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Abstract

Background: Electronic noses, E-Noses, are instruments designed to reproduce the performance of animal noses or
antennae but generally they cannot match the discriminating power of the biological original and have, therefore, been of
limited utility. The manner in which odorant space is sampled is a critical factor in the performance of all noses but so far it
has been described in detail only for the fly antenna.

Methodology: Here we describe how a set of metal oxide (MOx) E-Nose sensors, which is the most commonly used type,
samples odorant space and compare it with what is known about fly odorant receptors (ORs).

Principal Findings: Compared with a fly’s odorant receptors, MOx sensors from an electronic nose are on average more
narrowly tuned but much more highly correlated with each other. A set of insect ORs can therefore sample broader regions
of odorant space independently and redundantly than an equivalent number of MOx sensors. The comparison also
highlights some important questions about the molecular nature of fly ORs.

Conclusions: The comparative approach generates practical learnings that may be taken up by solid-state physicists or
engineers in designing new solid-state electronic nose sensors. It also potentially deepens our understanding of the
performance of the biological system.
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Introduction

Electronic noses, E-Noses, incorporate an array of chemical sensors

of different specificities, which simultaneously respond to the volatile

chemicals present in a gas sample. The two main components of an

electronic nose are the sensing system and the automated pattern

recognition system. The sensing system can be an array of gas sensors

or it can be a single device. Gas sensors, based on chemical sensitivity

of semiconducting metal oxides, are readily available commercially

and have been more widely used to make arrays for odor

measurements than any other single class of gas sensor [1]. They

are characterised by a relatively fast response, typically less than

10 seconds, and they have high sensitivity to a range of organic

vapours. Metal oxide (MOx) sensors consist of a metal-oxide

semiconducting film (e.g. SnO2, TiO2, ZnO, ZrO2) coated onto a

ceramic substrate (e.g. alumina). Most often the device also contains a

heating element. Oxygen from the air is dissolved in the semicon-

ductors’ lattice, setting its electrical resistance to a background level.

During measurement, volatiles are adsorbed at the surface of the

semiconductor where they react with the dissolved oxygen species

causing a further modification of the resistance of the device [2].

A number of types of E-Noses, which are based on different

sensing technologies [3], are available commercially, however they

have not been widely adopted, in large part because they perform

poorly in some real-world discrimination tasks [4]. In order to

improve upon existing E-Nose sensors, it would be helpful to

define and, where possible, quantify the gap between their

performance and the performance of a ‘‘gold standard’’. Biological

odorant receptors (ORs) are potentially useful references for E-

Nose sensor but, until recently, more was known about the

pathways that process olfactory information than about the

function of ORs. However, following recent descriptions of the

molecular physiology of one class of dORs [5,6] and detailed

characterization of the molecular receptive range of a subset of

these receptors [7], it is now possible to compare the responses of a

set of technical sensors with those derived by evolution. For

example, using Hallem’s dataset [7], Haddad et al. [8] trained a 16

sensor electronic nose to predict the likely responses of the rat I7

OR to other odorants. Here, we use the odor space defined by the

set of odorants selected by Hallem to investigate the sensitivity,

tuning and independence of 12 MOx sensors from an electronic

nose. This type of sensors was chosen because of the advantages

rehearsed above (high sensitivity, commercially available, fast

response). The E-Nose sensors are compared with 24 Drosophila

general odorant receptors, using Hallem’s own data set [7].

Attempting to replicate the performance of a biological system in

an engineered instrument would deepen our understanding of the

underlying physiology and may also lead to technological

improvements in instruments designed to perform similar tasks.

Results and Discussion

Insect ORs have substantially broader odorant specificity
than MOx sensors

Using a panel of 110 odorants likely to be encountered in the

natural habitat of the fly, Hallem et al. [7] demonstrated that the
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odorant tuning of fly receptors ranges from relatively narrow to

very broad. We compared the fly’s OR tuning curves, using

Hallem’s own data, with the tuning of the twelve MOx sensors

from a Fox 3000 electronic nose (Alpha-MOS, Toulouse). For the

fly, all liquid odorants were used at a nominal dilution of 1/100

and solid odorants at 1/50 [9]. This approach is not possible with

the electronic nose because the sensitivity of the sensors varies

profoundly according to the chemical class of odorants. Further-

more concentrations of odorants sufficiently high to elicit a near-

saturated electronic response may cause permanent damage to E-

Nose sensors. Therefore we established a safe working dilution for

each of the twelve broad chemical classes (see Methods) prior to

conducting the test. Responses were subsequently scaled to a

constant dilution of 1/100 (Table S1). The necessity for such a

procedure itself indicates a substantial difference between

biological ORs and MOx sensors. As previously demonstrated

[7] at 1/100 dilution, most of the fly ORs tested are excited or

inhibited by the majority of the test compounds whereas the MOx

sensors respond to 50% or fewer of the compounds at that dilution

factor (Figure 1A). The mean half width of the tuning curve for the

set of fly ORs is 14613 compounds and for the MOx sensors the

mean half width is 664 compounds (Figure 1B).

As would be expected, lowering the concentrations of odorants is

found to reduce the number of odorants that elicit strong responses,

particularly from broadly tuned receptors [7]. A similar phenom-

enon applies to MOx sensors. In this light, it is important to note

that the data sets that we compared both related to nominal 1/100

dilutions of odorants. Vapour pressure is the same for any given

odorant regardless of which system it is tested on. Therefore for each

odorant tested, the actual concentration at the sensor surface cannot

be higher for the Drosophila OR (dOR) than for the MOx sensor.

Indeed, it is likely to be somewhat lower in the fly because of the

non-equilibrium nature of the headspace delivery in that system.

Therefore, if any bias was introduced in the comparison of tuning

breadth, its effect would be to underestimate the breadth of the

tuning curves of the fly ORs relative to the MOx sensors.

It has long been proposed [10] that an optimal chemical sensor

array would utilise sensors of broad and overlapping analyte

sensitivities. Metal oxide sensors, which themselves have no basis

for chemical specificity other than redox potential, might be

expected to fit this requirement perfectly. What the comparison

shows is that the MOx sensors are nowhere near as broadly tuned

as biological ORs despite the general, and generally deserved,

reputation of bioreceptors for exquisite ligand specificity.

The relative promiscuity of fly ORs for odorants can be

illustrated by reference to classical ‘‘lock and key’’ membrane

receptors such as G-protein coupled receptors (GPCRs). Whereas

Hallem et al. [7] found that many of the fly ORs respond to the

majority of the odorants tested, screening for classical GPCR

ligands with targeted libraries typically yields hit rates of less than

0.01% [11]. In this context, even the more selective of the ORs

should be thought of as having very broad tuning compared with

conventional pharmacological receptors. GPCRs and the class of

fly ORs discussed here are both seven-transmembrane proteins,

albeit of distinct evolutionary origins. However, the profoundly

different ligand-tuning characteristics of the ORs, implies that

their ligand binding mechanism would be novel and substantially

different from that of most described bioreceptors.

Independence of sensors
The concept that the discriminating power of an electronic nose

depends on the independence amongst its sensors, i.e. inversely on

Figure 1. Odorant tuning curves and half-widths of metal oxide (MOx) sensors and Drosophila odorant receptors (dORs). A. MOx
sensors (first two columns) and dORs (columns 3–6). Responses for all 110 odorants were obtained at, or scaled to, a dilution of 1/100 and normalised
to a maximum response of 1.0 for each of the receptors/sensors. Drosophila data are recalculated from Hallem et al. [7] and electronic nose data from
Table S1. The odorant tuning curves of MOx sensors have, on average, one third the half-width of dORs. Many of the odorants provoke inhibitory
(negative) responses from a number of the dORs. These have been truncated. B. Cumulative histogram showing the distribution of receptor/sensor
half-widths for odorant tuning. MOx sensors: cross-hatched bars. dORs: solid bars.
doi:10.1371/journal.pone.0006406.g001
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their redundancy or cross-correlation, is well known [12,13,14].

Hallem et al. [7] used principal components analysis of the data

obtained with their test set to define and visualise the odorant

space sampled by a subset of dORs. We ran principal components

analysis (PCA) on the responses of both dORs and MOx sensors to

the set of 110 test compounds first used by Hallem et al. [7]. This

allowed us to compare the positioning of both types of sensors

within the same odorant space and to compare between the

average levels of correlation among sensors of the same type. As

previously reported [7], the dORs are distributed relatively widely

throughout the odorant space (Figure 2). In contrast, the 12 MOx

sensors cluster together in two narrowly constrained regions of

odorant space, indicating that the responses of the MOx sensors

are highly correlated.

To compare the sensor correlations we derived the pairwise

Pearson correlation coefficients between all pairs within both

classes of sensors (Table S2). For dORs, only five of the 276

possible sensor pairings were highly correlated ($0.7 [15]) and the

mean correlation was 0.2460.28, whereas for the twelve MOx

sensors all 66 of the possible sensor pairings were highly correlated

with a mean correlation of 0.8960.08. We next compared the

independence of MOx sensors and dORs within a representative

sub-region of odorant space defined by 21 esters. Esters form a

chemical class of environmental significance for Drosophila and

are also strong stimuli for MOx sensors. We selected only esters for

which we had reliable vapour pressure information (Table S3) so

that we could correct Hallem’s data to minimise variation from

this source [16,17]. We also eliminated any bias due to different

numbers of sensors by choosing a representative set of 12 dORs,

spanning the full range of tuning curves (Table S4). Within the

ester sub-region of odorant space, the 12 dORs (Figure 3B) were

substantially more widely distributed than the MOx sensors

(Figure 3A). Furthermore, we observed no increase in the

correlations between pairs of dORs (Table S5; mean Pearson

correlation = 0.1260.4). The correlation among MOx sensor

correlations was not significantly reduced (mean Pearson correla-

tion = 0.7760.25).

We are unaware of any prior use of quantitative statistics to

define the levels of correlation amongst a set of odorant sensors.

This is potentially a powerful approach, particularly if used in

conjunction with a standard odorant set, which will assist in the

selection and improvement of sensor technologies.

Basis of compound discrimination
In relation to an electronic nose, Stetter et al. [12] wrote: ‘‘it is a

bit frightening and unsettling to the analyst that the source of the

chemical information is still so non-chemically specific.’’ Consis-

tent with this we found, for example, that the pattern of MOx

sensor responses for the alcohols: 1-pentanol, 1-hexanol, 3-

methylbutanol, Z2-hexenol and 1-octen-3-ol are remarkably

similar (Figure 4A), with only 1-octen-3-ol deviating from the

general response envelope. However, the same set of alcohols

varies enormously in the strength of responses they provoke from a

set of 12 dORs (Figure 4B). Similar results were observed for other

chemical classes (not shown).

To investigate this difference further, we performed cluster

analysis (Figure 5A) for a set of 25 compounds (42 nM) from five

chemical classes using MOx sensor data. We observed three

statistically significant clusters corresponding to carbonyls (esters,

aldehydes and carboxylic acid); 3-methyl butanol and several non-

carbonyls; all other alcohols and terpenes. The clustering was

broadly congruent with chemical functionality. A representative

set of 12 dORs, also generated three clusters with significantly

different semi-partial R2 values (Figure 5B). Three terpenes

formed one cluster, octanoic acid a second and the other 21

compounds a third cluster. We could detect no statistically

significant correlation with any external molecular characteristics,

notwithstanding a weak association with mean molecular weight.

Therefore, discrimination by odorant receptors, although robust,

was based on subtle, undefined and highly compound-specific

features of individual odorant molecules. The dissociation of the

dOR-generated clusters from conventional molecular descriptors

is a necessary corollary of the sensors being independent of each

other.

Figure 2. A comparison of the independence of MOx sensors and dORs in the same odorant space. Loading plot showing the first three
principal components from a PCA analysis of the responses of dORs (crosses) and MOx sensors (squares) to 110 odorants. All odorants were tested at
or scaled to a 1/100 dilution. The Pearson pairwise correlation coefficients between MOx or dOR pairs are show in Table S2.
doi:10.1371/journal.pone.0006406.g002
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These findings demonstrate that, if concentrations are stan-

dardised, E-Nose sensors can discriminate among chemical classes

but have little capacity to discriminate amongst compounds with

the same chemical functionality. The dependence of the MOx

signal in part on chemical class or functionality is consistent with

the working principle of this type of sensor, which is on-surface

oxidation of analytes using molecular oxygen [1]. Oxidation of

molecules sharing chemical functionality is likely to generate more

similar redox potentials than would oxidation of molecules with

different chemical functionality. Guerrieri et al. [16] proposed that

the olfactory space of the honeybee could be defined ‘‘with

functional group and carbon-chain length as inner dimensions’’,

which is not seen here for Drosophila. However, Guerreri et al.

used a 16 compound test set, which was tightly constrained in

chain length and functional group. Although we cannot exclude a

species difference, we believe it is more likely that simple

associations between olfactory classification and chemical structure

break down over the larger distances in odorant space defined by

the 110 compound test set used here.

Comparison of the absolute sensitivities of dORs and
MOx sensors

One of the attractive features of MOx sensors is their high

sensitivity to volatile odorants [1], which can confer a detection

threshold comparable to that of humans, at least for some volatiles

[4]. However, depending on the receptor and the volatile, the

detection limits of biological receptors vary widely. In order to

compare the sensitivities of different types of sensors it is necessary

to relate their responses to known concentrations of the same

odorants. When recording from the living fly, limitations of the

Figure 3. PCA loading plots for the responses of MOx sensors (A) and dORs (B) to 21 esters. The responses to all esters (compounds 22-
42, Table S3) were tested at or scaled to 1/100 dilution and corrected to equivalent concentrations using vapour pressure data. The 12 dORs are those
asterisked in Table S4 and were chosen to represent a full range of tuning half-widths. Pearson pairwise correlation coefficients between MOx or dOR
pairs are given in Table S5.
doi:10.1371/journal.pone.0006406.g003

Figure 4. Radar plots for responses of the MOx sensors (A) and dOR sensors (B) to five alcohols. The scales represent full signal
amplitude for Drosophila of 250 to +250 spikes per second for dORs and 21 to +1 arbitrary resistance units for MOx sensors. The five alcohols were:
1-pentanol (orange), 1-hexanol (blue), 3-methylbutanol (magenta), Z2-hexenol (red), 1-octen-3-ol (green), all at 1.4610210 M.
doi:10.1371/journal.pone.0006406.g004
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stimulus presentation generally preclude knowledge of odorant

concentrations. It is common practice to use standard dilutions of

a stock odorant solution in lieu of defined absolute concentrations.

Concentrations at the receptor vary depending on the vapour

pressure of the odorant and the degree of extra dilution

introduced in the airflow system and/or in diffusing from the

insect cuticle to the receptor. The alternative approach pursued

here, heterologous functional expression of insect ORs, permits

known concentrations of odorants to contact the receptors in the

liquid phase and enables direct measurements of OR sensitivity

[18]. Measurements with the electronic nose are more straight-

forward because a predetermined concentration of odorant can

be presented to the sensors. However, as far as we can ascertain,

sensitivity of MOx sensors has not previously been stated in terms

of an EC50 value at the sensor surface. Instead a limit of detection

is determined and generally this relates to the level of analyte in

the sample. The latter approach is ideal for determining the utility

of MOx sensors for a particular task, however it is sub optimal for

comparing the absolute sensitivities of different types of sensors.

In the past, therefore, it has not been possible to make a rigorous

comparison of the sensitivities of MOx sensors and biological

ORs. In this study we have directly compared the EC50 values of

MOx sensors. We surveyed the responses of all sensors to 89

compounds from the 110 odorant test panel for which we could

obtain vapour pressure data. We selected the dOR35a receptor

and MOx sensors PA/2 and SY/GH from a Fox 3000 electronic

nose as representative receptors to perform a rigorous comparison

because these sensors respond strongly to some of the same

compounds. dOR35a is slightly unusual in that it is the only

member of its class known to be expressed in one of the coelonic

sensilla, which otherwise house a new class of variant ionotropic

receptors [19]. In all other respects, dOR35a behaves as a normal

member of its class. 1-octanol was selected as a test odorant

because it gives the highest vapour pressure-adjusted response for

dOR35a, generating an EC50<23 nM for dOR35a (Figure 6A,

Table 1). This compound was also detected as sensitively as any

other by the MOx sensors (data not shown). Nevertheless, MOx

EC50 values were 0.2–0.4 mM i.e. 10–20 fold higher than for

dOR35a. 1-octen-3-ol was also selected, as representative of

compounds that generate moderate responses in both types of

sensors (Figure 6B, Table 1), in both the dOR35a and MOx

sensors and elicited EC50 responses in the low micromolar range

from both types of sensor. The EC50 values observed here

represent a conservative upper limit for insect ORs. Using the

same assay conditions, certain Drosophila [18] and lepidopteran

[20,21] OR/odorant combinations generate EC50 values as low

as 14–16 pM to some odorants. It seems that, although the

affinities of this group of MOx sensors for odorants overlap the

working range for ORs, the affinities of some ORs may extend to

at least four log units more sensitive than for the MOx sensors

considered here. However, if the comparison were made in terms

of limits of detection the relative sensitivity of the MOx sensors

would be substantially better, due to their very low noise levels

(Figure 6).

Figure 5. Cluster analysis for responses of MOx sensors (A) and dORs (B) to 25 compounds from five chemical classes. All responses
are scaled to constant concentration: 4.2061028 M for MOx sensors, unknown for dORs. The chemical classes were: carboxylic acids (orange),
alcohols (green), aldehydes (light blue), esters (maroon), terpenoids (dark blue).
doi:10.1371/journal.pone.0006406.g005
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Relative sampling of odorant space by MOx and OR
sensors

An ideal sensor array for volatile compounds would sample all

points in odorant space, using multiple independent sensors. We used

a graphical approach to compare, qualitatively, the degree to which

the coverage, overlap and independence of dORs and MOx sensors

approaches this ideal. (Figure 7). PCAs were run separately for the

responses of MOx sensors and 12 of the dORs to 1/100 dilutions of

the 110 test compounds. In each case the relative half-widths of the

tuning curves were used as the radii to generate circles centred on the

location of the respective receptors/sensors in the PCA loading plot.

Although this comparison is not strictly quantitative, it illustrates the

findings that a set of 12 insect ORs can sample much broader regions

of odorant space independently and redundantly than the same

number of MOx sensors. The relative effectiveness of the olfactory

system of the living fly, which expresses 48 odorant receptors of the

seven transmembrane class, rather than the 12 depicted in Figure 7,

would be underestimated by this approach.

We also note that the nature of the fly’s broad and overlapping

sensor fields would seem to require sophisticated and powerful

neural processing for classification of odorant signals. There is

anatomical, experimental and computational evidence that the

insect does have such a system dedicated to olfaction [22,23]. In

contrast, it is known that the chemosensory system of the

nematode Caenorhabditis elegans, has very few interneurons and

synapses between sensory and effector units [24,25]. Given its

deficit in neural processing power, we expect that the nematode

approaches one-to-one matching between chemoreceptors and

odorants, with less reliance on combinatorial processing than the

fly. This would imply that nematode chemoreceptors have very

tight tuning curves compared with either fly ORs or MOx sensors

and may account for the remarkably large number of chemore-

ceptor genes identified in the C. elegans genome [26]. Whilst

replicating the nematode model in an electronic nose may

theoretically be feasible, it would present daunting engineering

challenges to develop and deploy a very large number of tightly

tuned and independent sensors.

Conclusions
The inferred superior performance of a set of insect odorant

receptors over a set of MOx sensors originates with the

substantially broader tuning of insect ORs combined with their

paradoxically high levels of independence. Differences in sensitiv-

ity do not appear to be a critical differentiator between ORs and

MOx sensors. However insect ORs appear to have a broader

range of sensitivities, which is a corollary of their combination of

tuning breadth and independence. The protein structural basis of

the unusual ligand-binding characteristics of ORs is unknown and

may involve novel mechanisms. Quantifying the gap between

MOx sensors and ORs may help inspire and guide new

approaches in electronic nose sensor development. From a

practical point of view, we believe the benchmarking approach

developed here may be used to optimise existing MOx sensor

arrays, assess other classes of engineered sensors and possibly to

help select suitable applications for them.

Materials and Methods

OR and technical sensor data
Drosophila antennal data. The responses of 24 antennal

receptors to a diverse panel of odorants using the empty neuron

system were taken from Hallem et al. [7]. The selected panel of

110 odorants represents a broad sampling of ecologically relevant

Figure 6. A comparison between the absolute sensitivities of MOx sensors (PA/2, SY/GH) and dOR35a. Log-concentration response
curves show the sensitivity of dOR35a (blue), PA/2 (green) and SY/GH (red) to 1-octanol (A) and 1-octen-3-ol (B). MOx sensor responses are measured
as fractional changes in resistance. dOR35a responses were recorded by measuring calcium-stimulated Fluo4 fluorescence intensity for receptors
transiently expressed in Sf9 cells. Error bars represent the standard errors of the means and, for the MOx sensors, these are too small to be visualised.
doi:10.1371/journal.pone.0006406.g006

Table 1. EC50 and Hill coefficients derived from fitting log-concentration response curves for MOx sensors PA/2 and SY/GH and
dOR35a.

Compound dOr35a PA/2 SY/GH

1-octanol EC50 (nM)
Hill Slope

22.7 (12.6–41)*
1.1960.22*

233 (157–348)
1.1960.27

434 (268–702)
0.93560.22

1-octen-3-ol EC50 (nM)
Hill Slope

3,455 (700–17,000)
n.d.

900 (854–950)
1.5260.07

2,590 (2,290–2,930)
1.1860.06

*95% confidence limits for EC50 values and standard deviations for the Hill coefficients.
doi:10.1371/journal.pone.0006406.t001
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odours. These include esters, alcohols, ketones, lactones,

aldehydes, terpenes, organic acids, amines, sulphur compounds,

and aromatics (Table S1).

Electronic nose measurements and data processing. One

mL dilutions of the 110 volatile organic compounds (VOC) listed in

Hallem et al. [7], were prepared in either paraffin oil or water in 20-

ml glass vials. Dilutions were chosen to bring the responses for each

chemical class into the dynamic range of the sensors, using the

following factors: amines, 0.02; lactones, 0.6; acids, 0.08; sulphide/

sulphydryl, 0.002; terpenes, 0.2; aldehydes, 0.0001; ketones, 0.0005;

aromatics, 0.5; alcohols, 0.0001 and esters, 0.002. There were three

exceptions to this scheme, with the dilution factors for methanol and

ethanol being 0.003 and, for acetaldehyde, 0.0005. The following

odorants were diluted in water: ammonium hydroxide, putrescine,

cadaverine, methanoic acid, acetic acid, propionic acid, butyric

acid, pentanoic acid, hexanoic acid, isobutyric acid, isopentanoic

acid, pyruvic acid, lactic acid, acetaldehyde, methanol and ethanol.

All other odorants were diluted in paraffin oil. The vials were

capped with silicon/Teflon magnetic autosampler vial caps.

Fox 3000 measurements were made essentially as described

previously [4]. Vials were loaded into an autosampler (HS50,

CTC Analytics, Switzerland) interfaced with a FOX 3000 E-Nose

(Alpha M.O.S, Toulouse, France), which has an array of 12

semiconducting MOx sensors. To equilibrate volatiles with the

headspace, samples were incubated at 40u C with shaking

(500 rpm) for two minutes. After incubation, 500 mL of the

headspace was injected into the FOX 3000 at a rate of 500 mL

s21. Dry zero grade air (flow rate 150 mL min21) was used to

sweep the sample through the two sensor chambers. A five minute

purge was used between samples to allow the sensors to return to

baseline. Data were captured and pre-analyzed using AlphaSoft

v.11 (Toulouse, France). To simplify data processing, only the

maximum resistance changes of each sensor were used for analysis.

The computation used for feature extraction is defined as a

fractional baseline manipulation given in Eq. (1) below.

DR

�
R0~

(R0{Rmax)

R0
ð1Þ

Where R0 corresponds to the value of the resistance at t = 0

(baseline) and Rmax to the extreme resistance value change when

Figure 7. A cartoon to illustrate the relative coverage and overlap of dORs (A) and MOx (B) sensors in odorant space. Principal component
analyses were performed separately for the responses of MOx sensors and dORs to 1/100 dilutions of the 110 test compounds. The panels depict the
locations of (A) the twelve representative dORs (asterisked in Table S4) and (B) the 12 MOx sensors, in the first two principal components of the loading plots
from the PCAs. In each panel the relative half-widths of the tuning curves are used as the radii to generate circles centred on the respective receptors/sensors.
doi:10.1371/journal.pone.0006406.g007
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an injection is made. Responses to all odorants were measured

independently three times at the same level of humidity and

temperature.

Sensor tuning curves
Mean E-Nose responses were scaled to the same dilution factor,

0.01, as used by Hallem et al. [7] (Table S1). In order to compare

the shapes of the tuning curves between ORs and MOx sensors,

the data were normalised separately for each individual MOx

sensor and odorant receptor. The maximum response in each case

was set to unity and data were sorted in descending order. The

normalisation focuses attention on the shapes of the curves, rather

than their amplitudes.

The half width of each tuning curve was calculated and expressed

as the rank number of the odorant giving #0.56 the maximum

response/1106100. Half widths, ranked in ascending order for

Drosophila receptors and MOx sensors are listed in Table S4.

Independence of sensor responses
The loading plots from a principal component analysis (PCA)

were employed to evaluate the independence of the sensors [13].

The scaled responses of the MOx sensors and the responses of dORs

to the 110 test compounds were submitted for PCA analysis using

Unscrambler software (version 9.1, CAMO PROCESS AS, Nedre

Vollgate, Norway) and the loading scores were graphed. (PCA is a

technique for calculating the major dimensions of variation for a set

of data points in a high dimensional space. It is used when no

hypothesis has been formulated as to which dimensions constitute

the most relevant information. Principal components are obtained

through a linear combination of the dependent variables that

maximises the variance within the sample set. The first principal

component accounts for the largest quantum of variance among

samples. Subsequent principal components account for successive

amounts of the total variance in the data set and are uncorrelated

with prior principal components). SAS statistical software (Version

9.1, SAS Institute Inc., Cary, NC, USA) was used to calculate

Pearson’s paired correlation coefficients between sensor-sensor and

receptor-receptor pairs.

Independence of sensors in an ester-specific sub-region
of odorant space

Twenty-one esters, with published vapour pressures were

selected for a further PCA comparing the 12 MOx sensors and,

to ensure an equivalent comparison, a representative set of 12

dORs (Table S4). The 12 Drosophila receptors were chosen by

ranking all 24 receptors according to the half-widths of their

tuning curves and removing every second receptor from the

analysis (Table S4). For MOx sensors, responses were scaled to a

1/100 dilution and corrected for differences in vapour pressure by

dividing the sensor responses by the vapour pressures (Table S3).

Similarly Hallem’s data were corrected by dividing the mean spike

rate by the vapour pressures of the compounds in question.

Compound discrimination
In order to identify the basis of compound discrimination by the

two types of sensor arrays we compared the responses of Drosophila

receptors and MOx sensors to 25 volatile organic compounds

representing five different chemical classes (acids, terpenes,

aldehydes, alcohols and esters). For MOx sensor analysis, the

headspace concentration of each chemical class was fixed and the

volume to be added to a 20 ml glass vial was calculated based on

general gas laws. The concentrations used for acids, terpenes,

aldehydes, alcohols and esters were 2.061029 M, 4.30610210 M,

4.2061028 M, 1.40610210 M and 5.0061029 M, respectively.

These test concentrations were chosen to ensure that compounds

from each chemical class elicited responses within the normal

dynamic range of the sensors, avoiding saturation and damage to

the sensors. The concentrations used were well below the EC50

values for many of the test compounds. Responses were normalised

to a constant concentration of 4.2061028 M prior to cluster

analysis. Hallem’s response data from the same 12 sensors as

selected above, for the same compounds were corrected for

variations in vapour pressure as described above. It was impossible

to determine absolute concentrations for these data. Cluster analysis

by Wards’ hierarchical clustering technique was performed using

SAS statistical software (Version 9.1, SAS Institute Inc., Cary, NC,

USA). Radar plots of the same data were used to compare the

differentiation of compounds within each of the five functional

groups mentioned above. Only results for alcohols are shown (Fig. 4).

Log-absolute concentration-response characteristics
The absolute sensitivity of the dOR35a Drosophila odorant

receptor and two MOx sensors PA/2 and SY/Gh were evaluated

for the two test compounds 1-octanol and 1-octen-3-ol.

Electronic nose measurements. Dilution series of test

compounds were prepared in 1000 mL of paraffin oil in 20 mL

autosamper vials so as to generate the desired headspace

concentrations. For 1-octanol the headspace concentrations

ranged from 2.1761029 M to 6.9761026 M and, for 1-octen-3-

ol, from 1.28 10629 M to 3.8461025 M. Vials were capped with

silicon/Teflon magnetic autosampler vials caps and E-Nose

measurements were performed as described above. All

measurements were done in triplicate.

Functional expression of dOR35a in Sf9 cells. Absolute

sensitivities of dOR35a to 1-octen-3-ol and 1-octanol were

determined by functionally expressing the receptor in Spodoptera

frugiperda Sf9 cells and measuring odorant responses using a

calcium-sensitive dye as described by Kiely et al. [18]. Sf9 cells

were maintained in Sf900II medium (Invitrogen) according to the

manufacturer’s instructions. Sf9 cells were transiently transfected

with 500 ng pIB-DmOr35a DNA using Escort IV (Sigma) in 12-

well plates. Transfected cells were incubated for 48 hours, to allow

the expression of the OR, before calcium imaging of responses to

ligands. Fluo4 (Invitrogen) was used as calcium indicator. A 1 M

stock solution of each odour was made in dimethylsulfoxide

(DMSO) and stored at 220uC. Prior to each assay, odorant

solutions were diluted from the stock solution to the desired

concentration in saline. Fluorescence images were recorded using

a TILL Photonics Imago-QE camera and Nikon Eclipse inverted

microscope. Images were recorded every 10 s for 50 s following

the addition of: saline (negative control), the test ligand and

ionomycin to determine the maximum fluorescence. Images were

analysed using the TILLvisION imaging system and DF was

calculated as the ratio of increase in fluorescence over baseline

upon the addition of ligand to the increase in fluorescence over

baseline following the addition of ionomycin. Data were analysed

and curves fitted using Prism v 5.0 (GraphPad Software).

Supporting Information

Table S1 Fractional changes in resistance of the 12 metal oxide

sensors of the Fox 3000 electronic nose to the 110 odorants used

by Hallem et al. (7). Odorants were diluted differentially,

according to chemical group, in order to bring the responses into

the working range of the sensors. All responses were then adjusted

to a nominal dilution of 1/100. Equivalent data for the Drosophila

ORs were sourced from Table S1 of Hallem et al. (7).
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Found at: doi:10.1371/journal.pone.0006406.s001 (0.04 MB

PDF)

Table S2 Multivariate Pearson pairwise correlations among

MOx sensors (A) and Drosophila ORs (B), using all 110 odorants.

Bolded values indicate highly correlated pairs.

Found at: doi:10.1371/journal.pone.0006406.s002 (0.04 MB

PDF)

Table S3 Listing of 42 compounds, with vapour pressures, used

for in-depth comparisons. Compounds 22-42 were used to

investigate the sub-region of odorant space defined by esters

(Fig. 3). Compounds 16-20 were used for comparisons between

sensor responses at constant concentration (Fig. 4). Compounds 1-

20 & 22-26 were used to investigate clustering of compounds of

different chemical classes (Fig. 5). Compounds 20 & 21 were used

to compare absolute sensitivies of MOx sensors and dORs (Fig. 6).

Found at: doi:10.1371/journal.pone.0006406.s003 (0.02 MB

PDF)

Table S4 Drosophila ORs and MOx sensors ranked by the half-

widths of their tuning curves. Asterisked receptors were incorpo-

rated into the analyses shown in Figures 3–5 & 7.

Found at: doi:10.1371/journal.pone.0006406.s004 (0.02 MB

PDF)

Table S5 Multivariate Pearson pairwise correlations among

MOx sensors (A) and Drosophila ORs (B), within the odorant

space defined by compounds 22-42 (i.e. esters) of Table S3 and

Figure 3. Bolded values include highly correlated pairs.

Found at: doi:10.1371/journal.pone.0006406.s005 (0.05 MB

PDF)
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