA-NA combination was recovered in isolates using

embryonated eggs. If multiple strains of AIV are present in the

cloacal swab, one subtype commonly outgrows the others in the

aberrant host system (such as embryonated chicken eggs) while the

other strains remain undetected [7,24]. In our study, the H4

subtype may have out-competed the other two subtypes in culture.

Alternately, the H4 population might be the only live virus in the

sample.

A possible rationale for the relatively few influenza reads (15

reads) observed in one of the cloacal samples could be due to

insufficient RNA in the original sample or RNA losses during

processing for pyrosequencing. In the other cloacal swab of

A/green-winged teal/Minnesota/Sg-00131/2007(H3N2), com-

plete sequences were obtained and these sequences had 80–91%

nucleic acid identities with the virus recovered using embryonated

egg system. This result indicates that there was a mixed population

of viruses in this cloacal swab but the H3N2 subtype possibly

became the predominant subtype by out-competing other virus

subpopulations in the embryonated egg system. More studies with

larger numbers of matched-pair samples need to be performed to

completely resolve this phenomenon.

Complete genome sequences of A/bald eagle/Virginia/Sg-00154/

2008(H1N1/H2N1) showed two virus lineages (H1N1 and H2N1).

Using RT-PCR based HA and NA typing, this virus was identified as

H2N1. In general, unambiguous indexing of mixed subtype infections

would require sequential limiting dilution, PCR, cloning, and

sequencing of several clones. To our knowledge, this is the first report

of full genome sequencing of all eight segments from a mixed infection

representing two lineages of the virus.

In our analysis of 12 samples, quasispecies were identified from

five samples (four egg grown waterfowl isolates and one cell

cultured swine influenza virus). All these viruses were H3N2 and

identified quasispecies originated from mutations in NP, PB1, PA,

M, and NS genes but not in HA, NA or PB2 genes. The four

waterfowl isolates used in our study were recovered at the same

study site and on the same day. This result concurs with the study

of Dugan et al., [24] in which quasispecies were identified among

H4N6 isolates that were recovered at the same study site, from the

same species (mallard), and on the same day.

Inasmuch as the mutation rate for type A influenza viruses is

estimated at one nucleotide change per 10,000 nucleotide during

replication and most infections are caused by as many as 10 to

1000 virions which likely possess varying numbers of nucleotide

differences in their genomes, one can expect that each influenza A

virion is possibly a quasispecies. However, we identified relatively

few quasispecies - probably because the currently available

sequence analysis software do not allow robust quasispecies

analysis and extensive manual curation is necessary. We believe

that with the help of improved bioinformatic tools we would detect

more quasispecies populations in our sample sets.

The method described in the current study does not require

virus propagation, sequence information and circumvents the need

for cloning and library construction prior to sequencing. Thus the

currently described method is simple and less time consuming

compared to Sanger sequencing. Despite these obvious advantages

the cost of equipment is high and requires extensive bioinformatic

expertise for assembling and analysis of the contigs.

In conclusion, using an unambiguous genome sequencing

approach, we present evidence of quasispecies and mixed

infections among influenza A viruses that could help shape our

understanding of the ecology and evolution of these viruses. Future

studies should be undertaken to - 1) strengthen the interpretation

of culture and sequence data generated by current influenza A

virus surveillance networks; 2) establish novel influenza sequence-

based evolutionary analyses; and 3) provide an improved

understanding of influenza subtype stability and transmission in

a wide array of mammals and birds.

Materials and Methods

Virus samples
Twelve samples, including eight avian influenza viruses grown in

embryonated chicken eggs, two swine influenza viruses propagated

in MDCK cells with trypsin, and two influenza A virus positive

cloacal samples were used: 1) A/mallard/South Dakota/Sg-00125/

2007(H3N2), 2) A/northern pintail/South Dakota/Sg-00126/

2007(H3N2), 3) A/mallard/South Dakota/Sg-00127/2007(H3N2),

4) A/mallard/South Dakota/Sg-00128/2007(H3N2), 5) A/green-

winged teal/Minnesota/Sg-00131/2007(H3N2), 6) A/mallard/Min-

nesota/Sg-00133/2007(H4N6), 7) A/bald eagle/Virginia/Sg-00154/

2008(H1/H2N1) (mixed isolate), 8) A/swine/Minnesota/Sg-00239/
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2007(H1N2), 9) (A/turkey/Minnesota/1138/1980(H7N3), 10) A/

swine/North Carolina/R08-001877-D08-013371/2008 (H3N2), 11)

cloacal swab of A/green-winged teal/Minnesota/Sg-00131/2007

(H3N2), and 12) cloacal swab of A/mallard/Minnesota/Sg-00133/

2007(H4N6). All avian isolates were grown in embryonated chicken

eggs while swine viruses were grown in Madin Darby canine kidney

(MDCK) cells with trypsin. All isolates were passaged once or

twice only.

RNA extraction and enrichment of influenza RNA
segments

Total RNA was extracted from allantoic fluid/cell culture/

cloacal swab using QIAamp Viral RNA Mini kit (Qiagen) as per

the manufacturer’s instructions. To reduce the contaminating host

nucleic acids commonly observed in viral RNA preparations, viral

RNA molecules were captured and enriched through the

hybridization of a biotin-labeled oligonucleotide directed to the

conserved 59-end of all eight segments of influenza A virus

genome. Total RNA (50-mL; ,50-ng/mL) was incubated in the

presence of 200-mL of 6X SSPE buffer containing 0.1 units/mL of

SUPERase-In (Ambion) and 0.5 mM of the 59-Capture Oligo (59-

CCT TGT TTC TAC T-biotin-39) at 70uC for 5 minutes followed

by 15 minutes at 39uC. Equal volume (240-mL) of 2X binding and

washing buffer containing 0.5 mg of washed Dynabeads MyOne

Streptavidin C1(Invitrogen) was added to the above RNA samples

and mixed thoroughly with a pipette. Fifty micro liters (a total of

0.5 mg) of Dynabeads MyOne Streptavidin C1 beads were

washed with 1X binding and washing (B&W) buffer as per the

manufacturer’s instructions and resuspended in 240-mL of 2X

B&W buffer (10 mM Tris-HCL pH 7.5, 1 mM EDTA, 2 M

NaCl, 0.1% Tween 20). The sample was incubated at room

temperature for 30 min. with gentle shaking in the orbital shaker

and then placed on a magnetic stand for 3 min. The supernatant

was removed by aspiration with a pipette and the coated beads

were washed four times with 1X B&W buffer. The captured RNA

was eluted from the beads by incubating at 65u C for 5 min with

40-mL of 10 mM EDTA, pH 8.2, in 99% formamide. The tube

was placed on the magnetic stand for 3 min. and the supernatant,

containing enriched RNA, was aspirated with a pipette.

Fragmentation of enriched RNA and cDNA synthesis
The enriched viral RNA was fragmented into a size range

compatible with sequencing on the Genome Sequencer FLX. Five

micro liters of 5X RNA Fragmentation Buffer (200 mM Tris-acetate,

pH 8.1, 500 mM Potassium acetate, 150 mM Magnesium acetate)

was added to 20-mL of enriched viral RNA. The samples were mixed

thoroughly by pipeting, incubated for 2 min at 82uC, and then

immediately transferred to ice to stop the fragmentation reaction.

The reaction volume was increased to 50-mL by adding RNase free

water, purified with RNAClean (Agencourt) as per the manufactur-

er’s instructions and eluted with 20-mL of RNase free water.

The fragmented RNA sample was reverse transcribed in 20-mL

final volume using random hexamer (59-phosphate-NNNNNNN-

39) and Superscript First-Strand Synthesis System for RT-PCR

(Invitrogen) as per the manufacturer’s instructions. Each reaction

consisted of 7-mL of fragmented RNA and 2-mL of 500-mM

primers. After reverse transcription, the RNA was removed by

hydrolysis by adding 20-ml of Denaturation Solution (0.5 M

NaOH, 0.25 M EDTA) and incubating at 65uC for 20 minutes.

The mixture was neutralized by adding 20-ml of 0.5 M HCI in

0.5 M Tris-HCl, pH 8.0. The resultant sscDNA was recovered

with RNAClean (Agencourt) as per the manufacturer’s instruc-

tions and eluted from the beads with 20-mL of RNase free water.

Adapter Ligation
For clonal amplification and sequencing on the Genome

Sequencer FLX, the sscDNA required the addition of adaptors to

each terminus. The adaptors have been designed to enforce

directional ligation to the sscDNA, such that one will be uniquely

ligated to the 59-end (sscDNA Adaptor A) and the other to the 39-end

(sscDNA Adaptor B) of the sscDNA. Each adaptor is comprised of

two complimentary oligonucleotides that are annealed together as

described. The 39-end adaptor consists of ‘‘sscDNA Oligo B’’

(59-biotin- GCCTTGCCAGCCCGCTCAGNNNNNN-phosphate-

39) and ‘‘sscDNA Oligo B-prime’’ (59-phosphate- CTGAGC-

GGGCTGGCAAGG-dideoxyC-39) which, after annealing, results

in ‘‘sscDNA Adaptor B’’ with a 39-random overhang of six

nucleotides. Similarly, the 59-end adaptor consists of ‘‘sscDNA Oligo

A-prime’’ (59-NNN NNN CTG ATG GCG CGA GGG AGG

dideoxyC-30) and ‘‘sscDNA Oligo A’’ (59-GCCTCCCTCG-

CGCCATCAG-39) which form ‘‘sscDNA Adaptor A’’ with a six

nucleotide 59-end overhang. The adapter ligation reaction was

carried out using T4 DNA ligase (New England Biolabs) in a total

volume of 30-mL, containing 3 mL of 10X ligase buffer, 1-mL of (1.67

mM final conc.) adapter A, 1-mL of (6.67 mM final conc.) adapter B, 5-

mL (2000 cohesive end units) of T4 DNA ligase, 15-mL of sscDNA and

5-mL of water. The reaction mixture was incubated at RT for 2 hrs;

the ligated sscDNA was recovered with Dynabeads MyOne

Streptavidin C1 (20-mL beads per sample) and eluted by incubating

at 65uC for 5 min with 40-mL of 10 mM EDTA, pH 8.2, in 99%

formamide. The final sscDNA was purified with two rounds of

RNAClean (Agencourt) and eluted in 20-mL of nuclease free water.

The final adapted sscDNA was amplified using Advantage 2 PCR

Kit (Clontech) in a total volume of 50-mL containing 5-mL of 10X

Advantage 2 buffer, 2-mL of 50X dNTP mix (10 mM each), 10-mL

(10 mM) Primer A (59-GCC TCC CTCGCG CCA-39), 10-mL

(10 mM) Primer B (59-GCC TTG CCA GCC CGC-39), 1-mL of

50X Advantage polymerase mix, 10-mL of sscDNA, and 12-mL of

nuclease free water. The PCR conditions used were: 96u C for

4 min; 30 cycles of 94u C for 30 s and 64u C for 30 s; 68u C for

3 min; hold at 14u C. The PCR product was purified with two

rounds of AMPure (Agencourt) as per the manufacturer’s

instructions. The double stranded DNA library was eluted with

20-mL of water and quantified with the Quant-iT Picogreen dsDNA

Assay Kit (Invitrogen). Emulsion PCR amplification was carried out

using either primer A or primer B or both for bidirectional

sequencing. The sequencing reactions were carried out in small

regions of the PicoTiterPlate (1–4 regions/sample) on the Genome

Sequencer FLX (GS FLX) platform.

Sequencing data analysis
Data analyses were performed on the Linux servers or Windows

work station at the Minnesota Supercomputing Institute. All the

sequencing reads were blasted against influenza genome in NCBI

blast version.2.2.16. The ‘non influenza’ sequences were filtered out

and only influenza reads were assembled in GS De nova Assembler

Version 2.0.00.20 and mapped in GS Reference Mapper Version

2.0.00.20. The influenza contigs obtained using the above software

were reassembled in Sequencher Version 4.8 (Genecodes).

Quasispecies identification
All the influenza reads were run in GS De novo Assembler with

three sets of parameters: minimum overlap (MOL) of 40

nucleotides and 90% identity, MOL of 100 and 100% identity,

and MOL of 200 and 100% identity. The larger contigs (.500

bases) obtained by the above method were BLAST analyzed using

NCBI resources and the most closely related sequences, referred to

as reference sequences, for each segment were downloaded. All the
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influenza reads were mapped with reference sequences in GS

Reference Mapper. The contigs obtained from GS Assembler and

the consensus sequences obtained from GS Mapper were

reassembled in Sequencher 4.8. The new contigs were then

examined for ambiguous bases (e.g. R, Y, K etc.) and particular

base positions were manually examined for the presence of more

than one kind of base (quasispecies) in GS Reference Mapper.

Comparison of Sanger and pyrosequencing
All the eight segments of four AIV isolates - A/mallard/South

Dakota/Sg-00125/2007(H3N2), A/northern pintail/South Dakota/

Sg-00126/2007(H3N2), A/mallard/South Dakota/Sg-00127/2007

(H3N2), A/mallard/South Dakota/Sg-00128/2007(H3N2) were

sequenced by classical Sanger sequencing method using ABI PRISM

3730xl DNA Analyzer (ABI) and the results were compared with the

consensus sequences of pyrosequencing obtained with GS Reference

Mapper software.
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