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Abstract

Many mass spectrometry-based studies, as well as other biological experiments produce cluster-correlated data. Failure to
account for correlation among observations may result in a classification algorithm overfitting the training data and
producing overoptimistic estimated error rates and may make subsequent classifications unreliable. Current common
practice for dealing with replicated data is to average each subject replicate sample set, reducing the dataset size and
incurring loss of information. In this manuscript we compare three approaches to dealing with cluster-correlated data:
unmodified Breiman’s Random Forest (URF), forest grown using subject-level averages (SLA), and RF++ with subject-level
bootstrapping (SLB). RF++, a novel Random Forest-based algorithm implemented in C++, handles cluster-correlated data
through a modification of the original resampling algorithm and accommodates subject-level classification. Subject-level
bootstrapping is an alternative sampling method that obviates the need to average or otherwise reduce each set of
replicates to a single independent sample. Our experiments show nearly identical median classification and variable
selection accuracy for SLB forests and URF forests when applied to both simulated and real datasets. However, the run-time
estimated error rate was severely underestimated for URF forests. Predictably, SLA forests were found to be more severely
affected by the reduction in sample size which led to poorer classification and variable selection accuracy. Perhaps most
importantly our results suggest that it is reasonable to utilize URF for the analysis of cluster-correlated data. Two caveats
should be noted: first, correct classification error rates must be obtained using a separate test dataset, and second, an
additional post-processing step is required to obtain subject-level classifications. RF++ is shown to be an effective
alternative for classifying both clustered and non-clustered data. Source code and stand-alone compiled versions of
command-line and easy-to-use graphical user interface (GUI) versions of RF++ for Windows and Linux as well as a user
manual (Supplementary File S2) are available for download at: http://sourceforge.org/projects/rfpp/ under the GNU public
license.
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Introduction

Our research was motivated by an analysis of matrix-assisted

laser desorption/ionization (MALDI) time of flight (TOF) data.

MALDI-TOF data are high dimensional data, characterized by a

large number of variables, a (typically) small number of subjects, and

a high level of noise. These features complicate subsequent data

analysis. Nonetheless, analyses of ion TOF data, including both

MALDI- and surface-enhanced laser desorption/ionization

(SELDI) TOF data, are used to discover disease-related biomarkers

and identify features that discriminate between disease states [1–12].

Due to heterogeneous crystallization of the sample/matrix

mixture spotted onto MALDI plates, and/or to account for day-

to-day instrument variation for both MALDI and SELDI, it is

common practice to obtain replicate spectra from the same subject

sample, resulting in non-independent (cluster-correlated) subject-

level data [13]. Here cluster refers to the collection of samples

collected from the same subject. Since multiple samples are

collected for the same subject, in principal the samples should be

identical. The imperfections in technology and sample processing

introduce some variation, resulting in non-identical replicate

samples that are more similar to one another than samples from

different subjects; that is to say, there is positive correlation

between technical replicates from the same subject.

For replicate subject-level observations, we expect the intra-

cluster correlation (ICC) to be moderate to high, while for other

types of clustered data, the ICC can be quite low. When

discriminating between the disease groups, correlated replicate

data may not be considered independent [14,15]. Within-cluster

data dependence limits the use of classifiers such as Random

PLoS ONE | www.plosone.org 1 September 2009 | Volume 4 | Issue 9 | e7087



Forest (RF) without first altering the data to induce independence,

for example, averaging the observations obtained from technical

replicates from the same subject [16].

RF is an ensemble of decision trees. Decision trees have been

used in bladder cancer diagnosis based on SELDI spectrum

protein profiles [11]. Decision trees are examples of weak learners,

that is, classifiers characterized by low bias but high variability

[16,17]. Another advantage of decision trees is the ease in which

variables and their associated values can be interpreted.

Minor data alterations can result in large changes in the

structure of a single tree. RF overcomes this problem of overfitting

by averaging across different decision trees. Specifically, each tree

is built on a bootstrap sample of the training dataset, so that the

bootstrap sample contains, on average, 63% of the unique original

samples [16,18,19]. Bootstrap sampling, also called bagging (from

bagged aggregation), exposes the tree construction algorithm to a

slightly different subset of the training data for each tree, resulting

in a collection of different trees. Since forests typically consist of

thousands of trees, the examination of an individual tree or even a

select subset of trees is dubious in regards to the effective

determination of important variables and corresponding values.

For this reason, several variable importance measures have been

proposed that rank important variables by considering all trees in

the RF [16,20]. We discuss one of these measures used in RF++ in

the Methods section.

A small subsample of variables (the mtry parameter in the RF

literature) is used at each tree node split, inducing further variation

among trees. Together, bagging and variable subsampling reduce

overfitting and make RF a more stable classifier than a single

decision tree [21,22]. RFs have been shown to perform

comparably to other classification algorithms with respect to both

prediction accuracy and the capacity to accommodate large

numbers of predictor variables [23–25].

RFs have been used in numerous biological applications,

including the identification of cancer biomarkers, using a single

observation per subject [23,26,27]. Vlahou et al. and Svetnik et al.

used decision trees and RF, respectively, on averaged replicate

data [11,24]. Although averaging induces independence, a

consequence of the resulting data reduction is a loss of

information. Moreover, if the number of replicates differs across

subjects, averaging masks this imbalance and leads to each subject

contributing equally to the resulting classifier.

In our novel RF implementation, we utilize subject-level

bootstrapping (described in the Methods section), which enables

the effective use of all data samples and allows for unequal

contribution from the subjects. In the sections that follow, we

describe a generalized Random Forest classifier, RF++, and

simultaneously compare it with classical RF approaches for

dealing with replicate data. In addition to providing a classification

algorithm and measures of variable importance, RF++ accommo-

dates cluster–correlated data in a manner that is consistent with

the data’s structure.

Results

MALDI-TOF Simulated Data
We first investigated the ability of RF++ to correctly identify

discriminating variables and classify subjects under conditions of

varying: intra-cluster correlation (ICC), numbers of subjects, and

numbers of replicates per subject. We grew forests using 125

simulated training datasets with 3 equally discriminating variables

as described in the Methods section. We then assessed the forests’

classification accuracy and variable selection ability using 25 new

simulated testing datasets. We repeated the simulation 200 times

to produce stable estimates of the median, 5th and 95th percentiles

for the measurements presented below. The simulation study was

designed to resemble characteristics observed in the MALDI-TOF

data discussed in the previous section.

Figures 1, 2, and 3, depict results corresponding to forests grown

by RF++ with subject-level bootstrap sampling (SLB), dot-dashed

blue lines; results corresponding to forests grown assuming all

samples are i.i.d. (URF), solid red lines; and results corresponding

to forests grown on subject-level averaged (SLA) samples, dashed

black lines. For each performance measure, we present results only

for ten (five in each class) and 30 (15 in each class) subjects.

Simulation results for 20, 50 and 100 subjects were qualitatively

similar to those shown for 30 subjects, and were therefore excluded

in the interest of brevity.

Variable Importance. To compare each method’s ability to

select discriminating variables, we ranked the variable importance

scores produced by the simulations for each forest and computed

an average rank for the 3 equally discriminating variables. The

best possible average rank was 2 when all discriminating variables

were in the top 3 positions. Figure 1 shows the median and the 5th

and 95th percentiles of the logarithm of the average rank for the 3

discriminating variables of the 200 simulations for the SLB, URF

and SLA forests. Results are shown for simulations with 10 and 30

subjects in Figures 1A and 1B, respectively.

The RF++ variable importance ranks obtained from SLB and

URF forests were consistently lower than the ranks from SLA

forests. The ability to select discriminating variables decreased for

both SLB and SLA forests as the ICC increased. This is expected,

since the effective sample size for clustered data is
n

1z m{1ð Þ � r
which approaches the sample size for the SLA method when r~1,

n=m. Here n is total number of samples, m is number of samples

within a subject (cluster), and r is intracluster correlation

coefficient. For 20 subjects or more, the intervals defined by the

5th and 95th percentiles of the average rank distribution for the

three discriminating variables were uniformly lower and narrower

for SLB and URF forests than for SLA forests.

For 10 subjects, SLB and URF forests performed better for all

but the highest value of ICC = 0.9. There was little difference in

the accuracy of variable selection between the SLB and URF

forests, suggesting that both bootstrap methods can be equally

used for variable selection.

As the number of subjects increased, all of the forests identified

the discriminating variables with increasing accuracy across a

wider range of ICC values. Note, for example, the straight line in

Figure 1B at average rank = 2 for the ICC values from 0.1 to 0.5,

which indicates nearly perfect identification of the 3 discriminating

variables in this ICC range. The average rank increased to 4 or

greater for ICC = 0.7 with a large increase in the width of the

interval defined by the 5th and 95th percentiles. Figure 1

demonstrates that SLB and URF forests identify important

variables equally well and usually better then SLA forests.

Specifically, SLB and URF forests in our simulations produced

lower discriminating variable importance ranks than the SLA

forests for ICC values between 0.1 and 0.7. All forests performed

poorly at ICC = 0.9 with median average ranks above 76.

Classification Accuracy
Proportion Correctly Classified. Because RF++ is

constructed to accommodate clustered data, it summarizes

classification both at the replicate and subject level. Replicates

are classified based on the majority vote of all trees in the forest.

Subjects are then classified by majority vote of their replicates, as

described in the Methods section.

RF++ Clustered Data Classifier
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Figure 1. Mean Decrease in Margin (MDM) variable importance. Median and the 5th and 95th percentiles of the logarithm of the average
ranks of the MDM variable importance scores for the three discriminating variables for 200 simulations (see text) with forests grown on ten subjects
(panel A) and 30 subjects (panel B). The median is depicted by a dot, and vertical bars represent the 5th and 95th percentiles. Vertical bars are
separated artificially along the x-axis to improve visual representation. Results for SLB and URF forests grown on subject-level bootstrapped data
correspond to dot-dashed blue and solid red lines, respectively. The dashed black lines correspond to SLA.
doi:10.1371/journal.pone.0007087.g001
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Figure 2. Proportion correct classification. Median and the 5th and 95th percentiles of the proportion correct subject-level classification for 600
simulations (see text) with forests grown on ten subjects (panel A) and 30 subjects (panel B). The median is depicted by a dot, and vertical bars
represent the 5th and 95th percentiles. Vertical bars are separated artificially along the x-axis to improve visual representation. Results for SLB and
URF forests grown on subject-level bootstrapped data correspond to dot-dashed blue and solid red lines, respectively. The dashed black lines
correspond to SLA.
doi:10.1371/journal.pone.0007087.g002
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Figure 3. Area under the receiver operating characteristic curve (AUC). Median and the 5th and 95th percentiles of the AUC for 200
simulations (see text) with forests grown on ten subjects (panel A) and 30 subjects (panel B). The median is depicted by a dot, and vertical bars
represent the 5th and 95th percentiles. Vertical bars are separated artificially along the x-axis to improve visual representation. Results for SLB and
URF forests grown on subject-level bootstrapped data correspond to dot-dashed blue and solid red lines, respectively. The dashed black lines
correspond to SLA.
doi:10.1371/journal.pone.0007087.g003

RF++ Clustered Data Classifier

PLoS ONE | www.plosone.org 5 September 2009 | Volume 4 | Issue 9 | e7087



Figures 2A and 2B show the median and the 5th and 95th

percentiles of the proportion of subjects correctly classified for

SLA, SLB and URF forests across 200 simulated test data sets for

ten and 30 subjects, respectively. As expected, the algorithm

predicted class membership with decreasing accuracy as the ICC

increased, but the classification accuracy of SLA forests was

uniformly equal to or less than that of SLB and URF forests

(except for a single case for 30 subjects with 2 replicates and

ICC = 0.5). This is most notable for small numbers of subjects

(Figure 2A), with a nearly 15% difference in accuracy for the small

values of ICC. The differences between the forests decreased as

ICC increased, due to effective sample size for SLB and URF

forest approaching the sample size of SLA forest as explained

above. We also note that the forests achieved similar classification

performance as the number of subjects increased. We observed no

difference in classification performance between SLB and URF

forests.

Area Under the Receiver Operating Characteristic

Curve. To assess classification performance of the forests in a

manner independent from the decision threshold (for majority vote

the decision threshold is 0.5, i.e. above 50% trees to vote for a

particular classification in a two class classification), we computed

the area under the receiver operating characteristic curve (AUC)

[28]. Figures 3A and 3B show the median and the 5th and 95th

percentiles of AUC for the three forests across 200 simulations for

10 and 30 subjects, respectively. URF forests produced greater

median AUCs for 10 subjects with SLB tracing closely and SLA

performing up to 18% worse. Although URF and SLB forests had

similar median AUCs, SLB forests yielded consistently narrower

90% credible intervals than URF forests, representative of a more

stable performance. Differences in AUCs among all forests

decreased for 50 subjects and were negligible for 100 subjects.

All forests produced similar 90% credible intervals for 100

subjects. It is noteworthy that all forests had similar performance

at the extreme ICC values of 0.1 and 0.9 for numbers of subjects

30 or larger (Figure 3B), but URF and SLB forests had greater

AUCs than SLA forests at intermediate ICC values (0.3, 0.5, 0.7).

Application to Esophageal Cancer Data
We analyzed MALDI-TOF spectra derived from serum samples

of esophageal cancer patients to further validate the results in

classification accuracy on real MS data. Sera were obtained from

38 (30 cancer and 8 control) subjects, fractionated, and analyzed

by MALDI-TOF MS. We obtained 507 spectra with the following

numbers of replicates per subject: 28 subjects had 12 replicates; 5

subjects had 24 replicates; 4 subjects had 11 replicates; and 1

subject had only 7 replicates. Spectra were preprocessed using

PrepMS with the mean spectrum smoothing threshold set to 20,

individual spectra smoothing threshold set to 16, and signal-to-

noise ratio set to 20 [29]. Intensities below 2000 kDa were

considered matrix noise and were eliminated from the analysis. A

total of 185 peaks were identified. Spectra were further normalized

with EigenMS to eliminate any systematic bias [30]. One

significant eigenpeptide (trend) that explained 88.25% of the

variation was detected and its effects were removed.

We grew URF, SLB and SLA forests each with 2001 trees. We

performed 100 experiments dividing the subjects into training and

testing datasets. Two-thirds of the 38 subjects (26 subjects) were

used for training, randomly choosing 6 of the subjects from the

control group and 20 of the subjects from the disease group,

respectively. The remaining 12 subjects were used for testing.

As depicted in Figure 4, all three forests performed similarly

with 50th and 95th percentiles at 100% correct classification. Fifth

percentiles differed with 83% for SLB, 91% for SLA and 100% for

URF. These results are otherwise consistent with the results

obtained using simulated data.

Discussion

Our motivation for this research was biomarker discovery based

on MALDI-TOF mass spectrometry (MS) data. MS data are

characterized by both a small number of subjects and a large

number of variables (most of which are non-discriminating

between the classes), and require the use of robust classifiers that

can handle such constraints. Previously it was unclear whether

correlation among replicate spectra (common with data obtained

in MS experiments) should be specially handled.

Our study results indicate that RF++ provides an approach to

the analysis of cluster-correlated data that matches the perfor-

mance of the existing (unmodified) RF algorithm applied at the

sample level. The only caveat is that OOB error rate produced by

the URF forests is typically an underestimate. Error rates for

clustered data analyzed with URF should properly be estimated on

a separate test dataset. We further demonstrated that the

performance of SLB forests is typically better than the perfor-

mance of SLA forests with respect to the detection of

discriminating variables, classification accuracy, and AUC.

When the ICC was near zero, we observed substantial gains in

variable selection and classification capabilities for both URF and

SLB as compared to SLA forests. This is not surprising because the

replicates are nearly independent when the ICC is small, and

therefore averaging results in the greatest loss of information.

Conversely, when the ICC is large (close to 1), the within-subject

data are nearly identical and there is little additional information

in the replicates. Subsequently, we observed little performance

improvement when comparing forests as ICC approaches 1.

Overall, for number of subjects greater then 100 any of the three

forests discussed here will produce similar prediction and variable

selection accuracy.

Although this manuscript has focused on the analysis of

technical replicates, dependence must also be taken into account

in longitudinal studies and designs in which the class assignments

associated with subject replicates are potentially different. Our

Figure 4. Percent correct classifications in esophageal data.
Dots represent the median percent correct classifications and whiskers
represent 5th and 95th percentiles.
doi:10.1371/journal.pone.0007087.g004
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approach can be extended to longitudinal data by the utilization of

a modified impurity measure [31–33] and to address the issue of

the correlated predictor variables [34].

This report mainly considers the issue of classification of data

clustered at the subject level. Some of the functionality of (the

original) Breiman’s RF has been omitted, such as regression

analysis where the outcomes are continuous and weighted class

analysis for unbalanced data sets. Missing values imputation for

MS-based proteomics data has been described in Karpievitch et al.

and can be performed prior to classification. We consider these

features important and plan to incorporate them into future RF++
implementations.

MS data are an example of data with a small number of subjects

and a large number of variables. The use of subject level

bootstrapping (SLB) by RF++ is shown to be advantageous for the

analysis of such data, because the sampling scheme is designed to

accommodate data with multiple measurements for a given subject

(e.g. technical replicates). Perhaps surprisingly, our results also

suggest that it is still reasonable to utilize URF for the analysis of

cluster-correlated data with two caveats: first, correct classification

error rates must be obtained using a separate test dataset, and

second, an additional post-processing step is required to obtain

subject-level classification. Our studies also show that, even for

moderate values of ICC, forests grown utilizing all available data

(SLB or URF) classify and identify discriminating variables with

greater accuracy than forests grown on averaged samples.

RF++ constitutes a useful research tool contribution providing

an easy-to-use graphical interface and eliminating the manual

reconfiguration and recompilation requirements of Breiman’s

existing FORTRAN version. The SLB additions to the RF

algorithm implemented in RF++ are valuable to researchers

analyzing cluster-correlated data. RF++ can be used to effectively

analyze both clustered and non-clustered data.

Methods

RF++ algorithm
RF++ is a classifier capable of analyzing cluster-correlated data.

It was developed as a C++ implementation of the RF algorithm, as

described by Breiman [16], with additional functionality specific to

the structure of cluster-correlated data.

First, RF++ grows each tree on a bootstrap sample (a random

sample selected with replacement) at the subject-level rather than

at the replicate-level of the training data. Individual trees are

unpruned classification/decision trees grown using the Gini

impurity score. A particular subject is chosen at random from

the pool of all available subjects and all of its replicates are

allocated to the in-bag dataset. As mentioned previously,

approximately 63% of the individual samples are in-bag (IB) and

the remainder are held out in order to compute a runtime error

estimate on the out-of-bag (OOB) samples. When using subject-

level bootstrapping we also expect about 63% of the subjects to be

placed in-bag. Subject-level bootstrapping ensures that bootstrap

samples are constructed from independent units, or in this case,

subjects, with correlated replicates collected from those subjects.

Subject-level bootstrapping overcomes the problem of potentially

exposing individual trees to all subjects (See Supplementary File S1

Section 1).

Since our primary goal is to provide a classification method

applicable to cluster-correlated data, we are only interested in

estimating the classification error rate and not in performing

inference on the model components. For these reasons it is not

necessary to include covariance estimates in the tree construction.

Using the subject-level bootstrap results in unbiased classification

error rate estimation, regardless of whether the dependence within

clusters is incorporated into the tree construction.

Second, we provide a means for computing subject-level

classification. Specifically, we first classify subject replicates at

the sample-level and then perform a majority vote across the

subject replicates in order to compute subject classification. The

ability to classify at the subject level in addition to the replicate

level is useful when analyzing clustered data in which all subject

replicates belong to the same class. In such cases we are ultimately

interested in subject-level classification, and not just classification

of individual replicates from the same subject. Figure 5 illustrates

RF++ replicate- and subject-level classification. If different

replicates for the same subject belong to different classes (such as

measurements taken at different time points), only replicate-level

classification is produced.

Third, like Breiman’s original Random Forest, RF++ provides

an error rate based on OOB data [16]. The OOB replicate error

rate estimate is always computed. When all subject replicates

belong to the same class, we compute an unbiased running OOB

subject-level error estimate. Occasional misclassifications (e.g. one

or two replicate misclassifications out of a collection of replicates)

generally have little effect on the final forest subject-level error

rate.

It is important to note that even when subject-level error rate

and classifications are computed, the replicate-level error rate and

classifications are still computed and made available for closer

examination on an individual replicate level. For example it may

be of interest to know that 5 out of 10 subject replicates are

correctly classified (replicate-level error rate of 50%). RF++ also

produces proportions of votes for each class which gives an

estimate of the probability that the subject (and/or the replicate)

falls within a particular class. These proportions can be used in

decision making models that use different cut-off values to

distinguish between classes. For example, in a two class problem

with 0/1 outcomes in which the cut-off is 0.5. However, one might

want to explore the predictive performance (e.g. sensitivity,

specificity, AUC) over a range of thresholds, and this is facilitated

by the reporting of estimated probabilities of class membership.

RF++ Variable Importance Measures. RF++ utilizes

permutation-based variable importance measure implemented in

Breiman’s original RF. It has been shown that other variable

importance measures (such as number-of-times-used and Gini

importance) do not perform as well with respect to detecting

discriminating variables [20]. Number-of-times-used, a count of how

many times a variable is used to split a node in a forest, is

susceptible to random variable subsampling effects at each node

split. This means that, due to the selection of a variable from a

much smaller set (usually a subset of size
ffiffiffi
q
p

, where q is the total

number of variables in the data set), the variable may be chosen

for a split even if it is not truly discriminating. In fact, number-of-

times-used is not implemented in the current FORTRAN version of

RF. The Gini importance measure, on the other hand, is more robust

[35]. It quantifies the decrease in the ‘‘Gini impurity score’’ computed

at each node split, and can be accumulated for each variable

across all trees. Gini importance has been shown to be biased towards

variables with larger numbers of possible values, including

continuous variables [20]. For example, Gini importance ranks a

continuous variable as more importance than a binary variable

even if both are equally discriminating.

The permutation-based variable importance measure is the least

biased towards variables with a large range of values, as described

by Strobl et al. 2007. Systems biology studies produce variables

with wide continuous ranges, and thus we are less likely to

encounter bias when using a permutation-based variable impor-

RF++ Clustered Data Classifier
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tance measure. RF++ provides two variations of the permutation-

based importance measure. In RF++ the simple permutation-

based importance measure for variable v, Iv, is described in

Equation 2 as

Iv~

PT
t~1

pc,t{pv
c,t

� �

T
: ð2Þ

Here pc,t is the proportion of correctly classified replicates out of

the total number of OOB replicates in a given tree t, pv
c,t is the

proportion of OOB replicates correctly classified after variable v

has been randomly permuted across all OOB replicates for tree t,

and T is the total number of trees in the forest.

The second variable importance measure included in RF++ is

the mean decrease in margin (MDM) for each variable as shown in

Equation 3. Margin is defined as the proportion of votes for the

correct class minus the largest proportion of votes for an incorrect

class (that is, the incorrect class that received the largest number of

votes). The mean decrease in margin for variable v is defined as

MDMv~

PT
t~1

pc,t{ max pr,tð Þð Þ{ pv
c,t{ max pv

r,t

� �� �h i

T
, ð3Þ

where pc,t is the proportion of correctly classified replicates out of

the total number of OOB replicates for a given tree, t, pr,t is the

proportion of OOB replicates incorrectly classified; pv
c,t and pv

r,t are

the proportions of correctly and incorrectly classified OOB

replicates, respectively, after variable v has been randomly

permuted within the OOB replicates for tree t; and T is the total

number of trees in the forest.

Training and Testing Data Generation
To test the performance of the RF++ algorithm, we generated

training and testing datasets with cluster-correlated observations in

which each subject had more than one replicate and where some

covariates may also be correlated. Our goal was to simulate data

derived from the replicate spectra obtained from MS TOF

experiments. Therefore, in our simulations, we considered data

with a small number of subjects and a large number of variables,

most of which possessed no discriminating information. We

modelled data that has already been preprocessed, i.e. aligned

along the m/z scale, denoised, baseline corrected and where peaks

were detected. As a result the number of peaks are usually reduced

from tens of thousands to hundreds and all peaks have the same

m/z scale [29,36,37]. MS TOF data preprocessing is an essential

step that is performed prior to analysis with any classifier including

RF++.

Our simulation study addressed the effects of varying ICC on

variable selection and classification abilities of RF++. The ICC is

defined as the proportion of total variance attributable to between

cluster variability, and is given by

ICC~
s2

b

s2
b zs2

e

, ð4Þ

where s2
e is the within cluster variance and s2

b is the between

cluster variance, i.e. the variance of the random effects, and as

such influences dispersion among the cluster locations. The cluster

locations become increasingly ‘spread out’ as s2
b increases. Thus

we refer to s2
b as the ‘between cluster variance’. In our simulations,

we fixed s2
e at 1, and, based on Equation (4), selected s2

b values of

0.11, 0.43, 1, 2.33 and 9 to produce ICC values of 0.1, 0.3, 0.5,

0.7, and 0.9, respectively.

Figure 5. RF++ outline. Each tree is grown on a different subject-level bootstrap set of samples (left) producing a forest (middle). New subject
samples are piped down the forest and each tree casts a vote for each sample. A subject classification is computed as the class with the maximum
number of votes across all samples for that subject among all trees (right). Proportions of votes for each class are also produced.
doi:10.1371/journal.pone.0007087.g005
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The log-transformed normalized intensities in real MS data are

less skewed, with more similar variances and are roughly normally

distributed [28,36]. We therefore simulated all log peak intensities

from a normal distribution. For convenience, we chose a mean of

6 and variance of 1. For peaks that were discriminating (randomly

selected a priori), we took the original peak mean and added

(subtracted) one standard deviation to (from) it producing two

distinct disease group means corresponding to the disease and

control classes. Standard deviations for the two disease groups

were unchanged. For each subject i and peak k, we generated j

replicate m/z log peak values using the corresponding means and

adding a subject-specific random effect, bik, assuming that

bik*Normal 0,s2
b

� �
. For a given subject, the value of bik remained

constant for all m/z log peak intensity replicates, thereby creating

a common ‘shift’ in that subject’s observations that corresponded

to the specified m/z value. To provide additional variation to the

values, we added noise, given by eijk, which we assumed followed a

standard normal distribution. Additionally, we assumed that the

random effects and the errors were independent. Conditional on

the random effect, the subject replicates were assumed to be

independent, but marginally the within-subject observations were

correlated. For a given m/z value, we generated replicate log peak

intensities using

pijk~mkzbikzeijk ð5Þ

where i is the subject index, j is the replicate index for subject i, k is

the peak index, and mk is the mean log peak intensity for the

specified m/z value corresponding to the disease group of the ith

subject.

We produced replicate log peak intensities corresponding to 185

total m/z values for each subject. Three of the m/z values (peaks)

were discriminating features, and the remaining 182 m/z values

were pure noise. Noise peaks were generated from the same

distribution as the discriminating peaks but with the means of the

two disease groups being equal. For two of the discriminating

peaks, we selected mdisease~5 and mcontrol~7. For the remaining

discriminating peak, we specified mdisease~7 and mcontrol~5.

In the design above, the peaks are uncorrelated. This is not the

case in real MS datasets. For this reason, we generated datasets

with correlation between peaks. We generated vector eij from a

multivariate normal distribution eij*N185 0,CCð Þ, where CC is the

correlation matrix computed from the esophageal cancer dataset

described in the Results section. Readers interested in a more

detailed description of the data generation and the classification

and variable selection accuracy of the forests on these data are

referred to Section 3 of the Supplementary File S1.

Simulation study
In our simulation study we compared the impact of varying ICC

on variable selection and classification performance for 5 different

ICC values (0.1, 0.3, 0.5, 0.7 and 0.9), 5 different numbers of

subjects (10, 20, 30, 50 and 100), and 5 different numbers of

replicates within subjects (2, 3, 5, 8 and 10). We therefore

generated 125 training data sets to accommodate all possible

combinations of the 3 parameters. In the training data, the total

number of subjects was always equally divided between 2 classes.

Thus, a training data set with 10 subjects had five disease and five

control subjects.

To test the prediction and variable selection accuracy of RF++
we fixed the number of subjects to 100 and generated 25 test data

sets. We again allocated equal numbers of subjects to each class to

facilitate easy comparison.

To mitigate the effects attributable to random number

generations for each data set, and to provide measures of

uncertainty in our estimates, we repeated each simulation 200

times for each combination of ICC, number of subjects, and

number of replicates. For each simulation, we obtained the

average importance ranks of the three discriminating variables

based on the MDM variable importance scores, the proportion of

subjects correctly classified, and the AUC. Based on the empirical

distributions of these performance measures, we summarized our

results by reporting the median and the 5th and 95th percentiles.

In each of these 200 simulations we regenerated both the

training and testing data sets. For each of the training data sets we

grew 3 different types of forests: a SLA forest grown on averaged

subject samples, a SLB forest, and an unmodified Breiman’s forest,

URF. All forests contained 2001 trees. We subsequently tested

each forest’s performance using the same testing data set. For

testing of the SLA forest, subject replicates were averaged.

Supporting Information

File S1 Supplementary materials

Found at: doi:10.1371/journal.pone.0007087.s001 (0.11 MB

DOC)

File S2 RF++ User Manual

Found at: doi:10.1371/journal.pone.0007087.s002 (0.34 MB

PDF)
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