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des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille, Marseille, France

Abstract

Background: The low and variable prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae DNA in
human stool contrasts with the paramount role of these methanogenic Archaea in digestion processes. We hypothesized
that this contrast is a consequence of the inefficiencies of current protocols for archaeon DNA extraction. We developed a
new protocol for the extraction and PCR-based detection of M. smithii and M. stadtmanae DNA in human stool.

Methodology/Principal Findings: Stool specimens collected from 700 individuals were filtered, mechanically lysed twice,
and incubated overnight with proteinase K prior to DNA extraction using a commercial DNA extraction kit. Total DNA was
used as a template for quantitative real-time PCR targeting M. smithii and M. stadtmanae 16S rRNA and rpoB genes.
Amplification of 16S rRNA and rpoB yielded positive detection of M. smithii in 95.7% and M. stadtmanae in 29.4% of
specimens. Sequencing of 16S rRNA gene PCR products from 30 randomly selected specimens (15 for M. smithii and 15 for
M. stadtmanae) yielded a sequence similarity of 99–100% using the reference M. smithii ATCC 35061 and M. stadtmanae
DSM 3091 sequences.

Conclusions/Significance: In contrast to previous reports, these data indicate a high prevalence of the methanogens M.
smithii and M. stadtmanae in the human gut, with the former being an almost ubiquitous inhabitant of the intestinal
microbiome.
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Introduction

Archaea are environmental organisms that are associated with the

mucosa in mammals [1–6]. In humans, Archaea are associated with

the vaginal, oral, and intestinal mucosa [1–6]. Because of the

fastidious nature of these strict anaerobes, most current knowledge

about the archaeal flora of mammals is derived from DNA-based

analyses. In the human gut, methanogenic Archaea metabolize

major fermentation products, such as alcohols, short chain organic

acids, carbon dioxide (CO2), and hydrogen (H2) [7]. Until

recently, the diversity of gut methanogens was thought to be

limited to two species: Methanobrevibacter smithii, the most abundant

methanogenic Archaea found in the human gut [1–6,8–10], and

Methanosphaera stadtmanae, which is seldom detected in the human

gut. Both species can be detected by culture and PCR-based assays

targeting the 16S rRNA and mcrA genes [8]. Recently, the DNA of

additional methanogenic Archaea has been detected in human stool

specimens, including DNA sequences that indicate the presence of

a new order of methanogenic Archaea [2,11].

The predominance of M. smithii compared to M. stadtmanae can

be explained by the fact that the genome of the former is more

tailored to the gut environment with regards to metabolic

versatility, genomic evolution ability, and persistence [9]. In the

gut, M. smithii converts H2, CO2, and formate into CH4 using

carbon as the terminal electron acceptor; this redox reaction

sustains anaerobic respiration, which allows for the production of

ATP [12,13]. This archaeon can also remove fermentation end

products, such as methanol and ethanol, produced by other

bacteria lacking a methanogenic pathway, while M. stadtmanae

energy metabolism is limited to using hydrogen to reduce

methanol to methane and is dependent on acetate as a carbon

source [8]. Methanogenesis is of paramount importance in

preventing the accumulation of gases and other reaction end

products [9]. Accordingly, a metagenomic analysis of the gut flora

in three healthy individuals found that M. smithii comprised up to

11.5% of the gut microorganisms [14]. However, 16S rRNA- and

mcrA gene-based studies detected M. smithii with variable

prevalence in less than half of the tested individuals and no M.

stadtmanae; such results cannot reflect the actual quantity of these

two Archaea in the human gut because of their specific association

with the gut mucosa [14]. We hypothesized that the variable

prevalence of M. smithii DNA in human stool specimens and the
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failure to detect M. stadtmanae DNA in various studies may be due

to limitations in the experimental protocols and to the relatively

small samples comprising three or six individuals [14,15]. We

aimed to establish an optimized protocol for the extraction and

detection of archaeal DNA by exploiting the M. smithii and M.

stadtmanae genome sequences [8,10].

Materials and Methods

2.1. Source of fecal samples
A series of 700 fecal specimens were prospectively collected to

investigate the prevalence of M. smithii and M. stadtmanae. Stool

specimens were stored at 220uC until used. A random subset of 50

specimens was further used to compare the DNA extraction

method developed herein with a reference method. Only one stool

specimen was collected per person, and for each person, sex, age,

and presence of an enteric pathogen in the stool specimen

responsible for diarrhea were documented. This study was

approved by the local Ethics Committee.

2.2. Fecal DNA isolation
Approximately 1 gram of specimen was suspended in 10 ml of

saline buffer and filtered through a Fecal Specimen Filtration Vial

(Orion Diagnostica–Fumouze-Division Diagnostics, Levallois Per-

ret, France). Aliquot of the filtrate (250 ml) was transferred into a

sterile screw-cap Eppendorf tube containing 0.3 g of acid-washed

glass beads (#106 mm, Sigma, Saint-Quentin Fallavier, France)

and shaken to achieve mechanical lysis in a FastPrep BIO 101

apparatus (Qbiogene, Strasbourg, France) at level 6.5 (full speed)

for 90 s. The supernatant was collected and incubated overnight at

56uC with 180 ml of T1 Buffer from the NucleoSpinH Tissue Mini

Kit (Macherey Nagel, Hoerdt, France) and 25 ml of proteinase K

(20 mg/ml). After a second cycle of mechanical lysis as described

above, the filtrate was incubated for 15 min at 100uC. Total DNA

was then extracted using the NucleoSpinH Tissue Mini Kit,

according to the manufacturer’s procedure. Extracted DNA was

eluted with 100 ml of elution buffer and stored at 220uC until

used. A mock extraction performed using 250 ml of sterile water

was used as a negative control for each batch of DNA extractions.

2.3. Real-time quantitative PCR assays
The targeted genes, probes, primer sequences (Eurogentec,

Seraing, Belgium), and PCR product sizes for the four real-time

PCR assays developed in this study are summarized in Table 1.

The sequences of the four probes (Applied Biosystems, Courta-

boeuf, France) and four primer pairs were designed using the M.

smithii ATCC 35061 complete genome (GenBank accession

number CP000678) and the M. stadtmanae DSM 3091 complete

genome sequence (GenBank accession number NC 007681) (both

exhibiting only one copy of the 16S rRNA gene and one copy of

the rpoB gene) via the online Primer 3 program (http://biotools.

umassmed.edu/bioapps/primer3_www.cgi). The specificities of

the PCR primers and probes for the M. smithii ATCC 35061 and

M. stadtmanae DSM 3091 16S rRNA and rpoB genes were verified

in silico using the BLAST program at NCBI (http://www.ncbi.

nlm.nih.gov/BLAST). The specificity was further experimentally

ensured by incorporating the DNA extracted from 43 bacterial

species representative of common gut inhabitants and enteric

pathogens, including M. stadtmanae and M. smithii as positive

controls (Table S2), in the real-time PCR protocol reported below.

The primers and Taqman probes used for total bacterial real-time

qPCR were adapted from the method previously described by

Palmer and collaborators [16]. Real-time PCR assays were

performed with a MX3000TM system (Stratagene, Amsterdam,

The Netherlands) using the QuantiTect Probe PCR Kit (Qiagen,

Courtaboeuf, France) with 5 pmol of each primer, probe labeled

with FAM or VIC, and 5 ml of DNA (about 2 mg of total DNA) in

a final volume of 25 ml. Positive controls (DNA extracted from M.

smithii DSM861 and M. stadtmanae DSM 3091 strains, German

Collection of Microorganisms and Cell Cultures, Braunschweig,

Germany), an extraction control, no-template controls, and a

quantification scale from 1027 to 10 target copies were utilized in

each reaction plate. The 16S rRNA and rpoB gene copies were

quantified in a duplex assay, and total bacteria were used in

Table 1. Real-time PCR primers and probes sequences for detecting M. smithii and M. stadtmanae 16S rRNA and rpoB genes and
for detecting all bacteria (Totbact).

Organism Assay Primer/probe name and sequence (59-39) Dye Product size (bp)

M. smithii 16S rRNA Smit.16S-740F, 59-CCGGGTATCTAATCCGGTTC-39 123

Smit.16S-862R, 59-CTCCCAGGGTAGAGGTGAAA-39

Smit.16S FAM, 59-CCGTCAGAATCGTTCCAGTCAG-39 FAM (MGB)

rpoB Ms_rpoBF, 59-AAGGGATTTGCACCCAACAC-39 70

Ms_rpoBR, 59-GACCACAGTTAGGACCCTCTGG-39

Ms_rpoBVIC, 59-ATTTGGTAAGATTTGTCCGAATG-39 VIC (MGB)

M. stadtmanae 16S rRNA Stadt_16SF, 59-AGGAGCGACAGCAGAATGAT-39 97

Stadt_16SR, 59-CAGGACGCTTCACAGTACGA-39

Stadt_16SFAM, 59-TGAGAGGAGGTGCATGGCCG-39 FAM (Taqman)

rpoB stadt_rpoBF, 59-TGCTTGGTATTTGTGCTGGA-39 95

stadt_rpoBR, 59-TCCAAGAGCCTGTTTTGTCA-39

Stadt_rpoBVIC, 59-CACCAAGGAACACAATGGAGGC-39 FAM (Taqman)

All bacteria Totbact Bact 8FM, 59-AGAGTTTGATCMTGGCTCAG-39 327

Bact515R, 59-TTACCGCGGCKGCTGGCAC-39

Bact338K, 59-CCAKACTCCTACGGGAGGCAGCAG-39 VIC (Taqman)

doi:10.1371/journal.pone.0007063.t001
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simplex real-time qPCR as a bacterial DNA extraction control.

The PCR amplification program was 95uC for 15 min, followed

by 45 cycles of 95uC for 30 s and 60uC for 1 min. All DNA

samples were tested in duplicate. Results are expressed as the

number of 16S rRNA and rpoB copies per gram of feces. Plasmid

quantification was carried out by inserting a chimeric nucleotide

fragment into the pCR II plasmid (TA cloning Kit Dual Promoter

(pCRII) Invitrogen, Carlsbad, CA, USA), as previously described

[17]. The chimeric fragment contained real-time PCR targets for

M. smithii and M. stadtmanae 16S rRNA and rpoB genes, together

with a universal 16S rRNA bacterial target gene adapted from the

Streptomyces sudanensis strain SD504 sequence (GenBank accession

number EF515876) as an internal control to monitor the absence

of PCR inhibition.

2.4. Sequencing
To sequence the M. smithii and M. stadtmanae DNA in human

feces, real time-PCR products of the 16S rRNA gene were

sequenced for 30 randomly chosen specimens using the primers

Smit.16S-740F, Smit.16S-862R, Stadt_16SF and Stadt_16SR

(Table 1). PCR products were purified and sequenced using the

BigDye Terminator 1.1 Cycle Sequencing kit and the 3130 genetic

analyzer (Applied Biosystems). Negative controls were employed

for each assay. Sequences were analyzed using the Seqscape

program (Applied Biosystems), and similarity values were

determined using the online BLAST program at NCBI.

2.5. Protocol sensitivity
To monitor the sensitivity of our extraction protocol, three stool

specimens presenting low loads of M. smithii 16S rRNA and rpoB

genes supplemented with 100 ml of M. smithii DSM 861 suspension

were used. For all specimens in both the 16S rRNA and rpoB

assays, the sensitivity was calculated by subtracting the gene copy

number present before addition of M. smithii to that obtained after

and then dividing by the gene copy number obtained for 100 ml of

a pure suspension of M. smithii. The protocol sensitivity presented

is the average of the three percentages obtained.

2.6. Comparison with the reference DNA extraction
protocol

Total DNA was isolated from 50 stool specimens using the

extraction protocol described above in parallel with the QIAamp

Stool DNA mini kit protocol (Qiagen), as previously reported [14].

The latter kit was used as a gold standard, as a literature review

indicated that this kit was used in almost all recent studies (2005–

2008) dealing with DNA extraction from animal and human

stools. We then compared the numbers of M. smithii 16S rRNA

and rpoB gene copies per gram of stool detected by each DNA

extraction protocol. Numerical data were analyzed using

EPIINFO version 3.4.1 software (Centers for Disease Control

and Prevention, Atlanta, GA). P values were used to assess

statistical significance when comparing the two methods and were

calculated using the non-parametric Kruskal-Wallis test for two

groups. A P value,0.05 was considered to be significant.

Results

3.1. Stool specimens
Stool specimens were collected from 700 persons [408 males

(aged 1 day to 95 years) and 292 females (aged 1 month to 98

years)] (Table S1). The stool specimens of 643 of these patients had

been submitted for the identification of enteric pathogens; the

remaining 57 stool specimens had been submitted for the

determination of Staphylococcus aureus and Salmonella spp. intestinal

carriage in healthy adults without diarrhea and no history of

enteric disease in the past six months. No enteric pathogens were

identified in the healthy adults, whereas enteric pathogens were

cultured from 4 of the remaining 643 patients, including Salmonella

enterica in 2 patients, Staphylococcus aureus in 1 child, and Shigella

sonnei in 1 patient (Table S1).

3.2. Real-time PCR
In-silico analysis using the online BLAST program at NCBI

indicated that the M. smithii and M. stadtmanae real-time PCR

systems were specific for the two species. These data were

experimentally confirmed by the fact that the systems did not

detect the DNA extracted from 43 other enteric organisms in the

presence of positive controls, with the exception of the homologous

methanogenic species. Negative results were obtained for all

negative controls in the assay. Our protocol demonstrated an

extraction efficiency of 89.82% for the 16S rRNA assay and

94.04% for the rpoB assay. In the present study, 670/700 stool

specimens were positive for the M. smithii 16S rRNA or rpoB genes

(95.7%), including 133 specimens that were positive for the 16S

rRNA gene only. The 16S rRNA and the rpoB gene copy numbers

varied from 10.921.4561011 and from 2.2222.4061010 copies

per gram of stool, respectively (Table 2). The internal positive

control was detected in 29/29 (100%) stool specimens that

remained negative for M. smithii DNA.

Among these 700 stool specimens, 206 (29.4%) were positive for

M. stadtmanae DNA, including 71 that were positive for the 16S

rRNA gene only. In all cases, M. stadtmanae DNA was detected in

association with M. smithii DNA (Table S1). The 16S rRNA and

the rpoB gene copy numbers varied from 1221.4561010 and from

37.922.746109 copies per gram of stool, respectively (Table 2).

The internal control was detected in 44/44 (100%) randomly

Table 2. Mean, standard deviation, median, and maximal and minimal values of the copy numbers of M. smithii and M.
stadtmanae16S rRNA and rpoB genes per gram of stool in the positive specimens for each assay.

M. smithii M. stadtmanae

16S rRNA assay rpoB assay 16S rRNA assay rpoB assay

Minimum 1,09E+01 2,22E+00 1,20E+01 3,79E+01

Maximum 1,45E+11 2,40E+10 1,45E+10 2,74E+09

Target copy number Mean 2,33E+09 6,46E+08 1,80E+08 6,56E+07

Standard deviation 1,26E+10 2,70E+09 1,25E+09 3,40E+08

Median 4,20E+04 1,72E+04 9,30E+03 2,66E+04

doi:10.1371/journal.pone.0007063.t002
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selected stool specimens that lacked M. stadtmanae DNA PCR

product.

No statistical correlation was observed between M. smithii/M.

stadtmanae detection or load and the presence of an enteric

pathogen. No statistical difference was detected in M. smithii/M.

stadtmanae detection and load between the 57 healthy individuals

and the individuals who submitted stool samples for pathogen

identification.

3.3. Sequencing
All negative controls lacked PCR products. Direct sequencing of

the 30 16S rRNA gene PCR products yielded a BLAST similarity

of 99% with the reference M. smithii ATCC 35061 16S rRNA gene

sequence (GenBank accession NC_009515) and a BLAST

similarity of 100% with the reference M. stadtmanae DSM 3091

16S rRNA gene sequence (GenBank accession CP000102).

Interestingly, M. smithii DNA was detected in 2 specimens

collected from children aged 1 and 2 years, with estimated

numbers of 10 and 778 M. smithii per gram of stool, respectively. A

sequence similarity of 99% compared to the M. smithii reference

strain was obtained for both children.

3.4. Comparison of DNA extraction protocols
DNA extracted using the QIAamp Stool DNA mini kit was

positive for M. smithii 16S rRNA and rpoB genes in 44/50 (90%)

and 33/50 (66%) specimens, respectively, by quantitative real-time

PCR. DNA extracted using the protocol described herein was

positive for M. smithii 16S rRNA and rpoB genes in 50/50 (100%)

and 49/50 (98%) specimens, respectively. Per 1 g of stool, the

extraction protocol developed herein yielded 100- to 1,000-fold

more gene copies than the reference extraction protocol (P#1025)

(Table 3).

Discussion

Based on a metagenomic analysis of stool samples collected

from three healthy adults, M. smithii DNA was estimated to

comprise up to 11.5% of the total human gut microbiome [14].

Such a high inoculum is in agreement with the paramount role of

this archaeon in the detoxification of digestion by-products [9], but

contrasts with the relatively low (,50%) rate of detection observed

in studies based on either isolation or PCR-based detection of

specific DNA sequences [5,14,16].

Here, we employed an optimized protocol for the extraction

and specific PCR-based detection of M. smithii and M. stadtmanae

DNA in stool samples and demonstrated that M. smithii DNA can

be detected in the stool of almost all individuals (95.5%) and M.

stadtmanae in 29.4% of individuals. The fact that negative results

were obtained for the negative controls and the fact that all

experiments were conducted under strict rules to prevent

laboratory contamination, together with the recovery of original

sequences, indicate that the positive detection of M. smithii and M.

stadtmanae DNA achieved in this study was not due to specimen

contamination. Moreover, the specificity of the real-time PCR

systems developed herein was ensured by in-silico analysis and

experimental testing using DNA extracted from common human

gut inhabitants and pathogens. A high, 99–100% sequence

similarity of real-time PCR products with that of reference

sequences finally ensured the specificity of the real-time PCR

systems herein reported. Likewise, detection of the internal positive

control in all specimens negative for M. smithii or M. stadtmanae

eliminated the possibility of PCR inhibition. Therefore, the data

likely accurately estimate the prevalence of both M. smithii and M.

stadtmanae in the population studied. Comparison of the DNA

extraction protocol developed herein with the protocol previously

used for metagenomic analysis of the human gut [14,16] revealed

a two to three log difference in the quantity of archaeon DNA,

with greater detection achieved with the new protocol. This

difference in performance was likely due to an optimized

combination of previously reported lysis methods [14,15,18,19].

The fact that members of the family Methanobacteriales, such as M.

smithii and M. stadtmanae, have a proteinase K-resistant cell wall

[20], suggests that double mechanical cell lyses using glass beads

was decisive in the efficiency of DNA extraction. This fact was

further illustrated by the detection of low DNA loads (Tables 2 and

3), whereas the sensitivity was measured to be $107 cells per gram

of feces in a previous study [11]. Such a huge difference in the

sensitivity of M. smithii DNA detection may have influenced

previously published data on the prevalence of M. smithii in stool.

This protocol was also shown to be effective for DNA extraction

from Mycobacterium tuberculosis present in stool [21].

In most previous studies, the universal 16S rRNA gene was used

as a suitable target for the molecular detection of archaeal DNA

present in the human and animal gut [14,16,18,22]. The mcrA gene,

which encodes the methyl-coenzyme M reductase in M. smithii, has

also been used [15]. However, M. stadtmanae mcrA gene-derived

primers failed to detect M. stadtmanae in a total of 207 individuals

[11]. We therefore used the rpoB gene, which encodes the b subunit

of RNA polymerase and is one of the core genes shared by Bacteria

and Archaea [23,24]. The rpoB gene has been previously used to infer

phylogenetic relationships between Archaea and was recently

demonstrated to correlate with DNA:DNA hybridization data, as

well as the average nucleotide identity among prokaryotes

[23,25,26]. In the present study, the specificity of M. smithii and

M. stadtmanae detection was confirmed by evaluating two indepen-

dent, universal molecular targets (16S rRNA and rpoB genes) using

specific and highly sensitive quantitative real-time PCR. The latter

gene exhibits a 12% sequence divergence between M. smithii,

conferring a higher specificity than the 16S rRNA gene system.

Moreover, sequencing of the PCR products obtained for M. smithii

Table 3. Copy numbers of M. smithii 16S rRNA and rpoB genes per gram of stool obtained using the protocol reported herein
versus those obtained via the reference Qiagen protocol for M. smithii DNA extraction from human stool (1).

present extraction protocol Qiagen extraction protocol P value(1)

Assay Mean Standard
Deviation

Median Maximum Minimum Mean Standard
Deviation

Median Maximum Minimum

16S rRNA 4.11e+09 1.23e+10 7.54e+05 7.43e+10 100 3.02e+07 1.25e+08 1.13e+03 7.20e+08 0 #0.00001

rpoB 1.48e+09 3.80e+09 2.94e+06 1.65e+10 0 1.01e+07 4.11e+07 2.20e+03 2.27e+08 0 #0.00001

P values were determined using the non-parametric Kruskal-Wallis test for two groups.
doi:10.1371/journal.pone.0007063.t003
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confirmed the detection specificity of the real-time PCR assays, as

sequence similarity values were 99% compared to the reference M.

smithii sequence. Likewise, sequence similarity values were 100% for

M. stadtmanae.

Data herein presented shed new light on the biology of

methanogenesis in the human gut. While breath methane

measurement has a high positive predictive value, its sensitivity

was lower than that of real-time molecular detection of

methanogens in healthy individuals, the breath methane test

being positive only for M. smthii inoculum .107 organisms per

gram of stool [27]. Indeed, breath methane measurement typically

yields a prevalence of 40% [27,28], in contrast to the 95.7% of

methanogen DNA in our study. Despite the fact that molecular

test, contrary to the breath methane test, detects both alive and

dead methanogens, data herein reported indicate that gut

methanogens are detectable in almost all individuals, regardless

of them being healthy individuals or suffering from intestinal

disease. Morevover, the breath methane test cannot determine the

precise microbial source of methane in the gut; the fact that we

detected M. stadtmanae in addition to M. smithii in about one-third

of individuals, and that other methanogen DNAs have been

detected in some individuals [15,27], suggests that molecular

determination of the gut methanogen flora is essential for any

study dealing with the biology and the dynamics of methanogen-

esis in both healthy individuals and in patients presenting with

intestinal disease under widespread antibiotic and dietary changes.

We did not detect M. smithii and M. stadtmanae in less than 5% of

individuals; whether this lack of detection reflects the limit of

molecular detection or true absence of both methanogens, remains

to be determined. Performing a breath methane test may help

resolve this issue and give a basis to continue molecular detection

of methanogens in such individuals. Our study indicates for the

first time that methane production could be due to at least two

archaeal species in the same individual but the M. smithii and M.

stadtmanae DNA loads were highly variable among specimens. We

did not collect several specimens per individual in a time-

dependent manner, and therefore we cannot ascertain whether

the M. smithii and M. stadtmanae DNA loads remain constant over

time for an individual or vary under physiological and pathological

circumstances. Interestingly, M. smithii DNA was detected in all

stool specimens collected from 16 children younger than 2 years of

age, including one specimen collected from a 2-week-old infant

that was negative using the reference extraction protocol.

Therefore, our results complete previous data demonstrating the

transient detection of M. smithii DNA during the first 5–120 days of

life in stool samples obtained from 7/14 children younger than one

year of age [16]. These data indicate that the acquisition of M.

smithii is an early event in newborns, resulting from maternal or

environmental exposure. M. smithii has been detected in the

vaginal flora, including that of 3/13 pregnant women [2,16].

The DNA extraction protocol and highly specific and sensitive

method of detection and quantification developed in the present

study offer new tools on which to base the optimized, broad-

spectrum molecular detection of Archaea embedded in the complex

microbiomes associated with the mammalian mucosa. This

protocol may aid in identifying additional species of Archaea and

in monitoring modifications in the archaeal flora under various

physiological, pathological, and therapeutic circumstances.

Supporting Information

Table S1 The Ct values for the real-time PCR detection of M.

smithii and M.stadtmanae in human stools.

Found at: doi:10.1371/journal.pone.0007063.s001 (0.10 MB

XLS)

Table S2 List of bacteria tested for the specificity of real-time

PCR.

Found at: doi:10.1371/journal.pone.0007063.s002 (0.05 MB

XLS)
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