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Abstract

Advances in mass spectrometry among other technologies have allowed for quantitative, reproducible, proteome-wide
measurements of levels of phosphorylation as signals propagate through complex networks in response to external stimuli
under different conditions. However, computational approaches to infer elements of the signaling network strictly from the
quantitative aspects of proteomics data are not well established. We considered a method using the principle of maximum
entropy to infer a network of interacting phosphotyrosine sites from pairwise correlations in a mass spectrometry data set
and derive a phosphorylation-dependent interaction network solely from quantitative proteomics data. We first
investigated the applicability of this approach by using a simulation of a model biochemical signaling network whose
dynamics are governed by a large set of coupled differential equations. We found that in a simulated signaling system, the
method detects interactions with significant accuracy. We then analyzed a growth factor mediated signaling network in a
human mammary epithelial cell line that we inferred from mass spectrometry data and observe a biologically interpretable,
small-world structure of signaling nodes, as well as a catalog of predictions regarding the interactions among previously
uncharacterized phosphotyrosine sites. For example, the calculation places a recently identified tumor suppressor pathway
through ARHGEF7 and Scribble, in the context of growth factor signaling. Our findings suggest that maximum entropy
derived network models are an important tool for interpreting quantitative proteomics data.
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Introduction

The principles that underlie how mammalian cells detect,

integrate, and utilize external signals to achieve an appropriate

phenotypic response are a subject currently of intense study[1].

Signals mediated by receptor tyrosine kinases (RTKs), such as

stresses, growth factors, antigens, among many others, lead to the

phosphorylation of hundreds of tyrosine residues leading to

conformational changes that allosterically regulates interactions

with specific binding partners[2,3]. Such regulation cooperates to

form complex biochemical signaling networks[4]. Recent techno-

logical advances in the application of mass spectrometry and

array-based methods to phosphoproteomics have allowed for the

quantitative measurement, under different conditions, of the

relative activities of hundreds of tyrosine residues as they undergo

reversible phosphorylation in response to a stimulus[5,6,7,8,9].

The enormity of quantitative data acquired in these experi-

ments raises the question of what modeling approaches might be

used to lend predictive and mechanistic insight into the signaling

networks that govern the behavior of these phosphorylation

sites[10]. Clustering and other measures of correlation have

successfully grouped large data sets including data derived from

mass spec-measured signaling dynamics into similar patterns[5].

Partial least squares regression modeling (PLSR) has also been

employed to identify what aspects of these data sets are most

correlated with different phenotypic responses[7,11]. These

statistical techniques have shown to be very useful in their

predictive capabilities and have yielded new biological in-

sights[12].

Despite these many advances, computational approaches for

inferring the actual interaction networks from quantitative,

condition dependent activities in the proteomics data have not

been fully investigated. Methods for network inference such as

Bayesian approaches[13] or mutual information[14] require an

knowledge of a full distribution of activities across an ensemble of

measurements at each node in the network. As such, these

methods are not applicable when the number of samples is small

(e.g. ,10 sample conditions for typical Mass spectrometry or

protein-array experiments).

Also, quantification at each phosphorylation site is subject to

many sources of error that are hard to account for, and it is not

clear a priori the level of quantitative detail that such experiments

provide. Therefore, the question that we aim to address is the

following: assuming no prior information as to the network of

causal activities among the measured set of phosphorylation sites,

to what extent can phosphoproteomics, through a series of

quantitative measurements that monitor the activity of phosphor-

ylation sites, be used to infer a signaling network (in which the

activities of each site are embedded in an interaction network)?

To address this question, we consider the least biased model

that incorporates only the statistics of the correlation in

phosphorylation levels at different phosphorylation sites under
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different conditions (as measured by mass spectrometry). We use

these correlations to constrain a model of pairwise interactions

between phosphorylation sites that constitute a full signaling

network. Such a model is obtained from information theoretic

considerations by applying the principle of maximum entropy(-

methods)[15].

Models of pairwise network connectivity obtained from entropy

maximization have proven insightful in different and seemingly

disparate contexts[16,17]. Bialek and coworkers applied the

principle of entropy maximization to construct an interaction

network of neurons that respond to visual stimuli[17]. In another

example, Fedoroff and coworkers use the principle to derive a

genetic interaction network from microarray data in yeast[16].

However, one major difference in cell signaling systems from

these previously studied systems is that phosphorylation patterns

display transient, non-stationary behavior that makes the notion of

a statistical ensemble unclear. Furthermore, the structure of

phosphorylation networks are likely to be fundamentally different

from those involving gene expression. Therefore, we first

investigated the applicability of this approach to cell signaling.

We applied the entropy maximization principle to a simulated

biochemical signaling network with non-stationary dynamics and

known network connectivity. We find that in this model system

whose quantitative signal outputs are governed by a large set of

coupled nonlinear differential equations, the method detects

known interactions with significant accuracy. We then analyzed

a proteome-wide mass spectrometry data set[8] of a growth factor

signaling network in a human mammary epithelial cell line and

observed a biologically interpretable, small-world structure of

interacting signaling nodes. We also derive a set of predictions

regarding the interactions among previously uncharacterized

signaling nodes. Our approach suggests that signaling networks

inferred solely from quantitative proteomics data generate many

novel biological hypotheses and are a useful tool for interpreting

large quantitative proteomics data sets.

Furthermore, upon inspection of our calculated signaling

network, we observe new mechanistic features of the growth

factor mediated signaling network. For example, we identify the

effector ARHGEF7 of a recently characterized tumor suppressor

protein, Scribble[18], as a key node within the network and place

its activity in the context of other known regulators of growth

factor signaling. Our computation also identifies the LDL

receptor, previously not known to function in growth factor

signaling, as having a possible role in coordinating the activity of

the epidermal growth factor receptor (EGFR). Also the study

predicts the function of a novel pleckstrin-homology (PH) domain

containing protein, PI3BP, and its possible role in lipid kinase

secondary messenger signaling.

Results

Maximum entropy principle applied to phosphorylation
site interaction networks

From the correlations in the time courses, we seek to indentify

which phosphorylation sites affect the activities of other phos-

phorylation sites and whether this activity positively or negatively

affects its targeted phosphorylation site. An interaction in such a

network is thus interpreted as a pair of phosphorylation sites whose

activities are most closely related. The relation can result from a

series of indirect interactions such as one phosphorylation site

recruiting a kinase that phosphorylates another site in the network.

Other scenarios that lead to an interaction are also possible such as

a phosphorylation event affecting the recruitment of a protein to a

membrane or a scaffold that results in its own phosphorylation or

desphosphorylation by a separate effector. For example, phospho-

inositide 3-kinase (PI3K) catalyzes the conversion of the lipid product

PIP2 to PIP3 and subsequent PIP3 binding at cell membranes by

pleckstrin-homology (PH) domain-containing proteins leads to

phosphorylation or desphosphorylation of the corresponding PH

domain containing protein such as AKT which then has over 100

downstream targets[19]. In this situation, a phosphorylation site on

PI3K could interact with a downstream substrate of AKT. The

inferred network could then be used to interpret the local, dynamic

biological function of different phosphorylation sites as they undergo

reversible covalent modifications.

Our aim is to arrive at such a network using only the

quantitative activities in the proteomics data. From the compu-

tation, we aim to extract as much information as possible from a

proteomics experiment. We do not expect to recover a full set of

phosphorylation-dependent interactions; rather, we investigate the

extent to which the least biased partial network derived strictly

from quantitative proteomics data provides useful information.

Assuming no prior data, an unbiased network model consists of

independent signaling nodes whose activities are uncorrelated.

However, the quantitative measurements in mass spectrometry

data contain information about the structure of the network and

correlated activity profiles between nodes. Pairwise correlations

averaged over the quantitative values of phosphorylation site

activity would then give rise to a model of interactions in which the

activity at each site is dependent upon a network of phosphory-

lation sites with interactions between each node.

Given the activities of each signaling node and their pairwise

correlations, the principle of maximum entropy gives the

probability of having a particular network configuration (i.e. set

of relative amounts of phosphorylation at each signaling node)

xi
^n o

, i[ 1,N½ � (methods):

p xi
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Where Z{1is a normalization factor that is not considered for

the purpose of this study. Important to note is that this distribution

can also be obtained from other arguments[16]. We emphasize

however that this is the maximum entropy distribution to

underscore the point that the model, and interactions encoded

within it, is mathematically the least biased attempt at the

inference of a phosphorylation site interaction network. Therefore,

to the extent that useful information can be obtained from this

model is indicative of the utility of such mass spectrometry data to

encode an interaction network.

In this model, Jij are the elements of the resulting interaction

matrix that defines the pairwise network connectivity between the

ith and jth phosphorylated tyrosine site and is the inverse of the

element in the corresponding correlation matrixCij ,Jij~C{1
ij .

Each value is mean centered and normalized to unit variance,

xi
^

~ xi{SxiTffiffiffiffiffiffiffiffiffiffi
SxixiT
p , where the brackets denote an average over the set of

measurements and Xi is the bare value of phosphorylation at the ith

signaling node. This is done in part because the relationships

among the relative magnitudes of phosphorylation activities (at

different sites) are poorly resolved in phosphoproteomics data. As a

result, phosphorylation sites having a small variance across the

different conditions (on the order of the error bars in the

measurements) were not used in the calculation.

From the original data, it is noted that there are many more

phosphorylation sites than number of time points sampled M
(NwM ), and as a result, C is singular (i.e. the rank of C is not
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complete). Therefore, J is obtained by inverting C in the space of

non-zero eigenvalues. First, Cij is expanded in terms of its

eigenvalues and coefficients of its eigenvectors: Cij~
PN

k~1

vk
i uT

i uj ,

where the superscript T denotes the transpose of the eigenvector u.

The matrix element Jij is obtained by inverting C in the space of

eigenvectors containing non-zero eigenvalues by considering only

the non-zero eigenvalues of Cij :

Jij~
Xr

k~1

vk
i

� �{1
uT

i uj : ð2Þ

r is the rank of the covariance matrix.

It is important to note that the interaction at sites i and j is not

necessarily revealed by the correlation since other long-range global

influences may dominate the correlations. From the expansion, it is

seen that the correlations are dominated by the largest eigenvalues

whereas the interactions that constitute the network connectivity are

dominated by the smallest eigenvalues. Therefore, a key feature of

the inferred maximum entropy network is that the matrix elements

Jij constitute the residual, pairwise interactions between phosphor-

ylation sites i and j that remain once global effects that are

dominated by the correlations (i.e. the largest eigenvalues) are

effectively removed[16]. Other information theoretic methods that

infer biological network connectivity from data sets with larger

sample sizes[14], also involve a considerable effort to remove effects

that are dominated by global correlations such as the use of the

data-processing inequality[15]. In the Maximum Entropy ap-

proach, long-range correlations that influence the activity are

naturally removed by deemphasizing the contributions of large

eigenvalues in the correlation matrix.

The interaction matrix J (Fig. S1) encodes a total of
N N{1ð Þ

2
pairwise interactions among the phosphotyrosine sites. Fig. S2

contains a scatter plot of the elements of J plotted against the

elements of C. For N~222 sites, 24,531 interactions are possible.

However, the histogram of J values computed from the data is

sharply peeked at zero (Fig. S1a) indicating that most entries in the

matrix contribute little to the network. From eq. 2 the diagonal

entries of J indicate the ‘‘self’’ interactions of the network and are

plotted in Fig. S3. Large values indicate the phosphorylation sites

that contribute most to the structure of the network and can be

interpreted as network ‘‘hubs’’.

Therefore, a parameter that defines a threshold value of

interaction strength is introduced and different networks are

obtained for different threshold values. For a given value of

threshold interaction strength, T, an interaction between phos-

phorylation sites at positions i and j is counted if the magnitude of

Jij exceeds the threshold; Jij

�� ��wT . A connectivity matrix

x
calcð Þ

ij ~H Jij

�� ��{T
� �

, ð3Þ

where H Xð Þ is a step function that equals 1 if Xw0 and 0

otherwise, is used to define the network connectivity. Since the

choice of threshold T is arbitrary, each subsequent calculation

must be carefully considered with respect to its dependence on the

value of T. Fig. S4 illustrates how the connectivity of the network

changes for different choices of T.

Entropy maximization principle of network connectivity
in a simulated signal transduction network

It is important to note that measured time courses (whose data

points in this case constitute the different samples) from the mass

spectrometry data (and signal transduction in general) are not

stationary; a further complication arises from the fact that the

measurements under different conditions (i.e. across time) are not

necessarily uncorrelated. As a result, the physical meaning of the

ensemble derived from maximizing the entropy functional is not

clear. Therefore, it is not understood, a priori, to what extent does

a model constrained to pairwise correlations in the mass spec data

captures known interactions.

To begin to understand the utility of the method, we

investigated the applicability approach by simulating the dynamics

of a model signaling network with known network topology. A

model of a signaling cascade was considered and an ordinary

differential equation (ODE) model was used. We focused on this

model because the model consists of a transient response within a

complex signaling network with nonlinear feedback loops and

many interconnected chemical reactions. Most importantly, the

simulated time courses in this model display a similar pattern,

characterized by an overall rise and subsequent decay of signaling

intermediates over time, of activities to that observed in the mass

spectrometry data. The published signaling model consists of G-

coupled protein receptor signaling leading to myosin light chain

phosphorylation[20] and was obtained from the Biomodels

database[21]. The model consists of a set of 105 coupled ODEs

and 110 half reactions.

We first investigated the accuracy of the inferred network. For

each choice of threshold, the network outperforms the expected

value obtained a network with uniformly chosen random bonds

(blue, circles). Fig. 1a considers the fraction of correction

interactions (defined in the supplementary information). As the

threshold is increased (T~100 (red, squares), T~102 (green,

crosses), T~103 (yellow, diamonds)), and T~5x103 (violet,

triangles)), the inferred network detects real interactions with high

accuracy and significantly outperforms the random network by

many factors at node distances (defined in methods) of k~2, k~3,

and k~4. Note the computation does not perform well for k~1
because of the convention chosen for our definition of node

distance (methods). For high threshold values, the calculated

network achieves perfect accuracy at larger node distances. To

study the specificity of the calculated network, we plotted the total

number of correct interactions detected as a function of T in

Fig. 1b. From Fig. 1b, it is apparent that the maximum entropy

network provides significant coverage of the full network derived

from the stoichiometry matrix of the simulated model (methods).

Of the 110 total half reactions, the calculated network detects this

many interactions at roughly a threshold value of T~1103

corresponding to an accuracy of ,75% at a node distance of

k~4.

Application of a maximum entropy network model to a
quantitative phosphoproteomic data set

Having applied the maximum entropy approach to network

connectivity in a simulated cell signaling system, we then

considered its application to a proteomic data set. Fig. 2 considers

graphical depictions of the phosphorylation interaction network

at different thresholds obtained from eq. 3. At a low threshold

(Fig. 2a), T~T1~2:5x10{3, the network is not easily interpret-

able. At intermediate threshold (Fig. 2b), T~T2~5:0x10{3, the

network can be visualized as containing a core structure of nodes.

At a high threshold (Fig. 2c), T~T3~7:5x10{3, a small set of

interconnected nodes is present. Fig. 2d shows the relative

location of each threshold within the histogram of all 24,531

interactions. From the histogram, it is apparent that the

distribution of the magnitude of Jij is sharply peaked at zero

with the higher threshold choices containing only a small fraction

Maxent Signaling Networks
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of the total number of interactions. The nodes consist of a set

phosphorylation sites appear to be connected is closely connected

to each other site more than would be expected in a random

network[22].

Since it is difficult to compare the calculated network in a

quantitative sense with known signaling pathways, we considered

quantitative measures of network structure and compared these

measures to those expected from a random network. One way of

characterizing the network is to compute an average clustering

coefficient SCT [22]. We expect the observation of deviations of

this quantity away from that expected in a random network to be

indicative of local structure within the network and also suggestive

of the degree to which the network contains useful information in

its correlated, clustered connections. This structure could be

interpreted as the existence of local groups or modules of signaling

nodes whose activities are coordinated. The clustering coefficient

at node i, Ci, defined as Ci~
2Ei

ki ki{1ð Þ, is the number of connections

Ei between nearest neighbors in a network with ki nearest

neighbors divided by the number of possible connections. Fig. 3a

shows a plot of the calculated value SCT (Ci is averaged over each

node) as a function of threshold T (red, squares). The curve is

compared to what would be expected from a random network

with as many nodes and edges (blue, circles) (methods). As seen in

Fig. 3a, at small values of T, the computed value of SCT is nearly

indistinguishable from that of a random network. This property

likely defines the point at which T is sufficiently low that the

network too noisy to be interpretable. For intermediate values of

T, the computed networks have significantly higher values of SCT
than would be expected of a random network. At this value, the

model provides a highly correlated network structure. Finally, at

large values of T, few nodes and edges are available to form a

network and as a consequence, the calculated SCT also deviates

less from the expected value for a random network. As a reference

to the size of the network, Fig. 3b plots the average number of

nearest neighbors SkT as a function of T. From the plot in Fig. 3b,

it is apparent that for values of T that lead to a high value of SCT,

a sufficient number of interactions are detected to form a coherent

network.

Biological interpretation of the network
An inspection of the network at an intermediate threshold

(Fig. 4) reveals connected phosphotyrosine sites of disparate

functional significance. The core structure of the signaling network

contains phosphorylation sites on proteins involved, in endocyto-

sis, gene splicing, Mitogen-activated protein kinase (MAPK)

signaling, PI3K signaling among others.

In Fig. 4, a network consisting of distinct structures involving

elements of the growth factor signaling network is observed. This

behavior is further quantified in Fig. S4 which considers the node

distribution at different thresholds. We grouped the intercon-

nected phosphorylation sites into four categories. One set (blue

circle) consists largely of receptor and membrane proximal

signaling and comprises the LDL receptor (an EGF binding

domain-containing protein that plays a role in lipid transport in

epithelial cells), an Epidermal growth factor receptor (EGFR)

phosphorylation site, Epithelial Cell Receptor A2 (EPHA2), a

receptor tyrosine kinase that also activates canonical downstream

effector pathways), among others. Another group (black circle)

consists of many phosphorylation sites known to be involved in

lipid kinase secondary messenger signaling such as the PI3K

pathway[19]. These phosphorylation sites include sites on PI3BP,

the 59 inositol phosphatase SHIP2, and PIK3R, the p85

regulatory subunit of PI3K. Another set (red circle) contains

phosphorylation sites involved in processes immediately down-

stream of receptor activation such as endocytosis, integrin, and

Jak/Stat signaling. These phosphorylation sites involve proteins

having a number of functions in Endocytosis (e.g. STAM2), a

phospholipase Annexin A2, and Caveolin. The other set of nodes

(orange circle) contains many phosphorylation sites associated

with cytoskeletal dynamics such as paxillin, filaminB, as well as

SFRS9, a putative alternative splicing factor. The choice of these

groupings was made to facilitate the biological interpretation of

the network.

Novel features of the growth factor signaling network
An inspection of the diagonal elements Jii of the interaction

matrix contains information about the ‘self’ interactions of the

Figure 1. Application of the pairwise Maximum Entropy model to network structure to a simulated biochemical signaling model.
Model consists of 105 chemical species coupled through 110 chemical reactions. Full details and parameters are available in the Biomodels
database[21] and ref. [20]. a.) Accuracy measure: fraction of correct interactions as a function of node distance for different threshold values are
considered. Different thresholds used are compared to a random network of 105 chemical species. Red line denotes the expected value for a network
of random connections. b.) Specificity measure: total number of correctly detected interactions as a function of threshold.
doi:10.1371/journal.pone.0006522.g001
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network (Fig. S3). These elements Jij are a measure of the overall

contribution of the ith phosphorylation site to the structure of the

network. The sites with the largest self interaction can be

considered the network hubs. Table 1 contains a list of the

phosphorylation sites with the 10 largest self interactions. These

hubs determine the core structure of the signaling network.

Functional aspects of the signaling network are apparent from

inspection of the high scoring phosphorylation sites. In the case of

receptor-mediated signaling, the LDL receptor is shown to

coordinate its activity with EGFR which also interacts with sites

on the Ephrin receptor. These receptors may be acting in concert

to coordinate signals to other areas of the pathway. In another

region of the network, lipid kinase secondary messenger signaling

is regulated by a series of interactions involving the regulatory

subunit of PI3-Kinase (PI3K), a little characterized 39 phosphoi-

nositol binding protein PI3PBP, and an inositol phosphatase

(SHIP-2) that is known to be critical in regulating signaling

through PI3K. Although the coordinated regulation of PI3K and

SHIP-2 is well documented[19], PI3PBP and its interactions are

unknown. Other regions of the network also contain novel

functional predictions.

Previously uncharacterized signaling nodes
Of the 222 detected tyrosine-phosphorylated peptides that

comprise the signaling network in the data set that we used, 31

have been previously unassociated with the EGFR signaling

network[8]. The interaction matrix also makes predictions about

the connectivity of the uncharacterized nodes. Table 2. lists the 5

largest self interactions among the phosphorylation sites that have

not been associated with the network.

The highest scoring uncharacterized phosphorylation site is

associated with a protein ARHGEF7. ARHGEF7 is a mediator of

the Tumor suppressor, Scribble[18], associated with the Rho

GTPase Rac and its pathway[23]. The Rac pathway is involved in

cytoskeletal rearrangement and cell motility among many other

functions. The model predicts that ARHGEF7 coordinates

receptor signaling with cytoskeletal proteins and also makes

interactions with a splice factor SFRS9 which can regulate

alternate splicing events. In light of this finding, it is also interesting

speculate that SFRS9 may be regulating splicing events that

coordinate cytoskeletal processes.

The next highest scoring uncharacterized phosphorylation site is

associated with a poorly characterized SH3 domain containing

Figure 2. Threshold dependent phosphorylation interaction networks. Graphical depictions of inferred phosphotyrosine interaction
networks at different thresholds. Green lines denote positive connections and red lines denote negative connections. Networks at three thresholds
are shown: a.) T~T1~2:5x10{3 , b.) T~T2~5:0x10{3 , and c.) T~T3~7:5x10{3 d.) Histogram of the magnitude of the Jij interactions and the
relative location of theT1 , T2 , and T3 cutoffs.
doi:10.1371/journal.pone.0006522.g002
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protein SH3D19. SH3D19 is a likely adapter protein that contains

five SH3 domains[24]. The third highest scoring phosphorylation

site is associated with a zinc finger domain containing protein

ZDHHC5. ZDHHC5 was identified in an shRNA screen for

genes involved in the division of HeLa cells[25]. The next highest

scoring phosphorylation site is associated with a protein known as

Figure 3. Clustering properties of the inferred signaling networks. Topological properties of inferred signaling networks as compared to
those of a random network. a.) Average clustering coefficient SCT is plotted against different values of interaction threshold T. Maximum entropy
network (red, squares) and a random network with the given number of nodes and edges of inferred network (blue, circles) are considered. b.) mean
number of nearest nodes SkT plotted against the interaction threshold T.
doi:10.1371/journal.pone.0006522.g003

Figure 4. Inferred interaction network at intermediate threshold gives a modular, biologically interpretable signaling network.
Graphical depiction of the signaling network at intermediate (T~5:0|10{3) threshold. (Tyrosine phosphorylation sites are grouped, for
visualization, into four functional categories: receptor signaling (blue circle), cytoskeleton (orange circle), lipid kinase secondary messenger signaling
(black circle), and integrin, JAK/STAT signaling, and endocytosis (red circle). Green connections denote positive and red connections denote negative
interactions. Full annotation for each abbreviated site name shown in the graph is given in the supplementary information
doi:10.1371/journal.pone.0006522.g004

Maxent Signaling Networks
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Annexin A2. Annexin A2 is a phospholipase family member and

has numerous functions including endocytosis and the generation

of lipid secondary messengers[26]. Finally, the fifth highest scoring

phosphorylation site is associated with GPCRC5C. GPCR5C is a

tissue specific, G-protein coupled receptor[27]. Fig. S5. contains a

graphical representation of the network connectivity of the three

highest scoring phosphorylation sites, those associated with:

ARHGEF7, SH3D19, and ZDHHC5.

Discussion

We used the maximum entropy principle to infer a network of

interactions between phosphorylation sites assuming only con-

straints obtained from pairwise correlations observed in quantita-

tive mass spectrometry data. As a result, we were able to obtain,

for the first time from phosphoproteomics mass spectrometry data,

a biologically interpretable signaling network that predicts the

interactions involved with previously uncharacterized signaling

nodes. For a sufficiently high threshold value of interaction

strength, a small-world network topology is observed in which the

average clustering coefficient is much larger than would be

expected for a random network[22]. This core structure of the

derived network connectivity contains many known signaling

intermediates with previously characterized interactions along

with poorly uncharacterized tyrosine phosphorylation sites and

their predicted interactions. It is also important to note that

because the network depends on a threshold parameter, a decrease

in the number of false positives will necessarily accompany an

increase in the number of false negatives (true interactions that are

not detected). Thus, the network that we compute at high

threshold values, although likely accurate, is by no means

complete. Nonetheless, such a model of network connectivity

serves as a resource for the biological community in generating

new hypotheses on the nature of signal transduction mediated by

phosphorylation networks.

Unfortunately, mass spectrometry and other proteomics data

are inherently noisy and it is difficult to account for sources of

noise that affect the quantitation. Invariably, these errors are

propagated into our calculation in ways that are uncontrolled.

Also, the amount of information that can be obtained from these

experiments is fundamentally limited by the small number of

measurements at each node in the network and the maximum

entropy approach merely intends to extract the optimal amount of

information from each measurements. Despite these difficulties, a

network with biological interpretability was inferred solely from

correlations in the quantitative mass spectrometry data.

Methods

One key assumption in developing the model is that the relative

amounts of Tyrosine phosphorylation measured at each phos-

phorylation site for each time point constitute one sample from a

statistical ensemble of possible phosphorylation states whose

activities fluctuate on an interconnected network. Since time

courses are measured up to a time of approximately one half hour,

the differences in phosphorylation levels measured at each time

point arise from changes in the amount of reversible post

translational modifications. Changes in gene expression occur on

longer time scales[28] so we do not expect the time courses to be

affected by gene transcription upon which the upregulation of

genes will affect the network topology. Therefore, it is reasonable

to expect the same protein-protein interaction network to be

present across a time scale of 30 minutes.

We characterize the state of the system with a state vector~xx that

contains the relative amount of pY phosphorylation at each

measured site;

x!~ x1,x2,:::,xNf g, ðS1Þ

xi is the amount of phosphorylation at the ith phosphorylation

site.

A probability of observing the network in a particular

configuration p x!
� �� �

is then considered. The entropy H is then

defined,

H~{
X
x!
� � p x!

� �� �
ln p x!

� �� �� �
: ðS2Þ

Since it is apparent that the magnitude of fluctuations about the

average of each time can greatly differ, data are rescaled to unit

variance to focus on the relative shapes of the time courses.

Therefore, a new set of scaled variables is considered:

xk
i

^
~

xk
i {SxiTffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SxixiT
p , ðS3Þ

where brackets denote an average over M samples, and the k

superscript denotes the kth measurement and runs through each

condition from 1 to 7 and denotes the kth time point or

measurement. When written in this form, Sx
^

ix
^

jT is the Pearson

covariance matrix. Since our interest is in network connectivity,

Table 1. Highest scoring phosphotyrosine sites.

Name Self Interaction (x10ˆ -2) (Variance)ˆ-1 (x10ˆ 2)

PI3BP_Y492 2.51 7.06

LDLR 1.55 2.14

ARHGEF7 1.14 7.33

PAR3aY1127 1.11 2.02

PAR3aY1080 1.09 9.61

FAK 1.03 1.06

Actin-a1 1.03 5.88

ACK_Y857/Y858 1.2 0.06

SFRS9 1.01 4.98

STAM2_Y292 0.94 0.03

doi:10.1371/journal.pone.0006522.t001

Table 2. Highest scoring previously uncharacterized
phosphotyrosine sites.

Name Self Interaction (x10ˆ -2) (Variance)ˆ-1 (x10ˆ 2)

ARHGEF7 1.14 7.33

SH3D19 0.7 1.26

ZDHHC5 0.55 2.87

An A2 0.49 2.73

GPCRC5C 0.45 2.77

doi:10.1371/journal.pone.0006522.t002
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we consider two point (i.e. pairwise) interactions and therefore the

mean and covariance of the data. The task is to maximize the

entropy H subject to the constraints:

X
x!
� � p x!

� �� �
~1, Sx

^
iT~0, and Sx

^
ix
^

jT~
SxixjTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SxixiTSxjxjT
p :Cij : ðS4Þ

For each element of the covariance matrix Cij , there is a

corresponding Lagrange multiplier Jij such that the procedure

results in the following form for p x̂xi

� �� �
:

p xi
^n o� �

~Z{1 exp {
1

2

X
ij

xi
^

Jij xj
^

" #
: ðS5Þ

Z is a normalization factor that can easily be obtained using

standard methods but is not necessary for the purpose of this study.

In future work, it may be interesting to study thermodynamic

properties of the model by studying the behavior of Z and its

logarithm that constitutes a free energy. Also, higher order

networks can be obtained by constraining the entropy to higher

order moments of the probability distribution. Since the form of

the resulting distribution p xi
^n o� �

is a multivariate Gaussian

whose argument (or energy function) is a summation over all

pairwise and self interactions. The interaction matrix Jij defined as

Jij~C{1
ij , gives the pairwise coupling between each phosphory-

lation site in the network and is the subject of the analysis.

Since there are many more observed phosphorylation sites than

independent samples of the network configuration, the problem of

finding the unique network connectivity is ill-posed. Instead, the

question that is asked is how to calculate the probability of a

network configuration (i.e. phosphorylation state of the N Tyrosine

sites that are measured). From the mass spec data[8], times courses

of the relative amount of phosphorylation at each of N~222
phosphorylated tyrosine sites is obtained at M~7 time points at

times 0,1,2,4,8,16,32f g minutes. All data were normalized to unit

variance and those phosphorylation sites having a small

(C{1
ij w100) variance, on the order of the error bars in the

experiments, were not considered. Since the resulting matrices are

underdetermined (i.e. NwM ), we obtain the interaction matrix by

inverting Cij in the space of non-zero eigenvalues[16].

First, Cij is expanded in terms of its eigenvalues and coefficients

of its eigenvectors:

Cij~
XN

k~1

vk
i uT

i uj ðS6Þ

where the T denotes the transpose of the eigenvector u. The matrix

element Jij is obtained by inverting C in the space of eigenvectors

containing non-zero eigenvalues by considering only the non-zero

eigenvalues of Cij :

Jij~
Xr

k~1

vk
i

� �{1
uT

i uj : ðS7Þ

r is the rank of the covariance matrix. From the expansions in

eqs. S6 and S7, it is seen that the correlations are dominated by

the largest eigenvalues whereas the interactions are dominated by

the smallest eigenvalues. The matrix elements Jij are interpreted as

the residual, pairwise interactions between phosphotyrosine (pY)

sites i and j that remain once global effects that are dominated by

the correlations (i.e. the largest eigenvalues) are effectively

removed. Jij constitutes the matrix of pairwise network interac-

tions. In this scenario, the interaction at sites i and j is not

necessarily revealed by the correlation since other factors aside

from pairwise interactions are influencing the correlation. Fig. S1

considers a plot of the histogram of values of Jij (Fig. S1a) and a

plot of the full matrix J (Fig. S1b).

From the plot in Fig. S1a, it is apparent that the distribution of

Jij is sharply peaked about zero suggesting that most elements of

the matrix contain no information. We therefore focused our

analysis on the large magnitude interactions of Jij . To show the

difference in the measured covariances with the inferred

interactions, Fig. S2 contains a scatter plot of the elements of J
plotted against the elements of C. From the scatter plot, it is

apparent that a complex relationship between the interactions and

corresponding correlations exists.

Also note that since the data are mean-centered and scaled to

unit variance, phosphorylation sites with small variance (across

different data points) contribute more to the network structure.

Therefore, sites with small variance (on the order of the error bars

of the experiment) are not considered; for example, the Tyrosine

of GSK3-b is constitutively phosphorylated and is not considered.

The inverse of the variance (across different data points) at each

site is also shown in Table 1 and in Table 2.

Application of maximum entropy derived network to a
model biochemical signaling network

The model of the signaling network consisting of a set of 105

coupled ODEs can be written as follows:

d S
!

dt
~N v! S

!
, p!

� �
ðS8Þ

where S
!

is an n-component concentration vector, v! S
!

, p!
� �

is a

110 component flux vector that is a function of S
!

and parameter

set p!, and N is a stoichiometry matrix whose columns consist of

the chemical species and rows consist of chemical reactions

corresponding to each of the fluxes. Eq. S8 can be solved using

standard procedures. We chose to study this model because the

transient behaviors in the calculated time courses roughly resemble

those seen in the experimental data.

From the time-averaged solution of eq. S8, the elements of a

time-averaged covariance matrix can be obtained:

Cij~T{1
tot

ðTtot

0

dt S
^

i
tð ÞS
^

j
tð Þ

	 

, ðS9Þ

where Ttot is the length of the time course, Ttot~50s, and theˆ

denotes mean-centering and normalization to unit variance of the

time course. Inverting Cij gives the interaction matrix Jij as

contained in eq. 1. Introducing a threshold T as in eq. 3 defines

the elements of a calculated connectivity matrix x
calcð Þ

ij ,

x
calcð Þ

ij ~H Jij

�� ��{T
� �

, ðS10Þ

where H is a step function.
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We then compared x
calcð Þ

ij to a model network connectivity that

can be computed from the stoichiometry matrix N. We defined an

undirected network connectivity, x
kð Þ

ij (of node distance k which we

define below) from N in the following way: we first considered a 1-

point connectivity from the relation

x
1ð Þ

ij ~H
XN

l~1

d1
ild

1
jl

 !
, ðS11Þ

where d1
il~H �NNilj jð Þ (H is a step function) and N is the number of

reactions. That is, we sum over the rows of �NN and look for two-

point combinations of non-zero elements (two chemical species

involved in the same reaction). Defined in this way, x
1ð Þ

ij defines a

network of pairs of chemical species that share a common

chemical reaction. The k-point (k.1) network can then be

obtained directly from the k{1 point network,

x
kð Þ

ij ~H
XN

l~1

dk
ild

k
lj

 !
, ðS12Þ

where dk
ij~H xk{1

ij

� �
, and H is a step function. Therefore, x

kð Þ
ij are

elements of a Boolean matrix that are non-zero if species i and j

are linked within any sequence of k half reactions. We note that

x
kð Þ

ij pertains only to the situation that considers the simulated

system and does not bear any relation to the phosphorylation data.

Fig. 1a. compares the calculated x calcð Þand x kð Þ for k = 1,2,3,4.

The fraction of correct interactions f kð Þ is computed by

comparing all non zero elements of x calcð Þto their counterparts in

x kð Þ; that is,

f kð Þ~
X

ij

x
calcð Þ

ij

 !{1X
ij

x
kð Þ

ij x
calcð Þ

ij

� �
: ðS13Þ

For reference, the simulated model[20] contains 20 unique

chemical species and therefore 190 possible interactions. Although

Jij is undirected (Jij~Jji), chemical reaction networks are defined

by sequences of half reactions and therefore are directed networks.

As a result, x kð Þ overcounts the total number of real interactions.

For example in the half reaction AzB?C, the species A and B

are considered connected at a distance k~1 although their

activities do not influence each other. We chose this convention

because we compared two undirected networks. Thus, f kð Þ
(Fig. 1a) overcounts the number of expected interactions by

roughly a factor of 2 – in part, the reason for poor accuracy at

node distance one is an artifact of the topology calculation.

Affinity dependent network topology
Fig. 3 illustrates the dependence of the calculated network

topology on choice of T. In Fig. S4, the node distribution P kð Þ is

plotted for four different values of T. P kð Þ is defined as the

probability that a pY site is interacting with k separate sites.

At high thresholds (e.g. T~T1~2:5x10{3) most signaling

nodes have no connections. At low threshold (T~T4~2:5x10{2)

each phosphotyrosine site is connected to many other sites.

At intermediate values of T (e.g. T~T2~5:0x10{2 or

T~T3~7:5x10{2), P kð Þ appears as a monotonically decaying,

continuous function of k. Unfortunately, due to the insufficient

number of samples of k, the large k behavior of P kð Þ is not

resolved. It is apparent, however, that at these intermediate

threshold values, the presence of a significant tail of the

distribution P kð Þ is apparent. At intermediate threshold values,

P kð Þ is seen as a monotonically decaying function k.

Computation of network diagrams and topological
properties

All networks shown in the text were drawn using the Cytoscape

software package[29]. Topological properties such as the mean

number of nearest neighbors and the average clustering coeffi-

cients were computed using the NetworkAnalyzer[30] plugin in

the Cytoscape package.

Random networks were computed as follows: for a random

network (Fig. 4a), the probability that a bond exists between two

nodes for a choice of T is p Tð Þ. p Tð Þ is taken to be p~
2nedges

N N{1ð Þ
where nedges is the number of computed edges at threshold T and

N is the number of nodes at T. In Fig. 1a, the fraction of correct

interactions is taken to be f Tð Þ~ 2Ncalc

N N{1ð Þ where Ncalc is the

number of calculated bonds.
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