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Abstract

We have extensively investigated the mechanical properties of passive eye muscles, in vivo, in anesthetized and paralyzed
monkeys. The complexity inherent in rheological measurements makes it desirable to present the results in terms of a
mathematical model. Because Fung’s quasi-linear viscoelastic (QLV) model has been particularly successful in capturing the
viscoelastic properties of passive biological tissues, here we analyze this dataset within the framework of Fung’s
theory. We found that the basic properties assumed under the QLV theory (separability and superposition) are not typical
of passive eye muscles. We show that some recent extensions of Fung’s model can deal successfully with the lack of
separability, but fail to reproduce the deviation from superposition. While appealing for their elegance, the QLV model
and its descendants are not able to capture the complex mechanical properties of passive eye muscles. In particular, our
measurements suggest that in a passive extraocular muscle the force does not depend on the entire length history, but to a
great extent is only a function of the last elongation to which it has been subjected. It is currently unknown whether other
passive biological tissues behave similarly.
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Introduction

The first extensive study of muscle as a viscoelastic material (i.e.,

using the analytic methods of rheology) was carried out on single

fibers and small bundles of fibers from frog skeletal striated muscles

[1]. As a way of synthetically summarizing their results, Buchthal

and Kaiser fit a separate linear model to each force transient

induced by a small stepwise change in muscle length. The

parameters of the model varied (nonlinearly) as a function of initial

muscle length, but were kept constant during any one simulation.

No single nonlinear model able to reproduce all the data with one

set of parameters was presented. More recently, several extremely

accurate studies have been conducted to investigate the properties

of individual skeletal muscles fibers, mainly in frogs (e.g., [2–4])

and in rats (e.g., [5–9]). However, the modeling was conducted

along the lines of Buchthal and Kaiser, i.e., using a set of locally

linear models. Models like these are certainly valuable, as they

summarize the data and enable comparisons across different

datasets. However, they have no predictive power, because they

cannot be used to simulate the force induced by a generic

elongation. This is obviously an important limitation.

To find more comprehensive models, one needs to turn to

studies of biological tissues composed mostly of collagen. A

particularly successful attempt to model the nonlinear viscoelastic

properties of passive tissues was carried out by Fung [10]. Fung

measured the force F following a stepwise change in the length L of

a section of rabbit mesentery membrane, starting from a resting

condition. He concluded that the time course of this response

scales nonlinearly with the magnitude of the step, and it can thus

be modeled as

F L,tð Þ~G tð ÞE Lð Þ ð1Þ

where F(L, t) is the relaxation response, G(t) is what he called the

reduced relaxation function (normalized so that G(0) = 1), and E(L) is

the elastic response, i.e., the force instantaneously generated in the

tissue when the length is changed in a stepwise manner from the

resting length to L. That is, he posited that the relaxation response

is separable. Next, Fung assumed that the superposition principle holds,

so that the response to a generic elongation history can be

interpreted as the infinite sum of relaxation responses to

infinitesimally small step-like changes in the elastic response. By

doing so he essentially assumed that the elastic response is

responsible for the nonlinear behavior, whereas the reduced

relaxation function is generated by a linear viscoelastic process that

acts on that elastic response. Accordingly, the nonlinear process

that converts the elongation into the force (Fig. 1A) is interpreted

by Fung (Fig. 1B) as the cascade of a static nonlinearity (the elastic

response, red box) followed by a linear process (with step response

G(t), blue box). This model was dubbed quasi-linear viscoelastic

(QLV), and it has since been applied to describe the viscoelastic

behavior of a wide range of biological materials, such as tendons,

ligaments, veins, arteries, cartilage, cardiac and skeletal muscle
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(e.g., [11–31]). Note that this model is fit to the data using the

response to step-wise elongations but, unlike those mentioned in

the previous paragraph, it can then in principle be used to predict

the response to a generic elongation.

The elegance and wide success of the quasi-linear framework

make it an ideal candidate for our object of inquiry, passive

extraocular muscles (EOMs). The purpose of this study is thus to

apply this theory to the length-tension data we have collected in

passive EOMs. However, the underlying assumptions of the QLV

model have rarely been systematically tested, and recent reports

indicate that, at least in ligaments [25,32–34] and in reconstituted

collagen [35,36], the separability hypothesis embedded in the

quasi-linear model does not hold. We designed our experiments

accordingly, carrying out a comprehensive test of the quasi-linear

theory (within the limits imposed by our experimental prepara-

tion). We found that the original QLV model is unable to

reproduce the forces generated by passive eye muscles in response

to stepwise changes in length (within the physiological range).

Extensions of this model, notably the ‘‘adaptive quasi-linear

model’’ [36], are able to overcome some of the problems, but not

others. This raises the possibility that the QLV model and its

descendants might be less than ideal to approximate the behavior

of other passive biological materials as well.

Methods

The methods used to collect the data presented in this paper

have been described in great detail in the previous paper in this

series [37]. Here, only a brief summary is provided.

Ethics Statement
All procedures were in agreement with the Public Health

Service policy on the humane care and use of laboratory animals

and all protocols were approved by the Animal Care and Use

Committee of the National Eye Institute.

Animals
Eye muscle forces were measured in three adult rhesus monkeys

(Macaca mulatta), ranging in weight from 8 to 14 Kg (identified as

m2, m3, and m4). None of the animals had been previously used

in any experiment, and their eyes and orbits were thus pristine.

Surgical procedure
The animal was placed supine on the surgical table, intubated,

anesthetized with isoflurane (2–4%) in oxygen, and mechanically

ventilated. Heart rate, indirect mean arterial blood pressure,

mucus membrane color, peripheral oxygenation/SpO2, end-

expiratory CO2 partial pressure, and EKG were monitored and

maintained within normal physiological ranges. Body temperature

was monitored and maintained at 37uC with a heating pad.

Paralysis was induced with pancuronium bromide (0.05–0.10 mg/

Kg IV), and was maintained by administering a reduced dose

(0.025–0.050 mg/Kg IV) every 45 minutes until the end of the

procedure. The paralytic agent was used to ensure that the

muscles were completely passive. At the end of the procedure, and

while still deeply anesthetized, the animal was euthanized with an

overdose of sodium pentobarbital (150–250 mg/kg).

Experimental procedure
After the animal had been anesthetized, its head was stabilized

with a stereotaxic device’s ear bars (to reduce the head’s degrees of

freedom from six to one). A mouth bar added to the stereotaxic

device was attached to the front teeth with dental cement to fix the

head so that Reid’s baseline was perpendicular to the table. Both

eyes were prepped and draped in the usual sterile ophthalmic

manner. The conjunctiva was then incised in correspondence with

an eye muscle insertion on the globe, and a muscle hook was

placed under the insertion. From here we adopted two different

techniques.

In four muscles (identified as m2SR, m3LR, m3SR, and m4MR),

the muscle was connected to the measuring device directly by a

KevlarTM thread (between 50 and 75 mm long). The connection

was achieved by sandwiching the wire, together with the tendon,

between two tiny titanium plates (6 mm by 2 mm by 1 mm) kept

together by two microscrews (total weight 0.05 g). The stiffness of

the connection was between 5400 and 8100 gf/mm. On the last

muscle tested (identified as m4LR), we did not use the above

described clamping technique, but instead tied a SurgidacTM (US

Surgical) 5-0 surgical suture to the tendon and then knotted its other

end to the distal end of the Kevlar wire (the knot was then secured

with a very small metallic crimp, weight 0.02 g). The overall stiffness

of the Surgidac-Kevlar connection was 2450 gf/mm.

Muscle force was measured using an Aurora Scientific (Aurora,

ON, Canada) 305C Dual-Mode Muscle Lever System. In the

experiments described here we imposed the muscle length, and

measured the corresponding change in force (NB: the SI standard

unit of force is the Newton (N), but muscle force is traditionally

measured in units of gram force (1 gf<0.0098 N); e.g., a mass of

102 g exerts a force of 102 gf, or 1 N, on earth). The specifications

for the system used are as follows:

N Length Signal Resolution: 1 micron

N Length Signal Linearity: 0.1% over the center 4 millimeters,

0.5% over the entire 20 mm range

N Length Step Response Time (1% to 99% critically damped):

2.0 msec

N Sinusoidal Frequency Response (-3dB): 330 Hz

N Force Signal Resolution: 1.0 mN (,0.1 gf)

N Force Signal Linearity: 0.2% of force change

Figure 1. Schematic view of Fung’s theory. A: In most biological
passive materials, a stepwise change in elongation (gray trace on the left)
causes the force to suddenly increase and then decay over time (gray
trace on the right). B: Fung proposed that this response scales with the
size of the step, and that there is a nonlinear relationship E(L) between
the peak force and the step size (which he called elastic response). He
also posited that the decaying response is generated by a linear system,
which can be described in terms of its step response. G(t) is then the
response of the linear subsystem to a unitary step, 1(t), of the elastic
response. This is a cascade of a static nonlinearity and a linear system,
often referred to as a Hammerstein system. The model is not limited to
reproducing the response to a strain step, but can be used to predict the
response to an arbitrary strain history. Blue blocks indicate linear
processes, whereas red blocks indicate the presence of a nonlinearity.
doi:10.1371/journal.pone.0006480.g001
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Both the length and the force signals are low-pass filtered with a

4th order Butterworth filter with a cut off frequency of 5 kHz. The

bandwidth of the system is limited by the motion bandwidth, not

by the sensor bandwidth. In all our experiments we stayed well

within the bandwidth of the equipment. In doing so we guaranteed

that the measurement device was not a limiting factor, and that

both the length and force sensor outputs can be treated as

veridical. The input/output analog signals for/from this device

were generated and acquired through an A/D-D/A interface

board (National Instruments, NI USB-6211) connected to a laptop

PC (IBM, Amonk, NY) and controlled by LabView (National

Instruments, Austin, TX). The experiment was controlled by a

custom Java program that communicated with LabView,

displayed the data in real-time, and stored it for later analysis.

Based on the results and modeling studies from other passive

biological tissues we concluded that, to conduct a thorough test of

the quasi-linear model, the minimum set of experimental

paradigms to be applied was the following:

N Small elongation steps, executed within a few milliseconds,

from initial lengths spanning the entire elongation range

tested.

N Sequences of double steps, separated by variable time intervals

(0.01, 0.1, 1, and 45 s), from initial lengths spanning the entire

elongation range.

All the steps we imposed had an amplitude of 0.5 mm. In all

muscles we used steps that had a peak speed of 160 mm/s, a peak

acceleration/deceleration of 144 mm/s2, and a duration of 4.5 ms

(bandwidth 130 Hz, Welch’s method). In some muscles we also

induced some slower steps, with a peak speed of 80 mm/s, a peak

acceleration/deceleration of 74 mm/s2, and a duration of 8 ms

(bandwidth 50 Hz). Long waiting periods were imposed before

and after each length change. In addition, we performed constant-

speed ramps spanning the entire elongation range, at various

speeds (1, 10, 80, and 160 mm/s). Other paradigms were also used

in the experiments, but they will be described and analyzed in a

subsequent paper.

Only lengthening was tested, because it was technically

impossible for us to measure the forces during shortening (they

become negative for even relatively low shortening speeds).

Another limitation of our study is that we never exceeded a one-

hour testing period per muscle, as we wanted to avoid any tissue

deterioration. Hence, because after each muscle elongation we

waited for a long time (30 seconds in the first two monkeys, 45 s in

the third) for the force to settle, we could not perform all

experiments in all muscles.

The elongation range was determined separately for each

muscle. The range tested always covered the entire oculomotor

range (i.e., the set of lengths that are achieved in physiologic

conditions, which in monkeys correspond to approximately 645u
of rotation), but never exceeded it by more than one mm.

Accordingly, the elongation range tested was always about eight

mm. Before recording we preconditioned the muscles by

repeatedly (5–10 times) stretching and releasing them sinusoidally

over their entire range (which is standard procedure in tissue

rheology to guarantee repeatable results; the relatively low number

of cycles used here is justified by the in vivo condition we used). For

all muscles tested, we ran a block of three-four ramps at the

beginning and at the end of the experiment to test for any possible

deterioration of the muscle. We never observed any significant

change in these test trials.

In our experimental preparation, the raw force measures are

affected by a significant heartbeat and respiration-related noise. As

explained at length in the first paper in this series [37], we devised

a method to very effectively remove, post hoc, both of these noise

components. The residual measurement noise was extremely

small, at or below the level of our instrumentation accuracy.

Simulations
The models presented in this article (described by Eqs. 13 and

20) were simulated numerically in MatlabTM (The Mathworks,

Natick, MA). The scripts are available upon request. Parameter

optimization for the QLV model was carried out using a

commercial optimization package (modeFRONTIERTM, Esteco

s.r.l., Trieste, Italy).

Results

In the previous paper in this series [37] we described

measurements of the mechanical properties of passive extraocular

muscles in monkeys. More precisely, we reported analytic fits for

the static length-tension curve (i.e., the curve that describes the

relationship between muscle length and the steady-state force

exerted by the passive muscle at that length) and for the relaxation

response (i.e., the force measured following a small step-wise

change in elongation). These were only descriptive fits, and no

attempt at modeling the data was made.

Here we 1) fit two models (developed by others) to the data set

reported in our previous paper, and 2) test, using additional

experimental data, the underlying assumptions of those models.

Applying the QLV model to passive eye muscles
As noted in the Introduction, the QLV model has two major

components, which can be fit separately to the data. In principle,

the elastic response (E(L) in Eq. 1) should be determined by

measuring the force exerted right after an instantaneous step.

Because it is not possible to execute an instantaneous step, we

clearly cannot follow this procedure. However, under the QLV

theory the reduced relaxation function G(t) is assumed to be

independent of length, implying that long after a step (i.e., at

equilibrium) the following equation will always hold:

F L,?ð Þ~G ?ð ÞE Lð Þ~aE Lð Þ ð2Þ

where G(‘) = a is the ratio between the asymptotic force after a

step and the force immediately after an (instantaneous) step

(remember that G(0) = 1). By definition F(L,‘) is the static length-

tension relationship, which we have described and quantified in

the previous paper in this series [37], identifying it as T(L). It thus

follows that

E Lð Þ~ T Lð Þ
a

ð3Þ

Because a cannot be measured, it must be estimated. However,

Eq. 3 tells us that the dependency of the elastic response on length

is already embedded in the length-tension curve. This is a special

case of the more general observation that in the QLV model any

isochronal stress-strain relationship is proportional to the elastic

response [23,34].

We found that in passive eye muscles the length-tension

relationship is well fit by the following expression:

T Lð Þ~pos aLzbeL=czd
h i

ð4Þ

Quasi-Linear Theory Tests
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where pos[ ] indicates that negative values are truncated to zero.

E(L) will thus have the same form, which is somewhat different

than those commonly encountered in the QLV literature [30].
The second crucial component in Fung’s QLV theory is the

reduced relaxation function G(t), which describes the time course of

the force induced by a unitary step in the elastic response. The

exact form of G(t) is not prescribed by the QLV theory, and several

expressions, such as those based on a continuous exponential

spectrum [38,39], on fractional derivatives [40], or on variable-

order differential operators [41], have been used over the years. In

our context the form based on a discrete exponential spectrum is

the natural choice (it will become clear why shortly).

Accordingly, we define G(t) as

G tð Þ~ 1{að Þ
X

gie
{t=ti za ð5Þ

with

P
gi~1

0ƒaƒ1

a~G ?ð Þ

8><
>:

Once a form for G(t) has been chosen, the value of each

parameter must be inferred from the data (i.e, the model has to be

fit to the data). Here we can take advantage of the fact that in our

previous paper [37] we already provided a fit for the relaxation

response measured following a small incremental step in

elongation. For a step in which the muscle length is varied from

L0 at t = 0 to L0+DL at t = t0, and the final length is maintained

afterwards, we defined the following fit

F t§t0ð Þ~
X

mie
{ t{t0ð Þ=ti zT L0zDLð Þ ð6Þ

where again T(L) is the static (i.e., steady-state) force-length

relationship.

Using a procedure that we developed [37], we found a set of

seven time constants ti that was compatible with the signal to noise

ratio in our dataset. We then applied, independently for each step,

the Emri-Tschoegl algorithm [42–45] to find the moduli mi that

yielded the best fit to the data. Eq. 6 allowed us to fit the relaxation

response extremely well. It should now appear clear why we chose

Eq. 5 for G(t): since they are both sums of exponentials, it should

be fairly easy to find the parameters for Eq. 5Eq. 5 from our

previous fits.

There is however one major caveat: in the QLV model there is

a single reduced relaxation function, whereas we have indepen-

dent fits at each elongation. Since there is no rational way of

selecting one fit over another, we will instead determine the

parameters for what has been called the generalized QLV model

[35,36]. In this model the reduced relaxation function can vary as

a function of elongation (i.e., separability does not hold), but it is

considered to be fixed over small stretches. Essentially, instead of

fitting one single QLV model to the entire data set, we will start by

fitting a separate QLV model to each elongation step.

We mentioned in the Introduction how Fung’s theory models

the force induced by an arbitrary elongation in terms of a

Boltzmann integral. More precisely, assuming that the muscle has

settled and a length change is applied starting at time 0, the force F

is expressed as

F t§0ð Þ~T L0ð Þz
ðt

0

G t{tð Þ LE Lð Þ
LL

LL

Lt
dt ð7Þ

where L0 is the initial (not necessarily resting) length.

If a quick (but not ideal) elongation step is applied, so that the

length is varied from L0 at t = 0 to L0+DL at t = t0, and the final

length is maintained afterwards (i.e., dL/dt = 0, t.t0), we have that

F t§t0ð Þ~T L0ð Þz
ðt0

0

G t{tð Þ LE Lð Þ
LL

LL

Lt
dt ð8Þ

Note that Eq. 8 and Eq. 6 describe the same force, and thus

must be equal if we want to fit the model to the data. Because the

steps we used are relatively small and quick, we can approximate

this equation by positing that

LL

Lt
~

DL

t0

for 0#t#t0, and is 0 for all other times. Similarly, if the steps are

small enough we can locally linearize the elastic response, and

assume that

LE Lð Þ
LL

~
E L0zDLð Þ{E L0ð Þ

DL
~

DE

DL

for 0#t#t0, and is 0 for all other times. Because

DE~
T L0zDLð Þ{T L0ð Þ

a
~

DT

a

Eq. 8 yields

F t§t0ð Þ~T L0zDLð Þz 1{a

a

DT

t0

X
gie

{t=ti

ðt0

0

et=ti dt ð9Þ

If we now define

di~
t0et0=ti

ti et0=ti {1ð Þ ð10Þ

it is easy to show that Eqs. 6 and 9 are equal at all times if and only

if:

a~

DTP
midi

1z DTP
midi

ð11Þ

and

gi~
a

1{a

di

DT
mi ð12Þ

Note that di is equal to 1 when ti is large relative to t0, and so for

large time constants the gi values are simply a scaled version of the

Quasi-Linear Theory Tests
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corresponding mi values. With an ideal (i.e., instantaneous) step

this would be true for all time constants. Similar procedures have

been developed to deal with the more commonly used continuous

spectrum form of G(t) [18,46].

Our approximation yields estimates of E(L) and G(t) that, when

plugged into Eq. 8, produce a very good fit to the data after the end

of each step elongation (Fig. 2). However, because of the

approximations and assumptions introduced above, and because

of the finite duration of the step, the resulting model cannot be

expected to perfectly reproduce the data during the elongation

phase. Furthermore, there is evidence in our data for a purely

viscous component [37], which obviously cannot be reproduced by

the QLV model. Accordingly, we extended the (generalized) QLV

model by adding a purely viscous term:

F 0ƒtƒt0ð Þ~T L0ð Þz
ðt

0

G t{tð Þ LE Lð Þ
LL

LL

Lt
dtzR

dL

dt
ð13Þ

We then directly fitted Eq. 13 to the force during the elongation.

We reasoned that only the moduli for the two shortest time

constants could have been significantly affected by the above

described approximations. We thus considered R and the first two

moduli m1 and m2 as parameters (with the values produced by the

Emri-Tschoegl algorithm as initial guesses for the mi), and

conducted an optimization search to find the values that would

yield (through Eqs. 11, 12, 5, and 13) the best possible fit to the

peri-elongation data. This general approach, based on fitting the

Boltzmann integral directly to the data, has been pioneered by

others [31,47], but instead of fitting all the model parameters to

the data we only used it to refine a very good initial estimate. We

think that this limited use of the optimization, similarly employed

by others [23,36], has a clear advantage: the initial fit to the

relaxation response reduces dramatically the dimensionality of the

design space, and provides good initial guesses for the parameters,

reducing the computation time and making the optimization more

likely to identify the best set of parameters.

We noted that, in all muscles, the viscous factor R was a

function of length: it had a constant value at short elongations, and

it decreased all the way to zero at large elongations. We found that

this behavior could be captured very well by the following

sigmoidal relationship:

R Lð Þ~ Rmax

1ze L{L0ð Þ=s
ð14Þ

Because this parameter does not increase with length like the

others, we believe that it is most likely the manifestation of an

artifact, possibly friction between the muscle and surrounding

tissues (which could decrease with elongation because the muscle

diameter decreases as it gets stretched). In Table 1 we show, for

each muscle, the values of the parameters in Eq. 14, obtained by

least-squares fitting the relationship to the values of R obtained

from the optimization (using as value for L the length at the end of

the step). Note that the value of the viscosity is always quite small,

so that the viscous force is always under 1 gf. We then ran our

optimization again, this time with just m1 and m2 as variables, and

with the estimate of the viscous force computed using Eq. 14. This

algorithm worked very well on our data, leading to excellent fits to

both the peri- and post-elongation epochs. In Fig. 3 we compare

the forces predicted during the step (Eq. 13) using the original

parameters (and no viscosity) with those obtained with the

optimized parameters (and the viscous term). Note that in all

cases the actual time course of the elongation L(t), as reported by

the position sensor, was used in the simulations (samples of the

velocity profile are shown in Fig. 7 of the previous paper [37]).

Three representative steps are shown, from three different muscles

and at three different lengths. On the left the time-course of the

force is plotted, whereas on the right the force is plotted as a

function of muscle elongation. The improvement due to the

optimization is obviously significant, especially at shorter muscle

Figure 2. Relaxation responses and generalized QLV model fits. A: Data (black), Emri-Tschoegl fit to the relaxation response (green), and
force predicted by the generalized QLV model using the parameters derived analytically from the E-T fit (red). Six different steps are shown (blue
numbers are the final lengths in mm), from the superior rectus in m3. B: Same as A, but using a logarithmically spaced abscissa to improve
visualization of the force at short times.
doi:10.1371/journal.pone.0006480.g002

Quasi-Linear Theory Tests
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lengths, where the viscous force plays a prominent role. At the

largest elongation (bottom row) the improvement is significant, but

the optimized fit is not as good. Unfortunately this is a limit of the

model, which is unable to reproduce the convexity of the length-

force function (within these small elongations, the model always

generates concave length-force functions).

Testing the Separability Hypothesis
In the preceding section we have shown that the generalized

QLV model is able to reproduce our step data very well. In this

model a separate reduced relaxation function is fitted to the data

for each step (i.e., at each muscle length tested). As we noted in the

Introduction, the original QLV model rests instead on the

hypothesis that the relaxation response is separable into an elastic

response E(L) (a nonlinear function of muscle length) and a length-

invariant reduced relaxation function G(t) (the step response of a

linear dynamic system).

In Fig. 4 we plot, separately for each muscle, the G(t) functions for

our generalized QLV model (one for each muscle length).

Remember that these are the step responses of the linear part of

Table 1. Parameters for the R(L) function in each muscle.

Rmax L0 s

m2SR 0.0080 6.7000 0.5018

m3LR 0.0110 7.5000 0.2224

m3SR 0.0120 7.8000 0.3070

m4LR 0.0115 5.4000 0.4874

doi:10.1371/journal.pone.0006480.t001

Figure 3. Peri-elongation forces and generalized QLV model fits. Data (black), force predicted by the generalized QLV model using the
parameters derived analytically from the E-T fit (green), and force predicted by the generalized QLV model after parameter optimization and addition
of a viscous term (red). A: Data for a step at short elongations from the superior rectus in m3. B: Same forces as in A, but plotted as a function of
muscle elongation rather than time. The initial rapid rise in force is due to the pure viscosity, which was not part of the original model (green trace). C
& D: Same as A & B, but for a step at intermediate elongations from the lateral rectus in m3. E & F: Same as A & B, but for a step at large elongations
from the lateral rectus in m4. Note how in this case the fit is not as good, as the force in panel F is convex, whereas the model predictions are always
concave. Force scale is different across rows. SSQ: sum of squared residuals (fit – data).
doi:10.1371/journal.pone.0006480.g003

Quasi-Linear Theory Tests

PLoS ONE | www.plosone.org 6 August 2009 | Volume 4 | Issue 8 | e6480



the (generalized) QLV model. Obviously, if the original QLV model

holds, these functions should not change much across muscle

lengths. We found that in one muscle (LR in monkey 3, Fig. 4B) this

is indeed the case, and a single reduced relaxation function could be

used to fit all the steps. However, in the other three muscles there

are considerable variations, which extend throughout our observa-

tion period. To more clearly highlight how G(t) varies as function of

muscle elongation, in each panel in Fig. 4 we have added a small

inset. Here we plot the value of G(t) at time 3.2 ms (indicated by a

gray vertical line in each panel) as a function of muscle elongation.

These deviations might not seem to be very large, but they are

comparable to those observed in other tissues for which it was

concluded that separability does not hold [36]. Also note that there

is a smooth transition across elongations, which would not be

expected if the variations were due to random noise (each relaxation

response has been fit independently to a separate QLV model).

Accordingly, we must conclude that even though we have been able

to use the generalized QLV model to fit individual steps (by selecting

a different set of parameters for each step), for most muscles there is

no single G(t) that would allow the original QLV model to

accurately reproduce all the step responses. Thus separability of the

relaxation response does not appear to be a general property of

passive eye muscles. Nonetheless, we feel that it is appropriate to

provide an ‘‘average’’ QLV model (dashed gray lines in Fig. 4,

Table 2). While this model neglects the differences that we just

reported, it reproduces the step response of passive eye muscle with

a level of accuracy that might be sufficient for most applications.

Applying the AQLV model to passive eye muscles
Nonlinear viscoelastic models that do not assume separability

and rely instead on the more general integral equation [34,35]

F tð Þ~
ðt

{?

G t{t; Lð Þ LL

Lt
dt

Figure 4. Reduced relaxation function for the generalized QLV model. In each panel we plot, as a function of time, the step response of the
linear part of the QLV model (Fig. 1B). Since we used the generalized QLV model there is a curve for each muscle length. If the separability hypothesis
held, these curves should all be identical. In the insets we plot the value of the reduced relaxation function at time 3.2 ms (vertical gray line in the
main plots) as a function of elongation. Notice how this relationship is in all cases smooth, which would not be expected if the variations were due to
random noise or fitting errors. The label in each panel indicates which monkey (m2, m3 or m4) and muscle (LR = lateral rectus, SR = superior rectus)
the data are from. AVG: average reduced relaxation function (gray dashed line).
doi:10.1371/journal.pone.0006480.g004
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could reproduce the observed (i.e., not separable) behavior of

EOMs. In our case, the generalized QLV model, which belongs to

this class of models, does it quite well. However, this is also

accomplished by a simpler (i.e., with a smaller number of

parameters) and elegant model inspired by the QLV theory

[36]. To understand how this model differs from the QLV model,

let us now plug Eq. 5 into Eq. 7:

F t§0ð Þ~T L0ð Þz 1{að Þ
X

gie
{t=ti

ðt

0

et=ti
LE Lð Þ

LL

LL

Lt
dt

za

ðt

0

LE Lð Þ
LL

LL

Lt
dt

ð15Þ

The first and last terms can be grouped together, as they

essentially represent the steady-state elastic response at the current

length, i.e.,

F t§0ð Þ~T L tð Þð Þz 1{að Þ
X

gie
{t=ti

ðt

0

et=ti
LE Lð Þ

LL

LL

Lt
dt ð16Þ

In the second term in this formula the model nonlinearity is

embedded in the elastic response E(L). Nekouzadeh and colleagues

[36] proposed moving this dependency out of the integral, thus

defining moduli that explicitly depend nonlinearly on length:

F t§0ð Þ~T L tð Þð Þz
X

ki L tð Þð Þe{t=ti

ðt

0

et=ti
LL

Lt
dt ð17Þ

The moduli are here indicated with ki instead of gi to highlight

their physical meaning: they essentially represent the glassy (i.e.,

dynamic) stiffness of the muscle. The authors called this model

adaptive quasi-linear (or AQLV); we show its block diagram in Fig. 5.

If we now proceed as we did above for the generalized QLV

model, we can again estimate the parameters of the AQLV model

from the fits that we presented in our preceding paper. With the

AQLV model the force after one of our quick steps can be

approximated with

F t§t0ð Þ~T L0zDLð ÞzDL

t0

X
ki L0zDLð Þe{t=ti

ðt0

0

et=ti dt ð18Þ

Equating Eqs. 6 and 18, we find that

ki L0zDLð Þ~ di

DL
mi ð19Þ

Again, di (Eq. 10) would always be equal to 1 if our steps were

instantaneous. Note that since di is dimensionless, and mi has the

dimension of a force, Eq. 19 is compatible with the interpretation

of ki as a stiffness. Because this procedure for determining ki from

mi rests on the same assumptions used to determine gi from mi,

instead of using our original estimates of the moduli mi, we can use

the values that we found when we optimized the moduli to yield

the best fit to the peri-step data with the generalized QLV model.

Naturally, as we did for the QLV model we had to also extend the

AQLV model by adding the purely viscous term:

Table 2. Parameters for the QLV model (average fit for each muscle).

a g(1.3 ms) g(7.1 ms) g(40 ms) g(225 ms) g(1.26 s) g(7.11 s) g(40 s)

m2SR 0.1251 0.2439 0.3408 0.1864 0.0787 0.0460 0.0454 0.0588

m3LR 0.0879 0.5867 0.1214 0.1199 0.0573 0.0395 0.0321 0.0431

m3SR 0.1794 0.2423 0.2246 0.2280 0.1051 0.0676 0.0613 0.0711

m4LR 0.1225 0.3034 0.2291 0.1935 0.0745 0.0731 0.0401 0.0864

doi:10.1371/journal.pone.0006480.t002

Figure 5. Schematic view of the adaptive QLV model (Eq. 17).
Blue is used for linear processes, and red is used to indicate
nonlinearities. Because the nonlinearity does not precede the linear
stage (L.S.), superposition does not hold (unlike the QLV model, Fig. 1B).
doi:10.1371/journal.pone.0006480.g005
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Figure 6. Step responses and AQLV model fits. Data (black) and force predicted by the AQLV model (green). The values for the parameters of
the model at each step length were derived from the parameters of the generalized QLV model described above. A cubic spline interpolation (Fig. 7C)
was then used to determine the value of the parameters at other lengths. Data for the superior rectus in m3. Each step has been offset in time for
clarity. Note that in a logarithmic plot to carry out this operation without deforming the shape the time axis must be compressed, not shifted.
doi:10.1371/journal.pone.0006480.g006

Figure 7. Parameters for the AQLV model. Each panel shows the parameters for a different muscle, as a function of length at the end of the
step. The parameter values (dots) have been computed from the optimized QLV parameters, and the length shown is the muscle length after the end
of the step. To estimate the values for an arbitrary length we then either used a cubic spline interpolation (dotted lines, used in Fig. 6), or a four-
parameter nonlinear fit (solid lines, used in Fig. 8).
doi:10.1371/journal.pone.0006480.g007
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F t§0ð Þ~T L tð Þð Þz
X

ki L tð Þð Þe{t=ti

ðt

0

et=ti
LL

Lt
dtzR Lð ÞdL

dt
ð20Þ

This led to excellent fits over all the steps tested, during both the

peri- and post-elongation epochs. In Fig. 6 we show the fits to steps

when the functions ki(L) are found by interpolating with a cubic

spline function over the values (one for each step) obtained from

Eq. 19. Because the spline does not extrapolate, the step executed

from the shortest length could not be simulated; the fits for the

other steps are, however, extremely good. Some small biases

before the step are to be expected, as the muscle had not

completely settled to its equilibrium force (a necessary assumption

in all of our simulations).

Next, we used the same parametric function that we proposed

for the length-tension relationship (Eq. 4) to fit the dependence of

each ki on length. This allows us to extrapolate the lower range,

and thus also to simulate the first step. In Fig. 7 we plot ki as a

function of length for each time constant, separately for each

muscle. Both the spline interpolation (dashed, used in Fig. 6) and

the linear-exponential fit (solid) are shown. In general the

parametric fits are quite good, with the exception of the smallest

time constant in m2SR and m3SR. We do not have any

explanation for this difference, but when we manually raised the

values for this time constant at the largest elongation, indicated by

the rightmost red point in each panel, to 14 (for m2SR) and 20

(m3SR), so that a good parametric fit could be obtained, the model

fit to the step at this elongation deteriorated only marginally

(remember that at these large elongations the fit was not

exceptional to start with, Fig. 3F).

When we use the fitted function to simulate the force generated

by the muscle the fits deteriorate somewhat (which is not

surprising, as we have reduced the number of parameters from

70 to 35 in m2SR and m4LR, and from 56 to 35 in m3LR and

m3SR), but they are still extremely good. In Fig. 8 we show the

data from the muscle that exhibited the largest discrepancies

between the two fit methods (highlighted by the gray arrows). In

Tables 3–6 we list the values of the parameters of the fitted

functions for each muscle.

Testing the Superposition Principle: Double Steps
The second assumption in Fung’s model is that the forces

induced by two subsequent elongation changes are independent,

and thus sum linearly (i.e., superposition holds). In Fig. 9 we plot

Figure 8. Step responses and AQLV model fits. Data (black) and force predicted by the AQLV model. A four-parameter non-linear equation was
used to fit the values for the parameters derived from the QLV model at each step length (red trace). Because this model has fewer degrees of
freedom than the cubic spline used in Fig. 6(and shown here in green), the fit is not as good (gray arrows point to the largest discrepancies between
the two models), but it is very good nonetheless. Data for the lateral rectus in m3, the muscle for which we obtained the worst fit between model and
data. Just as in Fig. 6, the traces are offset in time for clarity.
doi:10.1371/journal.pone.0006480.g008

Table 3. Parameters for the ki(L) functions in m2SR.

1.3 ms 7.1 ms 40 ms 225 ms 1.26 s 7.11 s 40 s

a 2.0000 0.5341 0.0001 0.1342 0.1025 0.0000 0.1108

b 0.0002 0.0003 1.5688 0.0004 0.0004 0.0571 0.0006

c 0.9945 0.7906 5.0000 0.9038 0.9095 1.9272 0.8745

d 23.55 1.43 20.99 0.22 0.05 20.03 0.10

R2 0.90 0.96 0.99 0.99 1.00 0.99 0.99

doi:10.1371/journal.pone.0006480.t003

Table 4. Parameters for the ki(L) functions in m3LR.

1.3 ms 7.1 ms 40 ms 225 ms 1.26 s 7.11 s 40 s

a 1.8726 0.1935 0.1557 0.0000 0.0002 0.0033 0.0053

b 0.0102 0.3000 0.0009 0.4418 0.0671 0.1375 0.0815

c 1.0534 2.1947 0.9559 3.1828 2.0185 2.6526 1.8191

d 4.20 20.30 1.48 20.38 0.14 20.01 20.14

R2 0.99 0.89 0.95 0.98 0.99 0.98 1.00

doi:10.1371/journal.pone.0006480.t004
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the force predicted by the optimized generalized QLV model

described above in response to a sequence of two steps (the model

parameters were those that best fit the second step in the sequence

in m4LR). We used four sequences of two steps, each with a

different inter-step interval (ISI, 10 ms, 100 ms, 1 s, and 45 s). In

all cases the initial length and the step amplitudes were identical.

We assumed that with an ISI of 45 s (Fig. 9A) the force induced by

the second step is independent of the first step. We indicate with tA
the starting time for the first step, and with tB the starting time for

the second step. We then take the change in force from time 0 up

to the second step as a template for the force induced by the first

step, i.e.,

HA tð Þ~F tvtBð Þ{F tvtAð Þ

and the change in force from 1 s before the second step to the end

of the recording as a template for the force induced by the second

step

HB tð Þ~F twtB{1ð Þ{F tB{1vtvtBð Þ

Each template thus measures the change in force induced by the

step over approximately 45 s, and it is shifted in time so that H(t0)

is the change in force at the end of each step (t0 is the step

duration). It thus follows that H(t,0) is essentially zero. Figure 9B

shows (in blue) the model output when the same steps shown in

Fig. 9A are simulated with an ISI of 10 ms. In red we show the

prediction from superposition, i.e.,

Table 5. Parameters for the ki(L) functions in m3SR.

1.3 ms 7.1 ms 40 ms 225 ms 1.26 s 7.11 s 40 s

a 1.6818 0.0007 0.0002 0.0313 0.0001 0.0004 0.0001

b 0.0000 0.1719 0.2241 0.0361 0.0131 0.0043 0.0365

c 4.0502 1.9120 2.8916 1.6933 1.5487 1.2575 1.6803

d 24.13 0.02 0.39 0.10 0.12 0.19 0.00

R2 0.89 0.98 0.96 1.00 1.00 0.99 1.00

doi:10.1371/journal.pone.0006480.t005

Table 6. Parameters for the ki(L) functions in m4LR.

1.3 ms 7.1 ms 40 ms 225 ms 1.26 s 7.11 s 40 s

a 0.0001 0.5696 0.0001 0.0001 0.1055 0.0000 0.0008

b 1.5364 0.0008 0.1115 0.0542 0.0145 0.1044 0.0119

c 2.4569 1.1318 1.8629 1.8236 1.4410 2.4816 1.2263

d 25.00 0.44 0.88 0.25 0.07 20.09 0.35

R2 0.97 0.93 0.99 0.99 0.99 0.97 1.00

doi:10.1371/journal.pone.0006480.t006

Figure 9. The QLV model obeys superposition. A: A sequence of two elongation steps (0.5 mm each), separated in time by 45 s, was simulated
using the generalized QLV model, and the resulting force is plotted against time. B: The same two steps shown in A are applied, but now the
temporal separation (ISI) is only 10 ms. (Blue: Model output. Red: Output expected if the superposition principle is obeyed. Note logarithmic scale for
time.) C: Same as in B, but with an ISI of 100 ms. D: Same as in C, but with an ISI of 1 s. In all cases the model output matches the superposition
prediction. The small deviation between the two traces toward the end of each simulation is due to the incomplete settling of the model output just
before the second step in panel A (on which the superposition prediction is based).
doi:10.1371/journal.pone.0006480.g009
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F̂F tð Þ~F tvtAð ÞzHA t{tAð ÞzHB t{tBð Þ

Because HA does not extend far enough, this predicted trace

terminates slightly before the model output trace. In panels C and

D we show the results for ISIs of 100 ms and 1 s. As expected, in

all cases the superposition prediction matches the model output

very well. The small deviation between the two traces toward the

end of each simulation is due to the incomplete settlement of the

model output just before the second step in panel A, which causes

HB to increasingly (but only slightly) underestimate the force

induced by the second step.

In the AQLV model the nonlinearity does not precede the

linear stage anymore (Fig. 5), and thus superposition does not hold.

More precisely, because the stiffness parameters for the AQLV

model increase with length (shown in Fig. 7 for our data set, but

this is a general behavior), if two steps are executed one after the

other, this model predicts that the force generated by the second

step will be larger than that predicted by the superposition

principle. We repeated the same simulations that we carried out

with the generalized QLV model, using as parameters for the

AQLV model those that best matched the m4LR. As expected, at

all ISIs the model output is larger than the superposition

prediction, with the maximal deviation occurring at the end of

the second elongation step (Fig. 10).

To test whether either model predicts the actual behavior in

passive EOMs, we applied the very same sequences of two steps

simulated above to two extraocular muscles. In each set of

sequences the initial muscle length and the step amplitudes were

identical. In Fig. 11 we show the results of this experiment in the

medial rectus of m4 at large elongations. The same conventions

used in Figs. 9 and 10 apply, but now the blue line indicates the

force actually induced in the muscle instead of a simulation output.

In all cases the force measured was significantly smaller that the

force predicted by the superposition principle (red traces).

This experiment was performed at the limit of our elongation

range, a region often described as being ‘‘more nonlinear’’. Some

experiments have suggested that the quasi-linear model might hold

up better, at least as far as the separability is concerned, at short

elongations [48]. To test the possibility that this might be true also

for superposition, we ran this same experiment at the low end of

the elongation range tested. Figure 12 illustrates the results

obtained in the lateral rectus of m4. In this case the steps were

executed within a range of elongations where the length-tension

curve can be fit with a straight line [37]. Obviously, the forces in

play are much smaller than those shown in Fig. 11, and the S/N

ratio is also lower, but the result is the same: the force induced by

the second step is significantly smaller than that predicted by

superposition. Superposition failed in this manner in all cases

tested (two muscles, two initial elongations per muscle). As shown

above, neither the original nor the adaptive QLV models can

reproduce this behavior (the latter actually performed worse than

the former on this experiment).

Discussion

The quasi-linear theory and its extensions
Fung’s QLV theory has enjoyed great success for over three

decades. This success must be attributed in large part to its ability

to account for many experimental observations, but substantial

contributors to this success were also its undeniable elegance, and

the limited experimental burdens it imposed. We have shown here

Figure 10. The AQLV model does not obey superposition. Same as Fig. 9, but now the AQLV model is used for the simulations. In all cases the
model output is larger than the superposition prediction. The deviation between the two traces is maximal at the end of the second step, and is
larger for shorter inter-step intervals. Some of the deviation toward the end of each simulation can be imputed to the incomplete settling of the
model output just before the second step in panel A, but the initial deviation is due to the lack of superposition in this model.
doi:10.1371/journal.pone.0006480.g010
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that in passive extraocular muscles the two basic assumptions of

the QLV theory do not hold: relaxation response after a step does

not scale with length (i.e., it is not separable), and two successive

elongations interact, so that the superposition principle does not

hold.

Recent studies in other tissues had also come to the conclusion

that separability might not be typical of passive biological tissues

[25,32–36], although other researchers proposed that this property

might hold, but only for small elongations (up to approximately

15% of the resting length) [48]. To rectify this failure of the QLV

theory to deal with the data, an extension to the original quasi-

linear model was recently proposed [36], yielding a model (AQLV)

that accounts for the step responses reported here (Figs. 6 and 8).

Unfortunately this model cannot reproduce the results of our

double-step experiments, actually underperforming the original

QLV model in these tests. Because the force induced by a step of

elongation increases nonlinearly with length, all models that rely

on the general formulation [35]

F tð Þ~
ðt

{?

G t{t; Lð Þ LL

Lt
dt ð21Þ

will similarly be unable to account for our data.

Lack of superposition: implications for motor control
From an experimental point of view, the most important result

that we have presented in this paper is that, for passive extraocular

muscles in monkeys, the principle of superposition does not hold.

More precisely, the force measured after the second step in a

sequence is lower than that predicted by superposition. To better

evaluate the potential significance of this finding, in Fig. 13 we plot

the force induced by the second step in each sequence of double

steps. Strikingly, it appears that the force is essentially always the

same, regardless of the preceding movement. The peak force is

higher as the ISI decreases, even though less than predicted by

superposition (see Figs. 11 and 12). However, after 20 ms or so the

traces are virtually indistinguishable. For ISI of 100 ms or more,

the traces are for all practical purposes identical. Note that in

physiologic conditions sequences of eye movements are always

separated by at least 100 ms. In this sense, it is then tempting to

conclude that passive extraocular muscles have essentially no

memory: the force they generate is only a function of the last

elongation to which they have been subjected, and it does not

depend on the previous history. Needless to say this might simplify

the motor control problem, as the neural controller would not

have to keep track of the muscle’s elongation history. Given the

limited amount of data that we have collected, at this point this

must be considered a speculation, but we believe that it is a

speculation worthy of further investigation.

Limits of our experimental approach
Our minimally invasive approach was the only one consistent

with our goal of obtaining measurements that could be directly

incorporated in a model of the eye plant to be used for diagnostic

assistance. However, our in vivo preparation imposed several

constraints on the elongations that we could impose, on the

Figure 11. Testing the superposition hypothesis in muscle at long lengths. A: A sequence of two elongation steps (0.5 mm each), separated
in time (ISI) by 45 s, was applied, and the resulting force measured. B: The same two steps shown in A are applied, but now the ISI is only 10 ms.
(Blue: Force measured. Red: Force predicted by the superposition principle) C: Same as in B, but with an ISI of 100 ms. D: Same as in C, but with an ISI
of 1 s. For clarity, the maximum force recorded is marked by a small horizontal blue bar just to the left of the value. In all cases the prediction is
initially considerably higher than the actual force, indicating that the superposition principle does not hold in muscle at long lengths.
doi:10.1371/journal.pone.0006480.g011
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stiffness of the apparatus, on the signal to noise ratio, and on the

bandwidth of our measurements. Furthermore, since some of the

muscles that we pulled on were partially wrapped around the

eyeball, it is conceivable that translations and/or deformations of

the eyeball could have affected our measurements (they would

essentially be equivalent to an increased compliance of the

apparatus). Strictly speaking, the force we report here is thus the

force that would be applied on the eyeball by a passive antagonist

muscle when it is extended by the action on the globe of a

shortening agonist muscle. Because of the presence of the eyeball,

Figure 13. Force induced by the second step in a double-step sequence. A: Data from elongations at long lengths, same dataset as in Fig. 11 .
The force induced by the second elongation step is not a function of the ISI. B: Data from elongations at short lengths, same dataset as in Fig. 12.
With the exception of the first 20 ms after the shortest ISI, the force induced by the second elongation step is invariant. The muscle thus appears to
have no memory of the previous elongation.
doi:10.1371/journal.pone.0006480.g013

Figure 12. Testing the superposition hypothesis in muscle at short lengths. Same as Fig. 11, but in a different muscle and at the low end of
the elongation range (notice the much smaller forces). Superposition does not hold at short lengths either.
doi:10.1371/journal.pone.0006480.g012
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the elongation of the passive muscle could be somewhat smaller

than the motion of its insertion on the eyeball.

While simulations show that the stiffness of the apparatus did

not significantly affect our measures, and we are confident that

significant translations of the globe did not occur, it is harder to

rule out small deformations of the (unobservable) posterior pole of

the eyeball. Nevertheless, there is no reasonable scenario under

which these potential artifacts could have affected qualitatively the

findings here reported. In particular, they cannot be responsible

for the relationship between step response and muscle elongation

in the generalized QLV model (Fig. 4, insets), and they certainly

cannot affect the superposition of forces. It is worth noting that this

last result came also from a medial rectus muscle, which does not

wrap around the globe, and thus cannot induce translations or

deformations of the eyeball. Finally, as we previously mentioned

[37], across muscles there are significant quantitative differences,

certainly larger than those that could have been induced by our

less-than-ideal preparation. The data we report here should thus

be perfectly appropriate to build a model of an average passive eye

muscle.

While we are confident that none of these limitations qualitatively

affects our results, it is obvious that ex-vivo preparations could

provide more accurate results. Since other laboratories are better

equipped for carrying out ex-vivo experiments, it is our hope that our

results will stimulate their interest. In particular, it would be very

interesting to know whether the lack of superposition that we have

reported holds also at the single fiber level (in extraocular or skeletal

muscles), and whether it is a general feature of passive biological

tissues.

Modeling our data
Now that we have shown that the quasi-linear theory, and in

general models that can be formulated as a single integral, cannot

account for our data, it is natural to ask what other theory could.

One classic way of performing nonlinear system identification is to

build a non-parametric, input/output description of the system

(i.e., the system is seen as a black-box, without any attempt to

describe what is inside the box). For example, a Volterra series

approximation, analogous to the Taylor series approximation of a

function, yields a description of the system based on a series of

functionals [49]. Unfortunately the Volterra kernels are not

orthogonal to each other (i.e., in the response, the n-th order

interaction of the previous inputs is described by all kernels of

order n or higher), and thus their estimation requires the

simultaneous solution of a set of integral equations. In practice,

a modified series must be used. Wiener showed that if the input

signal is a white-noise Gaussian signal, a series of orthogonal

kernels can be derived [50], making their estimation considerably

simpler. This technique is commonly used in many fields, but it

has a major limitation in our specific case: we can only measure

positive forces, i.e., the inputs that stretch and relax the muscle are

not symmetric. Thus, a simple Gaussian white-noise input signal

governing length could not be used to identify the Wiener kernels

for muscle.

In the context of nonlinear viscoelastic behavior, a model that

follows this same philosophy has been proposed by Pipkin and

Rogers [51]. This model has two major advantages over the

Wiener kernels: first, it only requires the measurement of the

force induced by elongation steps and sequences of elongation

steps. Second, the first term in the series is a single integral with a

nonlinear integrand (Eq.21), and it would thus be possible to see

this model as an extension of Fung’s model (or more precisely of

the AQLV model, which would then become the first order

approximation of the overall model). The second term in the

series is then computed by looking at the difference between the

force predicted by this first term and the actual response to

sequences of two steps, and so on. However, this theoretical

elegance does not translate into an actual ease of implementation.

Vast quantities of data must still be collected; for example, all

delays between the pairs of steps must be tested, and this must be

done separately at each length. Furthermore, it is far from trivial

to obtain the expressions for the series terms past the first (to

quote Pipkin and Rogers: ‘‘For the case n = 2 we have deduced

the proper form [for the second term], but the analysis is lengthy,

and we omit it.’’). Another disadvantage of this technique (and of

all non-parametric techniques in general) is that even a ‘‘simple’’

nonlinear model might require many terms. For example, a

Hammerstein system (the cascade of a static nonlinearity and a

linear dynamical system, like the original QLV model) with a

squaring nonlinearity, has an infinite zeroth-order Weiner kernel

[52,53]. Thus, the non-parametric approach guarantees a

solution, but not a simple or easy to compute solution, even

when one exists.

An alternative to this nonparametric approach is to use a

parametric model, in which the general structure of the model is

first guessed based on the current knowledge of the system. Then,

an experiment is designed to probe that structure as extensively as

possible. Finally, an optimization algorithm is used to identify the

parameters by fitting the model to the data collected [54]. Needless

to say, if the initial assumptions turn out to be incorrect, this

approach inevitably leads to a dead end.

There is also a third alternative. As the model proposed by

Nekouzadeh and colleagues [36] does a good job at fitting the

single step data (although admittedly with a lot of parameters, 35

in our case), and to a lesser extent so does the original QLV model

(with 8 parameters), it is conceivable that one could build on it by

manipulating its output to also fit the double step data. Of course

there are many different ways to accomplish this feat, and other

experimental paradigms will then be needed to validate the

resulting model. In the next paper in this series we will proceed

along these lines.
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