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Abstract

Neurons in the cortex exhibit a number of patterns that correlate with working memory. Specifically, averaged across trials
of working memory tasks, neurons exhibit different firing rate patterns during the delay of those tasks. These patterns
include: 1) persistent fixed-frequency elevated rates above baseline, 2) elevated rates that decay throughout the tasks
memory period, 3) rates that accelerate throughout the delay, and 4) patterns of inhibited firing (below baseline) analogous
to each of the preceding excitatory patterns. Persistent elevated rate patterns are believed to be the neural correlate of
working memory retention and preparation for execution of behavioral/motor responses as required in working memory
tasks. Models have proposed that such activity corresponds to stable attractors in cortical neural networks with fixed
synaptic weights. However, the variability in patterned behavior and the firing statistics of real neurons across the entire
range of those behaviors across and within trials of working memory tasks are typical not reproduced. Here we examine the
effect of dynamic synapses and network architectures with multiple cortical areas on the states and dynamics of working
memory networks. The analysis indicates that the multiple pattern types exhibited by cells in working memory networks are
inherent in networks with dynamic synapses, and that the variability and firing statistics in such networks with distributed
architectures agree with that observed in the cortex.
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Introduction

Persistent elevation in firing rates of cortical neurons during

retention of memoranda has been suggested to represent the

neuronal correlate of working memory [1–3]. This activity in so-

called memory cells (as observed in microelectrode recordings of

neurons in the cortex of primates during the performance of delay

tasks) exhibits a number of different general patterns. One pattern

consists of cells whose elevated firing rate persists, on average

across trials of the delay task, at the same rate for the entire period

during which information of the memorandum is maintained in

working memory. This type of dynamics represents the canonical

bistable activity which has been a major focus of theoretical and

computation modeling. A second elevated firing rate pattern

consists of cells whose rate either decreases or increases throughout

the memory period of a delay task. In decreasing-rate memory

cells, the elevated activity is attuned to the memorandum (cue) of

the task, and firing rate decays as the delay progresses towards the

response of the task. In increasing-rate or ramping cells, elevated

activity is motor- or response-coupled, and firing rate accelerates

as the response of a task approaches. These rate-changing pattern

cells and their respective networks have been suggested to

represent two mutually complementary and interactive represen-

tations engaged in the transfer of information of cross-temporal

contingencies from memory to action in working memory. Cells

exhibiting these pattern types have been found to occur

anatomically intermixed in the cortex [4], with cue- and

response-coupled cells appearing to be more common than fixed

delay rate cells [5]. In addition to these persistently elevated firing

rate patterns, neurons which presumably are constituent members

of working memory networks exhibit analogous inhibited (below

baseline rate) firing patterns. Finally, many cells exhibit firing rate

changes correlated with different working memory task events

such as the presentation of memoranda (cue period) and/or the

response of the delay task, but maintain baseline firing rates

throughout the delay period during which the memorandum is

retained in active short-term memory.

While the mechanism(s) by which the patterns of activity are

initiated and maintained in working memory are undetermined, a

number of plausible hypothesis have been proposed. With respect

to persistent elevated-rate patterns, prevailing ideas which have

emerged from computational and theoretical studies are that the

activity arises as stable states in recurrent attractor networks [6–

16] and/or inherent cellular dynamics [17–24]. These studies

have had success in reproducing general bistable memory

behavior. For example with respect to network studies, successful

working memory behavior has been attained as defined by

achieving persistent increased firing rates of cue-specific subpop-

ulations of units in networks during the putative memorandum

retention period of simulating delay tasks. A difficulty typically

encountered however, is obtaining memory behavior, as defined

within the specific range of frequency rates, statistics, and with the
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variability as observed in real neuronal populations of cortical

working memory networks across the range of different persistent

patterned behaviors. Neurons exhibiting each of the different

persistent activity pattern types with some overall average

frequency do so only as an average across multiple trials of a

working memory task. Individual cells exhibit a significant amount

of variability however, both in terms of firing frequency within and

between trials of working memory tasks and may even exhibit

different patterned behaviors from trial to trial [5]. Thus while

cells exhibit one of the given patterns described above with some

overall average firing frequency across many trials (as observed for

example in an average peristimulus time histogram), they exhibit

different average firing rates and/or pattern behaviors from trial to

trial of the working memory task.

A potential source of these and other difficulties [25], is that they

are examined within the framework of static synaptic structures.

Specifically, the networks have fixed architectures, and are trained

such that the strength of the connections between units (the weight

matrices) produce desired memory behavior. Once memory

behavior is achieved, the weight matrix is held constant. However,

the simplification of fixed synaptic strengths may not be

physiologically reasonable in light of the highly dynamic structure

of the cortex. Cortical networks, and their constituent neurons,

receive constant input from both external and internal sources, with

learning and plasticity occurring concurrently with behavior. From

a functional standpoint, fixed connection strengths necessarily limits

the number of activities a network can perform, which could be

undesirable given the plasticity of cortical function. Further, the

ubiquity of cortical working memory [26] suggests that its associated

activity might not occur in fixed, dedicated networks, but rather

may arise from processes present in networks performing a variety

of different functions [27].

Functional architecture is a second consideration of potentially

fundamental importance to the dynamics of working memory

networks. Typically, efforts have focused on studying working

memory within the framework of local modules or networks that

exist at various specific or general locations in the cortex.

However, while working memory and/or working memory-

correlated neuronal activity may be maintainable within local

networks (or even cellularly), considerable evidence from neuro-

physiological and imaging studies have shown that working

memory involves widely distributed cortical networks across

multiple cortical areas [27]. Such a widely distributed architecture,

which, if not fundamentally necessary for producing the firing rate

patterns observed in working memory network cells, is probably

active in the modulation of that activity. This modulation might

entail not only producing the specific range of firing rates, but also

the range of pattern types.

Recent work has indicated that working memory networks

incorporate dynamic synapses. One study [28] revealed that

connections between pyramidal cells in the prefrontal cortex

exhibit facilitation, while others have demonstrated that neocor-

tical synapses undergo substantial synaptic plasticity following

synaptic activity [29,30]. Particularly, it has been found that cells

in certain cortical regions exhibit increased responses to sequences

of theta burst stimulation, both from burst to burst within a given

burst sequence, as well as across successive sequences. Work by

Hempel et al., [31], and Galaretta and Henstrin [32] indicated

that cortical synapses can exhibit augmentation (from 15 to 60

percent) that correlates with the frequency and duration of tetanic

stimulation–similar to that frequently observed during the

presentation of memoranda in working memory tasks.

Several computational efforts have attempted to address various

aspects of the issues described above. For example, one study

demonstrated that persistent activation with realistic frequencies

might be achieved if working memory corresponds to attractor

states on the unstable branch, and have proposed mechanisms by

which such states might be stabilized [33]. Other work has

emphasized the potential role of dynamic synapses in working

memory processes, examining the effects of dynamic synaptic

augmentation and rapid Hebbian plasticity in a recurrent network

framework [25]. This work indicated that synaptic augmentation

can reduce the amount of prior structure required for persistent

activation to take place, while rapid Hebbian plasticity could

enable persistent activity to take place within firing rate ranges

observed in real cortical neurons. More recent studies have

demonstrated that combinations of synaptic depression and

facilitation might extend the attractor neural network framework

to represent time-dependent stimuli [34]. Further efforts have

indicated that calcium media synaptic facilitation could produce

bistable persistent activation with firing rate increases typically

observed in real cortical cells [35].

While working memory models have mostly concentrated on

bistable persistent activation, some efforts have also addressed the

issue of cue- or response-coupled patterns of activity that steadily

increase and decrease during delay periods. For example, graded

activity in recurrent networks with slow synapses has been modeled

[24], while another recent study examined such activity in uniform

recurrent networks with stochastic bimodal neurons without

NMDA-receptor-mediated slow recurrent synapses [36]. This work

has indicated that graded memory activity could be very difficult to

produce within a single population or local module. Still other

studies have examined the ability of networks to produce ramping

behavior by maximizing the time the systems trajectory spends

around the saddle node of the system’s phase space [37]. Other

work, while not necessarily producing working memory cells with

firing rate statistics of real cells, has examined networks that produce

the types of general patterns observed in working memory [38,39].

A distributed network architecture may be crucial in understanding

and producing those patterns of activity.

In this work we examine a cortical model of working memory

incorporating dynamic synapses both within a local and a

distributed cortical framework. We investigate the mechanism of

dynamic synaptic facilitation in the generation of all of the

different patterns of persistent activity associated with working

memory and the effect of a distributed cortical architecture on the

dynamics of working memory patterns. We first examine a firing

rate model incorporating dynamic synapses representing a

working memory network residing locally in a given cortical area.

We analyze the statistics and firing-rate-patterns of this network

during simulated working memory and compare the results with

that of real cortical neurons recorded from parietal and prefrontal

cortex of monkeys performing working memory tasks. A reduction

of this model to a 2-dimensional system enables an analysis to

completely characterize the states of the system. We then

examined a distributed firing rate model consisting of 2 and 4

locally interconnected networks, analyzing the possible states as a

function of different long-range connectivity schemes and

strengths. The expansion of the architecture to multiple networks

allows the incorporation of possible heterogeneity. We compare

the output of these models (local and global architecture) with the

activity of the database of real cortical neurons recorded

extracellularly from the prefrontal and parietal cortex of primates

performing working memory tasks. The model expands on

previous work examining the ability of population models with

dynamic synapses to produce bistable memory states, or rate

changing states (either cue dependent during the stimulus period—

i.e. Barak and Tsodyks [34]—or exclusively rate changing during

Working Memory Cells’ Behavior
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the delay (Durstewitz [37]) to produce all different patterns

(including inhibitory patterns) recorded during the delay period,

and that these patterns can change their temporal features to

accommodate a continuum of delay periods, as well as possessing

relative rate changes and statistics as recorded in real cortical

neurons. We also demonstrate that different patterns can occur in

a distributed network concomitantly in a complimentary fashion as

observed in the cortex. From the mean field firing rate model, a

spiking network model is obtained whose population’s mean firing

rate corresponds to that of the firing rate model. This enables

direct comparison of the activity with real cortical neurons. We

examined the effect on unit activity with this spiking network with

a distributed architecture consisting of up to four local networks

connected by long range projections. The patterns and statistics of

these spiking networks are analyzed and directly compared with

the range of activities and firing statistics observed in the database

of real cortical neurons. Finally we quantify the variability in

spiking unit activity as observed in real cortical networks, and

demonstrate from a nonlinear analysis how this activity arises. The

results are compared to that observed in the real cortical cell

populations. The results of this work demonstrates that all of the

firing patterns correlated with working memory are inherently

generated in distributed networks incorporating dynamic synapses,

and these exhibit variability and firing rate statistics in agreement

with what is observed in the cortex.

Methods

We start with a firing rate model of a local network (Figure 1A).

While the population might correspond to a network anywhere in

the cortex, for convenience for comparison with the real cortical

data, we might associate it with a working memory network in

prefrontal or parietal cortex. The network equation describing the

synaptic activity of the population is given by

ds

dt
~

smin{s

ts

zF CwszI tð Þ{hð Þ ð1Þ

where S denotes synaptic activity. The second term in (1)

corresponds to the firing rate of the population with the function

F(X) given by

F Xð Þ~ 1

ptm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

1{e{bX

r
ð2Þ

in which tm is the membrane time constant, and b is a parameter

inversely proportional to the noise. This form of the firing rate

function mimics the firing rate of a class I neuron in the presence

of noise (,1/b) [40]. The parameter C in equation (1) is the

strength of feedback connections in the population,ts is the decay

constant for synaptic activity, w corresponds to the synaptic

facilitation, and h is the threshold. I(t) corresponds to an external

current which increases during memorandum (cue) presentation in

the simulated working memory task.

Dynamic synaptic facilitation (w) is incorporated in the model

according to

dw

dt
~

wmin{w

tw

zc wmax{wð Þ Ca

Ca0

� �e

ð3Þ

where tw is the decay constant, c is a proportionality constant

controlling the amount of facilitation as a function of intra-cellular

calcium, and Ca is the calcium concentration. Cao is a reference

parameter controlling the level of intracellular calcium at which

facilitation begins to increase. The calcium concentration

dynamics are given by

dCa

dt
~

Camin{Ca

tCa

zF CwszI tð Þ{hð Þ ð4Þ

where tca is the decay constant, and F(x) is of the form given in

equation (2).

The above local architecture of the model is expanded to a

distributed one, first through the addition of a second population,

coupled to the first by recurrent long-range projections (Figure 1B).

This allows the introduction of heterogeneity into the network as

well as representing the first step towards investigating the effect of

a distributed architecture on the dynamics and states of working

memory. The system dynamics are described by the coupled

network equations describing the synaptic activity

dsi

dt
~

si,min{si

ts

zF
X2

j~1

CjiwjsjzI tð Þ{hi

 !
ð5Þ

where i = 1, 2 corresponding to the two populations.

The two populations can be considered to reside in different

cortical areas (i.e. prefrontal and parietal cortex) or two

populations within the same area. For convenience of description

we can consider the populations to represent networks in different

cortical areas, which for purposes of association with the real

cortical data we take as prefrontal cortex (population 1) and

parietal cortex (population 2). In these equations then, C12

represents the strength of the projections from parietal cortex to

the prefrontal cortex population, and C21 is the connection

strength from the prefrontal population to the parietal population,

while C11 and C22 are the connections strengths within the

prefrontal and parietal populations respectively. Synaptic facilita-

tion is given by equation (2) and Calcium dynamics satisfy

equations similar to (3) which are:

dCai

dt
~

Cai,min{Cai

ts

zF
X2

j~1

CjiwjsjzI tð Þ{hi

 !
ð6Þ

The distributed architecture is further extended to one

consisting of four populations (Figure 1C), by recurrently

connecting two of the 2-population models above such that every

population has projections to every other population. The system

dynamics are given by:

dsi

dt
~

si,min{si

ts

zF
X4

j~1

CjiwjsjzI tð Þ{hi

 !
ð7Þ

where i = 1, 2, 3, 4 corresponding to the 4 populations, and with

analogous extensions of equations (6) controlling the calcium

dynamics. In this network each pair of populations (i.e.

populations 1 and 2, and populations 3 and 4) are more strongly

coupled to each other than they are to populations of the other

pair. The network can be considered now to represent two local

networks consisting of 2 populations each, residing within different
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cortical areas (i.e. prefrontal and parietal cortex). Thus the effects

of heterogeneity may be examined, in addition to the effect of a

distributed architecture on working memory dynamics and states.

Particularly it allows the examination of the effect of heterogeneity

and a distributed architecture on the occurrence of ‘‘complemen-

tary’’ working memory behaviors indicated by experiments to be

simultaneously present in networks in the cortex.

We begin the analysis first from the single population model.

The single population possesses 3-dimensional dynamics in the

variables for synaptic activity (S), facilitation (W), and calcium

concentration (Ca). A reduction of this model to 2 dimensions is

achieved by assuming steady state calcium (dCa/dt = 0) allowing

the system to be rigorously analyzed. While assuming steady state

calcium does not have an immediate justification from a

Figure 1. Schematic diagrams of network architecture of the single population, two population, and four population models. A) Single-
population firing rate model. In the single-population model the network receives input from an external current I(t) during the cue period of a simulated
working memory task. The synaptic activity S(t), and consequently the firing rate increases from the input of the external current, resulting in a dynamic
increase in its effective self connectivity C11 as a result of a concomitant dynamic change in synaptic facilitation W1. B) 2-population distributed model. In
the distributed 2-population model, 2 ‘‘local’’ networks, 1 and 2 are connected recurrently by long-range projections C12 and C21 whose strength is
weaker than the populations’ self connectivity C11 and C22. Both populations receive input from an external current I(t) during the cue period of
simulated working memory task. This results in changes in their respective population firing frequencies along with changes in their effective long-range
projections and self couplings through dynamic facilitation. In the spiking unit version of the model, populations 1 and 2 consist of networks of 100 (or
1000) spiking units each with all-to-all connectivity. C) 4-population model. In the 4-population model, four local networks (1, 2, 3, and 4) all receive input
from an external current I(t) during the cue period of the simulated working memory task. Each local population receives input from self connectivity,
and weaker input from the long-range projections from the other populations. Long-range projections between the population pair 1 and 2, and
between the pair 3 and 4 (i.e. C12, C21, C34, and C43) are stronger than the connection strength between populations 1 and 3 or 4, or between 2 and 3 or 4.
In the spiking unit version of the model with 200 units, each population corresponds to a network of 50 spiking units with all to all connectivity. In the
spiking unit version of the model with 2000 units, each population corresponds to a network of 500 units with all to all connectivity. The strength of the
connections is scaled such that the total strength of connectivity to units is the same as the 200 unit network.
doi:10.1371/journal.pone.0006399.g001

Working Memory Cells’ Behavior

PLoS ONE | www.plosone.org 4 August 2009 | Volume 4 | Issue 8 | e6399



neurophysiological standpoint, it produces a system with the same

attractor structure as the 3-dimensional system and thus allows the

rigorous analysis. We carried out analysis of the dynamics and the

stability of states of the model using XPPAUT [41]. For the 2-

dimensional reduced model we examined the phase portraits

(Figure 2), from which the fixed points of the system and their

stability were determined. Through this analysis, a range of

biologically plausible parameters were determined which generate

persistent working memory pattern types with statistics in the

range typical of real cortical neurons (Table 1). These network

parameters were then used in the full 3-dimensional model with

dynamic calcium. For the 3-dimensional model, the fixed points of

the system were first examined to determine coincidence with the

2-D model. Simulated working memory tasks were then run,

varying the magnitude of the facilitation, self connectivity, and the

magnitude of the input current. The firing rate patterns and

frequencies exhibited by the model were compared to the types of

patterns and frequencies observed in the database of parietal and

prefrontal neurons recorded from monkeys during performance of

working memory tasks in other studies. [42–44]. A simulated trial

of a working memory task followed approximately the same

generic sequence as that for which the single neuron database was

Figure 2. Phase portraits and bifurcation diagrams of the single population reduced model obtained for different values of the self
connectivity C11 and the maximum facilitation Wmax. The reduced 2-dimensional model is obtained at steady state calcium concentration (dCa/
dt = 0). Shown in the phaseplane are the nullclines for Facilitation (W) and Synaptic activity (S). A) Nullclines with self connectivity C11 = 4.8. The stable
nodes of the system are where the nullclines cross. Here there is a single fixed point (solid black dot) corresponding to the baseline state. The
trajectory of the system during a working memory task is indicated by the black line with an arrow. During the sample period, the applied current I(t)
raises the synaptic activity, and firing rate, with a concomitant rise in the facilitation (approximately 33% increase). After a 300 ms cue period, I(t)
becomes 0, and synaptic activity rapidly decreases towards the facilitation (W) nullcline, and the bottleneck. Because of the bottleneck, the trajectory
then returns very slowly along the path of the facilitation nullcline towards the stable baseline state. In the present example, the synaptic activity and
consequently the firing rate is still above the stable baseline rate at the end of the 10-second delay period, as indicated by the termination of the
trajectory line. The system therefore maintains an increase from its baseline firing rate for the duration of the delay period. A continuum of elevated
delay rates occur for different values of the parameters. B) W and S nullclines of the single population network with C11 = 5. Note there are now 3
stable points where the nullclines cross: 2 attracting (black dots) and one saddle node (white dot). C) Possible system trajectories of the network in (B)
with C11 = 5. The saddle separatrix is indicated by the blue line. Two different possible trajectories of the system are shown which result from varying
the magnitude of the external current I(t). For I(t) = 0.5 the trajectory does not cross the saddle separatrix and stays in the basin of attraction of the
baseline state. In this case, given sufficient time the system returns to the baseline stable state. The resulting pattern of behavior is that of cue-
coupled or decaying memory cells. For I(t) = 0.75 the trajectory cross the saddle separatrix, entering the baseline of attraction of the higher firing rate
stable state. The system for this trajectory is shown to be in the higher firing rate state by the end of the delay period. The resulting pattern of
behavior is that of response-coupled or ramping cells. In both cases the bottleneck can be adjusted such that the rate at which the system returns to
the baseline state, or approaches the higher firing state can be arbitrarily slow, resulting in a continuum of different average firing frequencies during
the delay, and apparent bistability at frequencies between the two stable fixed points. D) Phase portrait with C11 = 5.2. The system again possesses a
single stable state at a higher rate than in (A). E) Bifurcation diagram of steady state synaptic activity as a function of maximum facilitation (Wmax).
Curves shown are for Wmax equal to 0.925, 1, and 1.25 (producing synaptic facilitation in the 30–60% range). Solid lines indicate stable fixed points,
hashed lines are unstable fixed points. Note that 3 fixed points are present over a wide range of the facilitation. F) Bifurcation diagram for the
parameters of maximum facilitation Wmax and the threshold h. The curves correspond to the limit points at different values of these parameters. The
two branches of the limit points meet at a cusp point. For the region interior to the two curves there are three rest states and bistability, and outside
them there is a single rest state and monostability.
doi:10.1371/journal.pone.0006399.g002
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acquired. The simulated task consisted of a 20-second baseline

period (during which the population was in a baseline firing fixed

point), followed by a 300-ms sample cue period corresponding to

the period during which a memorandum was presented. After the

cue period, a 12 second delay period followed. We did not

consider in this study a behavior/motor response period following

the delay, but rather restricted our analysis to the network

behavior during these first 3 temporal aspects of the working

memory task. To analyze the firing rate patterns and firing rate

statistics of the model, peristimulus time (PSTH) histograms were

generated and analyzed over a range of values of the self

connectivity and facilitation. In addition, the phase diagram of

different possible pattern states occurring over a range of values of

the self connectivity and maximum synaptic facilitation were

examined. For the single population model, PSTH histograms and

phase diagrams were also generated for different values of

dynamic synaptic depression and self connectivity, and the

resulting patterns and firing rates were analyzed. Synaptic

depression was incorporated by allowing the parameter for

maximum facilitation (Wmax) to range over values less than the

value of the baseline facilitation (Wmin) in equation (3).

For the distributed 2-population model, the parameters used

were within the ranges determined and used in the single

population model, and simulated working memory trials were

conducted following the same course as that used for the single

population model. Firing rate patterns and statistics of both

populations were analyzed over a range of the inter-population

connectivity values. PSTH histograms were generated to analyze

the firing rate patterns and statistics. Phase diagrams of the firing

rate patterns occurring in each population were generated as a

function of the inter-population connectivity strength. An analysis

of the behavior of the entire network was carried out through an

examination of the possible pattern types occurring concomitantly

in the two populations. This analysis was carried out by examining

overlapping patterns in the phase diagrams of the two populations.

For the distributed 4-population model, the parameters for each

population were within small ranges of those determined and used

in the preceding single- and 2-population models. Simulated

working memory trials were conducted following the same

previous course as well. Firing rate patterns and statistics occurring

in all four populations were analyzed and compared to the activity

of the real parietal and prefrontal neurons. Phase diagrams were

generated of the different firing rate patterns occurring in the

populations as a function of different inter-population connectiv-

ities. An analysis of the behavior of the entire network was carried

out through an examination of the possible different pattern types

occurring concomitantly in the different populations. This analysis

was carried out through an examination of overlapping states in

the phase diagrams of the four populations. Resulting behaviors

were compared with that of the 2-population model.

Having determined the dynamics through the study of the firing

rate models, spiking models were generated to make direct

comparison with the single unit data. Spiking model versions of the

2- and 4-population firing rate models were generated by

replacing the populations’ activities first with networks of 200

spiking units exhibiting the same overall mean firing rates. The

network consisted of spiking neurons with all-to-all connectivity

and random strengths. Connections between populations were

both excitatory and inhibitory. Specifically, mean connectivity

values were chosen from regions of the phase diagrams of the

mean field model in which the range of memory cell pattern types

were robustly exhibited. These connectivity values were then used

as the values for setting the mean of the connectivity in the spiking

model. Distributed spiking networks consisting of two populations

of 100 units each, and four populations of 50 units each were

generated with the average inter-area connectivity chosen to

match the mean field model values within ranges of the standard

deviation (Tables 2 and 3).

The spiking activity of the single units was modeled as theta

neurons [40,45]. Unit firing frequency as a function of the injected

current (F-I curve) can be obtained analytically in the theta model.

This F-I curve is a square root function which provides a

Table 1. Network parameters.

Mean wmax 1

Std. Dev. wmax 0.02

wmin 0.6

c 8

tw 2

ts 0.05

tCa 0.5

b 0.5

smin 0.3

E 6

Ca0 82

Camin 8

amp 0.2

h 1.2

tm 0.03

Model parameter values obtained from analysis of the reduced 2-dimensional
network. These parameters are used in all of the local and distributed networks.
doi:10.1371/journal.pone.0006399.t001

Table 2. Mean connectivity values for the 2 population
network.

from A from B

to A 0.05 (0.01) 20.00134 (0.001)

to B 20.0145 (0.04) 20.057 (0.005)

The mean values of connection strength between populations in the 2-
population models. These values were used in the firing rate model, and also
represent the mean connectivity strengths between units of different
populations in the spiking model. The standard deviations for each of the mean
connection strengths are given in parenthesis.
doi:10.1371/journal.pone.0006399.t002

Table 3. Mean connectivity values for the 4 population
network.

from A from B from C from D

to A 0.101 (0.004) 20.0012 (0.003) 20.0014 (0.001) 0.0005 (0.001)

to B 20.0462 (0.003) 0.1405 (0.003) 0.0011 (0.0001) 0.0002 (0.003)

to C 20.0003 (0.003) 20.0001 (0.003) 0.1025 (0.004) 20.0034 (0.004)

to D 0.0003 (0.003) 0 (0.001) 20.036 (0.003) 0.132 (0.003)

The mean values of connection strength between populations in the 2-
population models. These values were used in the firing rate model, and also
represent the mean connectivity strengths between units of different
populations in the spiking model. The standard deviations for each of the mean
connection strengths are given in parenthesis.
doi:10.1371/journal.pone.0006399.t003
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correspondence between the firing rate model and the theta

model. The F-I curve for the theta model is described by

f Ið Þ~ 1

p

ffiffiffi
I
p

Whereas the curve for the mean field firing rate model is

f Ið Þ~ 1

ptm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I{h

1{e{b I{hð Þ

r

thus obtaining the correspondence between the mean field and

spiking models (as the parameter b goes to infinity the above

expression becomes the equation for a noisy integrate and fire

model).

The membrane potential dynamics of a unit in the spiking

model is given by the equation

dxj

dt
~

1

tm

1{ cos xj

� �� � 

z
X200

k~1

CkjwkskzI tð Þzamp:sj{hj

 !
1z cos xj

� �� �!ð10Þ

where I(t) is an external current occurring during the presentation

of memoranda, and amp is the amplitude of the Weiner noise. The

synaptic activity of a unit sj in equation (10) increases with each

afferent spike according to

dsj

dt
~

smin{sj

ts

zb
X

m

d(t{tm
j ) ð11Þ

where b corresponds to the increase in synaptic activity from a

single afferent spike, tmj is the time of incidence of the mth afferent

spike on the jth neuron, and ts is the decay constant. The dynamics

of the synaptic facilitation wj in equation (10) is given by

dwj

dt
~

wmin{wj

tw

zc(wmax{wj)
Caj

Ca0

� �e

ð12Þ

where Ca corresponds to the intercellular calcium concentration

which modulates the change in facilitation and increases with each

spike according to

dCaj

dt
~

1

tCa

{Cajze
X

m

d(t{tm
j )

 !
ð13Þ

The 2-population spiking network consisted of two ‘‘local’’

networks of 100 neurons each with all-to-all connectivity, and with

average weaker recurrent connectivity between populations than

within the populations. The activation properties of each

individual network reflect that of the single populations of the

firing rate models.

For the 2- and 4-population spiking networks, working memory

task simulations were conducted similarly to those for the firing

rate model, and the firing rate patterns and statistics were

analyzed. During the baseline period of the simulated working

memory task, facilitation in the models was kept low such that the

firing rate of the populations was near the baseline fixed-point

attractor state inherent in the model (as determined from the

phaseplane analysis of the firing rate model). After 20 seconds, the

baseline period ended and an external current I(t) was applied for

300 ms. The external current raises the firing rate of many units in

the populations, simulating the activity observed during presen-

tation of the memorandum in working memory tasks. The current

input and increased firing rate triggers dynamic facilitation

through equations (11–13). After the cue period, the delay period

begins. For the spiking model simulations, unit activity was

analyzed over an 11-second delay period which is proportional to

the delay period of the working memory tasks during which the

parietal and prefrontal cells of the database were recorded. PSTH

histograms of units were generated to analyze the patterns and

firing rate statistics of the units. Average PSTH histograms were

generated for each unit over 10 simulated working memory task

trials. Pattern types appearing in the average PSTH histograms

were determined and the distribution of patterns in the network

were compared to the distribution of patterns observed in the

parietal and prefrontal neuron populations of the database.

Variability in working memory patterns occurring across trials

for each unit was analyzed and compared between the 2- and 4-

population networks and the neuronal populations.

To examine the effect of network size on patterns exhibited in

the networks across trials and their variability, we generated 2- and

4-population networks consisting of 2000 spiking units. For these

networks the distribution of pattern types exhibited on each of 20

simulated working memory task trials was obtained and the

average distribution across all 20 trials was determined. These

distributions were compared to the distributions obtained with the

200 unit networks as well as that observed in the parietal and

prefrontal neuron populations of the database. Variability in firing

rate within trials was determined through an analysis of the

coefficient of variation (CV) of the ISI’s during the baseline and

delay periods. Variability in working memory patterns occurring

across trials for each unit was analyzed and compared to that

observed in the 2- and 4-population networks of 200 units.

The database with which the different models’ activity is

compared consists of 812 neurons recorded extracellularly from

the parietal cortex (Brodmann areas 2, 3, 5, 7) and prefrontal

cortex (areas 6, 8, 9 and 46) of monkeys performing working

memory tasks. In parietal cortex, 521 cells were recorded from

monkeys during performance of a haptic delayed matching-to-

sample task [42], and in prefrontal cortex, 291 neurons were

recorded from monkeys during the performance of a cross-modal

audiovisual delayed-response task [43–44]. The analysis of this

database and the compilation of its statistics in terms of firing rates,

patterns and statistics have been presented elsewhere [5].

Results

Single Population Model
The reduced single-population model is 2-dimensional (in the

variables S and W for synaptic activity and facilitation respectively)

and thus phaseplane and rigorous mathematical analysis was

carried out. The nullclines of the system (Figure 2) correspond to

the curves along which the synaptic activity and facilitation are

constant (ds/dt = dw/dt = 0). The steady states of the system are

defined by the points at which these 2 curves intersect. For

sufficiently low self connectivity strengths (or low maximum

facilitation), only one such point is present, corresponding to the
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baseline firing rate of the population (Figure 2a). Stability analysis

reveals this is an attracting fixed point. Thus transient perturba-

tions from the external current during the sample period (resulting

in increased synaptic activity, firing rates and facilitation)

ultimately relax back to this state. As the self connection strength

(or amount of facilitation for a given input current) is increased,

the W-nullcline intersects the S-nullcline at 3 points (Figure 2b).

Stability analysis reveals that 2 of these nodes are attracting fixed

points, and one is a saddle node. The presence of a stable state

corresponding to baseline, and a second stable state corresponding

to an above baseline firing rate, enables bistable behavior,

although the difference in firing rates associated with these states

is much larger than typically observed in cortical data over much

of the parameter space. For example, in the subpopulation of

memory cells recorded from the parietal cortex, 90.1% of the cells

exhibited increases from baseline to delay of less than 10 Hz, and

69.9% of frequency changes were less than 5 Hz. In the

subpopulation of memory cells recorded from prefrontal cortex

100% exhibited increases of less than 10 Hz, and 95.2% were less

than 4 Hz. Persistent elevated firing rates within these ranges

typically observed in cortical data is inherently prevalent in the

model without incorporating many of the previous mechanisms

providing solutions for acquiring that behavior (see for example

Latham and Nirenberg, [33]; Barak and Tsodyks [34]; Mongillo et

al., [35]). An essential feature of the model allowing this behavior

is the presence of a bottleneck which appears in the phaseplane

near the S and W nullclines corresponding to regions of greatly

diminished rates of change for the dynamic variables. Further, a

bottleneck is present over a broad range of the parameter space,

and its presence is not dependent on fine tuning of parameters.

The bottleneck comes about because the equations of the system

are a continuous map approaching zero when the nullclines are

close to each other in phase space. Thus as shown in Figure 2, the

values of ds/dt and dw/dt are reduced in those areas. There are

two factors in the decay rate which include the bottleneck and the

value of the time constants. While the presence of a bottleneck is

not a result of the difference in time constants (but rather the shape

of the nullclines), in the present system the shape of the nullclines

has a dependence on the value of the time constants, and thus the

slower rate change in w than s contributes both in terms of the

bottleneck’s existence via nullcline shape, as well as acting to slow

decay of its own accord. Thus both contribute to the slower decay.

Because of the bottleneck however, the ‘‘effective time constant’’

or rate of decay is much slower than would be predicted from the

actual time constants. When the firing rate is elevated above

baseline by an external current during the cue period, facilitation

also increases. The trajectory in the phaseplane is such that passing

through the bottleneck, the return of the system to the baseline

stable state (or procession to the higher firing rate attractor state) is

‘‘impeded’’. Thus while not in a stable state, the system remains in

a state of elevated (above baseline) firing frequency for an extended

period of time, which can be virtually indefinite. Over a wide

range of values of the parameter space, the decay to one of the

stable states of the system is sufficiently slow such that no

significant change in elevated firing rate is observed for the

duration of the putative memory period. From the frame of

reference of the memory task, this activity appears as bistable. In

contrast to actual bistability of the model however, the difference

in firing rates between baseline and delay periods for this apparent

bistability can adopt a continuum of values within the range

typically observed in real cortical cells (i.e. differences between

baseline and delay rate less than 100% of baseline or typical-

ly,5 Hz). This is also true of both the decaying memory cell and

ramping cell behavior. The range of facilitation values over which

the different firing rate behaviors occur is affected by the value of

maximum facilitation parameter. This parameter (and the

threshold h) significantly determines the fixed points of the system

(where the facilitation nullcline intersects the synaptic activity

nullcline). While this parameter is varied over a large percentile

range (i.e. several hundred percent), the resulting change in actual

facilitation realized by the network is within the range of 10% to

60%–within the range of reported increases (for example see

Hempel et al. [31]).

We next analyze the stability of the attractor states of the

network as a function of the threshold parameter (Figure 2E and

2F). The bifurcation diagram reveals that the 3 fixed points of the

system (two stable nodes and one saddle point) are present over a

wide range of this parameter. For parameter values where the

trajectory remains below the stable manifold (within the basis of

attraction of the baseline node), the system ultimately returns to

that attractor state. For parameter values in which the trajectory

travels above the stable manifold (into the basin of attraction of the

stable node corresponding to the higher firing rate), the system

approaches that second stable state.

Having determined the states of the 2-dimensional system, we

next use the parameters of this 2-dimensional network (Table 1) in

the 3-dimensional model with dynamic calcium. An analysis of the

attractor states reveals that the 3-dimensional system retains the

same attractors as the 2-dimensional system. Figure 3 shows PSTH

histograms of the model during the simulated working memory

task. These histograms show that the pattern activities observed in

the trajectories of the phase portraits of the 2-dimensional model

are present. Particularly this analysis shows that the network

inherently exhibits the range of excitatory and inhibitory patterns

correlated with working memory for different values of facilitation

and self-connectivity. For values of facilitation (or input strength

and/or duration) such that the trajectory of the system stays below

the separatrix in the basin of attraction of the baseline attractor

state, the population can exhibit persistent activity which decays

towards baseline throughout the delay (Figure 3a). The achievable

increases in firing rate from baseline to delay can take on low

values (i.e.,5 Hz) and can adopt any rate within a continuum.

The rate of decay of the persistent activation towards baseline is

also variable along a continuum. For a range of trajectories and

parameter values, the decay in firing rate during the delay can

become slower and slower, to the point that the population

approaches for all intents and purposes bistable behavior

(Figure 3b). Once again, the increase in firing frequency during

the delay can occur along a continuum. For sufficiently low values

of facilitation, the population exhibits a non-responsive pattern

(Figure 3C). That is the trajectory returns to baseline firing rates

immediately following the cue. Thus the population responds to

working memory events (i.e. the cue), but exhibits baseline rates

throughout the delay. As facilitation increases (or the input

strength/duration increases) such that the trajectory proceeds

beyond the separatrix, the pattern becomes that of a ramping

increase of firing rate during the delay period (Figure 3D). For

sufficiently large values of facilitation, the system quickly adopts

the higher firing rate attractor state, thus exhibiting bistability

(with differences between baseline and delay period .10 Hz for

most parameter values). Dynamic synaptic depression can be

introduced into the network rather than facilitation for values of

maximum facilitation (Wmax) that are less the background value

(Wmin) in equation (3). For sufficiently small values of synaptic

depression, as was the case for facilitation, the network exhibits the

non-responsive pattern. As synaptic depression is increased the

network exhibits the inhibitory pattern which is the mirror image

of decaying memory cells (Figure 3E). As was the case for the
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Figure 3. PSTH histograms of the single population firing rate model during the simulated working memory task. Different patterns
correlated with working memory are obtained for different values of the facilitation (or depression) and the magnitude of the input current during
the cue period. A) Decaying memory cell behavior. The baseline frequency is approximately 6 Hz, and at the beginning of the delay period the firing
rate is approximately 9 Hz. The firing rate has returned to the baseline level by the end of the delay period. Average increase in firing rate from
baseline to delay period is approximately 1.5 Hz. B) Apparent bistable memory cell behavior. The delay firing rate does not correspond to a stable
state, but the decay towards the baseline state is sufficiently slow so that no significant decrease in firing rate occurs by the end of the period. The
baseline firing rate is approximately 6 Hz, and the delay period firing rate is approximately 10 Hz. C) Nonresponsive pattern behavior. The population
responds during the presentation of the cue, but immediately returns to and maintains the baseline firing rate during the delay. D) Ramping
response-coupled cell behavior. The baseline frequency is approximately 6 Hz, and at the beginning of the delay period the firing rate is
approximately 9 Hz. The firing rate adopts the rate of the higher fixed point attractor by the end of the delay period. Average increase in firing rate
from baseline to delay period is approximately 6.5 Hz. E) Decaying inhibited pattern. In this example the value of maximum facilitation is less than the
background facilitation, resulting in dynamic synaptic depression. The baseline frequency is approximately 6 Hz, and at the beginning of the delay
period the firing rate has decreased to approximately 2.5 Hz. The firing rate has returned to the baseline rate by the end of the delay period,
mirroring the decaying memory cell activity observed in (A). Average decrease in firing rate from baseline to delay period is approximately 1.75 Hz. F)
Apparent stable inhibition. The delay firing rate does not correspond to a stable state, but the decay towards the baseline state is sufficiently slow so
that no significant decrease in firing rate occurs by the end of the period. The baseline rate is approximately 4.5 Hz, and the delay period firing rate is
approximately 1 Hz. Every pattern observed in the cortical database as reported in [5] is observed with the exception of delay inhibition that
increases throughout the delay period.
doi:10.1371/journal.pone.0006399.g003
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excitatory memory cells, the decay back to the baseline state of the

inhibitory pattern can be slowed to the point where the population

exhibits an apparent fixed rate inhibition pattern (Figure 3F).

Figure 4 shows the phase diagram of the firing rate patterns of

this model as a function of facilitation strength and self

connectivity strength. It can be seen that the different excitatory

patterns observed in the cortical data are produced (decaying

memory, bistable memory, and ramping cells) over a wide range of

parameters. As is the case in the cortical data, the non-responsive

pattern behavior is the most prominent pattern type across the

parameter space. For the case of synaptic depression, the decaying

inhibition pattern occurs prominently over a range of parameters

in addition to the non-responsive pattern.

The mechanism for the behaviors illustrated can be understood

from the stability analysis and examination of the phaseplane

(Figure 2). In all cases the firing rate begins at the lower attractor

state with low values of facilitation. The input of current increases

the synaptic activity S, and therefore firing rate and subsequently

the facilitation W increases. If the self connectivity, facilitation or

magnitude of the external current is sufficiently low such that the

trajectory of the system does not cross the saddle separatrix, the

trajectory is such that S quickly decreases until it approaches its

nullcline. Here the trajectory proceeds such that it approaches the

baseline stable attractor along the path of that nullcline. However,

the bottleneck through which the trajectory proceeds slows the

rate of return to the baseline state. The bottleneck can slow that

rate such that the trajectory is impeded to the point that firing rate

appears bistable with respect to the duration of the memory period

of the task. As self- connection strength, synaptic facilitation or

external current magnitude is raised beyond a critical point such

that the system’s trajectory goes beyond the saddle separatrix in

the phaseplane, the system approaches the second stable state

which corresponds to an above baseline firing rate—resulting in

ramping or response-coupled cell pattern behavior. Once again

the rate of this increase is affected by the bottleneck, and may be

arbitrarily slowed such that the firing rate appears bistable with

respect to duration of the memory period of the task. This

phenomenon exists for a broad range of parameter values. Thus

the inherent bistability in these cases is critical in modulating

patterned memory behavior, but does not in many cases in and of

itself represent the memory states. Rather the activation of the

network itself could represent active working memory.

2-Population Firing Rate Model
We next analyze the behavior of a 2-population network,

recurrently connecting two of the single populations. This model is

6-dimensional and thus cannot be easily reduced and analyzed as

was the case for the single population model. We analyze the

patterns and statistics through the PSTH histograms (Figure 5) and

the phase diagrams (Figure 6) of pattern types as a function of the

strength and sign (i.e. excitatory or inhibitory) for the net effect of

the inter-population projections. The phase diagrams enabled the

examination of possible concomitant activities in the different

networks.

Inhibition, in addition to excitation, is incorporated in the mean

field 2-population model via the inter-area projections between

populations. While long-range projections in the cortex are

excitatory, inhibition is examined as well according to the

Figure 4. Phase Diagram of different patterns exhibited by the single population model as a function of the maximum facilitation
parameter and self-connectivity. Left: Patterns exhibited with dynamic synaptic facilitation. Actual facilitation is less than the maximum
facilitation parameter and falls within a physiological reasonable range (10–60%). Right: Patterns exhibited with dynamic synaptic depression which
takes place when values of Wmax are less than the baseline level (Wmin). Pattern activity was determined by examining the firing rate activity during 3
periods of the working memory task: the first 5 seconds of the delay period (D1) immediately following the cue, the second 5 seconds of the delay
period (D2), and the last 5 seconds of the baseline period (B) immediately preceding the cue period. Significant differences were taken to be present
if the absolute difference between any two periods was greater or equal to 0.5 Hz, which is approximately the lower limit of significant differences
observed in the real cortical parietal and prefrontal cells. Fixed rate memory cell behavior consisted of activity in which the absolute difference in
average firing rate between D1 and D2 was less the 0.5 Hz, while both those periods exhibited an average firing rate greater or equal to 0.5 Hz above
the baseline rate. Ramping cue-coupled cell behavior consisted of activity in which D2 exhibited an average firing rate greater or equal to 0.5 Hz
above that of D1, and the firing rate of D1 was greater or equal to that of B. Decaying memory cell behavior consisted of activity in which D1
exhibited an average firing rate greater or equal to 0.5 Hz above both B and D1. Nonresponsive cell behavior consisted of activity in which the
difference between any of the periods (B, D1, and D2) was less than 0.5 Hz. Decaying inhibition cell behavior consisted of activity in which the
average firing rate during D1 was at least 0.5 Hz less than that exhibited during B and D2.
doi:10.1371/journal.pone.0006399.g004
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assumption that the majority of the long-range projections may

project either to inhibitory or excitatory interneurons. Thus the

net effect of these projections can be excitatory or inhibitory. We

analyze the behavior of the network for different possible inter-

population connectivity schemes (i.e. Excitatory-Inhibitory (E-I),

and inhibitory-inhibitory (I-I). Slightly different values for self-

feedback connections strengths within the two populations were

chosen.

As was the case for the single-population model the PSTH

histograms reveal that the 2-population model exhibits the

excitatory patterns of memory and decaying-rate or ramping cells

with a continuum of rate differences. The inclusion of inhibitory

connections results in the presence of parameter ranges in which

all of the inhibitory patterns (mirroring the excitatory ones) occur.

These inhibitory patterns can occur purely as a function of

inhibitory inter-population connectivity, without incorporating

dynamic synaptic depression as was the case for the single

population. In addition the inhibitory pattern of increasing

inhibition throughout the delay (mirroring the excitatory ramping

cells) which was absent in the single population model, now can

occur (Figure 5f).

In the phase diagrams of the 2-populations (Figure 6A) it can be

seen that all of the patterns of memory behavior occur over broad

ranges of the parameters, and thus without fine tuning, in both

populations. As in the single population model, the non-responsive

type is the most prominently occurring pattern across the

parameters, followed by decaying memory cells and ramping

cells. Less commonly occurring types are fixed rate memory cells

and the inhibitory mirror images of the excitatory patterns. While

all the patterns occur over a broad range of parameters, the

specific patterns present over given ranges varied considerably

between populations. Thus many specific complementary pat-

terned activities occurred simultaneously in both populations only

over small ranges of the parameters, and thus some degree of fine

tuning is necessary to achieve particular overall network behaviors.

For example, as can be seen in the overlapping phase diagrams

(Figure 6B), attaining memory cell behavior simultaneously in both

cortical locations, or attaining complementary cue-coupled/

response-coupled behavior, requires the connectivity of the

network to be restricted to relatively small specific ranges of

inter-population connectivity values.

4-Population Firing Rate Model
We next consider the effect on the states of the network when

the model is extended to 4 populations. In the 4-population model

all of the patterned activities continue to be present over a

continuum range of increases and decreases in firing frequencies.

However the distributed architecture results in a ‘‘specialization’’

of pattern activity within specific populations. As can be seen in

the phase diagrams (Figures 6 C and 6D) each local network

(populations 1–4) exhibits the non-responsive pattern and almost

exclusively either the excitatory or inhibitory memory patterns

across the range of connectivity strengths. A result of this

specialization or partitioning of pattern types between the local

networks is that, in contrast to the 2-population model,

simultaneous complementary pattern behaviors occur far more

robustly across wide parameter ranges. Thus for example attaining

memory cell behavior simultaneously in multiple cortical areas, or

attaining complementary cue-coupled/response-coupled pat-

Figure 5. PSTH histograms of activity exhibited by the 2-population firing rate model at different values of the inter-area
connectivity. All general patterns in the cortical data as reported in [5] are exhibited by the network, with frequencies in the range of the real data.
Firing pattern behaviors shown are A) decaying memory cell, B) Stable memory cell, C) Set cell D) Decaying inhibition cell, E) Stable inhibition cell, and
F) ramping inhibition cell.
doi:10.1371/journal.pone.0006399.g005
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Figure 6. Phase diagrams of the patterns exhibited by the 2- and 4-population firing rate models. The phase diagrams were created
using the same procedure carried out for the generation of the phase diagram of the single-population model. A) Phase diagrams of the activities of
the 2-population model as a function of the inter-population connectivity. Left: Phase diagram of population 1. Right: Phase diagram of population 2.
The self connectivity of population 2 (0.9) is slightly less than population 1 (1.0) so that the phase diagrams of the two populations are not identical.
Excitatory-Inhibitory (E-I) and Inhibitory-Inhibitory (I-I) connectivity architectures between the populations are examined. The pattern category
‘‘other’’ corresponds to decaying or ramping cell behavior in which the average firing rate of one period of the delay–D1 or D2–is significantly less
than the baseline (i.e. at least 0.5 Hz less than the firing rate during the period B), while the other is significantly greater (i.e. at least 0.5 Hz greater
than the firing rate during the period B). Note that all of the pattern types (excitatory, inhibitory and nonresponsive) are obtained over a wide range
of the parameters. B) The overlapping simultaneously occurring patterns in the 2 population network across the range of inter-population
connectivity values. The figure shows the 1 and 2 populations’ (left and right phase diagrams of panel A to the left) phase diagrams superimposed on
each other. The 1-population states are shown as solid, and the corresponding 2-population states are shown in outline. Discrete regions of the
overlapping phase diagrams reveal simultaneously occurring network behaviors observed in cortex during working memory. Included is
simultaneous occurrence of decaying memory behavior in both populations (red-red overlap), and stable memory behavior in one population and
ramping cell behavior in the other (blue-green overlap). Also common network behaviors observed are the simultaneous occurrence of the excitatory
patterns in one population and the nonresponsive pattern in the other. Inhibitory patterns tend to occur in one population primarily with ramping
cell behavior in the other. C) Phase diagrams of the activities of the 4-population model as a function of the inter-population connectivity. Upper left:
Phase diagram of population 1. Upper right: Phase diagram of population 2. Lower Right: Phase diagram of population 3. Lower Right: Phase diagram
of population 4. All the pattern types are exhibited by the network. However, the populations partition themselves such that they exhibit almost
exclusively either excitatory or inhibitory memory patterns across the values of interpopulation connectivity. D) Simultaneously occurring patterns in
populations 1 and 2, and in populations 3 and 4. E) Simultaneously occurring patterns in populations 1 and 3. The figure shows 1 and 3 (excitatory)
populations’ phase diagrams superimposed on each other. Over a significant range of the parameters, memory cell behavior and ramping cell
behavior co-occur (red and green overlap). The existence of such simultaneous population behavior has been indicated in prefrontal cortex. Memory
cell behavior is also seen to simultaneously occur in multiple populations across a wide continuous range of the parameter space (red-red and red-
blue overlap).
doi:10.1371/journal.pone.0006399.g006
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terned behavior does not require fine tuning to a small restricted

range of connectivity values (Figure 6E).

Spiking Unit Network: 2-Population Model
We next examine the statistics and dynamics of the spiking

version of the distributed mean-field models. In the spiking

network version of the 2-population mean field model we first

replace the populations with two networks of 100 spiking units

each, whose activity averaged across units approaches the activity

of the populations in the mean field model (Figure 7). We first

analyze the range of memory pattern types in the spiking networks

during simulated working memory tasks. Average PSTH histo-

grams over 20 simulated trials of a working memory task were

generated and examined for each unit in the network (Figure 8).

Figure 7. PSTH histogram of the single-population firing rate model (left) and the corresponding average spiking unit activity in a
network of 50 units obtained from the spiking model (right). Note the general pattern is the same in both networks.
doi:10.1371/journal.pone.0006399.g007

Figure 8. Average histograms from example units of the 2-population spiking model showing the excitatory and inhibitory
working memory patterns, and average histograms from representative single neuron recordings from the database of prefrontal
and parietal neurons exhibiting the same general patterns. PSTH histograms of spiking model units are shown in the left columns and real
neuron histograms in the right columns. The gap between baseline and delay periods corresponds to the cue period (firing rate not shown).
Histograms of the model units were averaged over 10 simulated trials of the working memory task. Patterns exhibited are A) Stable fixed rate
memory (i.e. bistable) cell behavior, B) ramping cell behavior, C) decaying memory cell behavior, D) fixed rate inhibition cell behavior, E) ramping
inhibition, and F) decaying inhibition.
doi:10.1371/journal.pone.0006399.g008
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The pattern types and statistics in these units can be directly

compared to those occurring in the database of real parietal and

prefrontal cells. The results show that within the populations, the

range of excitatory and inhibitory patterns occur, in addition to

the non-responsive pattern. The average baseline frequencies,

delay frequencies and deltas (changes in frequency from baseline

to delay period) exhibited by the units for each pattern fall within

ranges observed in the real parietal and prefrontal cells (Table 4).

Figure 9A (left) shows the distribution of patterns types exhibited

by all 200 units of the 2-population spiking network. The most

commonly occurring pattern was the non-responsive pattern,

followed by the excitatory patterns, and finally the inhibitory

patterns. This relative distribution of pattern types is consistent

with what is observed in both parietal and prefrontal cell

populations (Figures 9B left and right). This distribution also

correlates with the areas of the parameter space over which each

of the patterns occurred in the phase diagrams of the 2-population

model.

As is the case in real cortical cells, the specific pattern exhibited

by a unit in the spiking network in any given trial can vary from

the predominant pattern observed in the average PSTH histogram

[5]. That is, the pattern that a unit (or real cortical cell) is classified

as exhibiting, as determined from the average PSTH pattern,

might not be exhibited on some subset of trials. This includes

exhibiting different excitatory patterns from trial to trial in delay

activated pattern cells, different inhibitory patterns from trial to

trial in delay inhibited pattern cells, or even pattern types contrary

to the average pattern. For example, the parietal delay activated

cells exhibited delay inhibited patterns on 13.2% of the trials, and

parietal delay inhibited cells exhibited delay activated patterns on

15.6% of the trials. Prefrontal delay activated cells exhibited delay

inhibited firing patterns on 16.1% of the trials, and prefrontal

delay inhibited cells exhibited delay activated patterns on 20.1% of

the trials. Figure 9C (left) indicates for each unit in the 2-

population network the percentage of the total number of

simulated trials in which its pattern behavior differed from its

dominant pattern type appearing in its average PSTH histogram

(different excitatory or inhibitory pattern and/or contrary delay

activity). We see that units in the network, on average, exhibit

pattern activity different than their classified pattern type on

approximately 52.5% of the trials, with that variability being

approximately the same in both local networks. Individual units

exhibited different patterns over a range from 20% to 70% of the

trials. This variability is comparable to that observed in many real

neurons during working memory

Spiking Unit Network: 4-Population Model
We next examine the range of statistic and memory pattern

types occurring in the activity of units in a spiking network with

four populations of 50 neurons each. In the spiking network we

replace the four populations of the mean field model with four

networks of 50 spiking units each whose activity averaged across

units is the same as the activity of the populations of the mean field

model. We first analyze the range of memory pattern types in the

spiking networks during simulated working memory tasks. Average

PSTH histograms over 20 simulated trials of a working memory

task were generated and examined for each unit in the network. As

was the case in the 2-network spiking model, the range of

excitatory and inhibitory patterns, in addition to the non-

responsive pattern are exhibited by the units in the network.

The specific baseline frequencies, delay frequencies and deltas

(changes in frequency from baseline to delay period) exhibited by

the units for each pattern fall within the ranges observed in the real

parietal and prefrontal cells (Table 4). Figure 9A (right) shows the

distribution of patterns types exhibited by all 200 units of the 4-

population spiking network. The relative prominence of different

pattern types is similar to that of the 2 population spiking model,

with the most commonly occurring pattern being the non-

responsive pattern, followed by the excitatory patterns, and finally

the inhibitory patterns. Once again this is consistent with the

relative percentages of each pattern type observed for the real

parietal and prefrontal neurons.

Table 4. Average firing frequencies (Hz) during the baseline and delay periods, and the frequency difference between baseline
and the average of the delay period (delta), for the units exhibiting each of the pattern types by the 2- and 4-population spiking
models.

Pattern 1 2 3 4 5 6 7 8 9

Baseline 2-Population Model 5.6 6.5 6.9 3.9 4.9 9.7 3.9 5.2 4.6

Baseline 4-Population Model 7.4 6.9 6.3 11.9 5.5 10.7 5.1 5.1 4.9

Baseline Parietal Neurons 14 16 14 17.5 12 11 17 15.0 10.5

Baseline Prefrontal Neurons 9.5 7.5 8 27 8.0 7.0 9.0 12.0 7.0

Delay 2-Population Model 7.0 8.9 8.7 3.8 5.0 10.2 2.8 2.7 3.1

Delay 4-Population Model 9.4 9.9 7.8 11.5 5.7 10.8 4.6 2.7 3.3

Delay Parietal Neurons 21.5 25 21 18 12.5 11 12.5 7.5 7.0

Delay Prefrontal Neurons 12.5 11.5 10.5 27.5 8.0 7.5 6.5 8.0 5.5

Delta 2-Population Model 1.4 2.4 1.8 20.1 0.1 0.5 21.1 22.5 21.5

Delta 4-Population Model 2.0 3.0 1.5 20.4 0.2 0.1 21.5 22.4 21.6

Delta Parietal Neurons 7.5 9.0 7.0 0.5 0.5 0.0 24.5 27.5 23.5

Delta Prefrontal Neurons 3.0 4.0 2.5 0.5 0.0 0.5 22.5 24.0 21.5

Pattern numbers correspond to the following patterns: 1) Response-coupled ramping cell, 2) fixed rate memory cell, 3) cue-coupled (decaying) memory cell, 4)
response-coupled ramping cell with no frequency difference between baseline and period D1, 5) Nonresponsive cells, 6) Decaying inhibition cells with no frequency
difference between baseline and period D1, 7) decaying inhibited cells, 8) fixed rate delay inhibited cells, and 9) ramping inhibited cells. The approximate averages for
each of these pattern types in the real parietal and prefrontal cell database, as determined in [5] are also indicated. Note the frequencies exhibited by the models are
similar to those observed in the real cortical cells.
doi:10.1371/journal.pone.0006399.t004
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Figure 9. Distributions of units exhibiting the different pattern types in the spiking models and variability in pattern expressed
from trial to trial in the units of those models. A) Distribution of pattern types exhibited by units in the 2- and 4-population spiking models (left
and right respectively). Distributions correspond to the average number of units exhibiting each pattern type over 20 trials of the simulated working
memory task. Pattern numbers correspond to the same patterns as labeled in table 4. Specifically 1) Ramping cells 2) fixed rate memory cells, 3)
Decaying memory cells 4) ramping set cell with no frequency difference between D1 and baseline, 5) nonresponsive cell 6) ramping inhibited cell
with no frequency difference between D1 and baseline, 7) decaying inhibition cell, 8) fixed rate delay inhibited cell, and 9) ramping delay inhibited
cell B) Distribution of the percentage of parietal (left) and prefrontal (right) cells exhibiting each pattern type during the performance of unimodal
and cross-modal working memory tasks. Note that the distribution of the real cells and the units in the spiking model are similar with nonresponsive
cells being most common, excitatory memory cells (decaying, fixed rate, and ramping) being the next most common, and inhibitory patterns
(decaying, fixed rate, and ramping) being the least common. Also patterns 4 and 6 (ramping excitatory and inhibitory cells with no frequency
differences between D1 and baseline) occur infrequently in both the models and real cells. C) Consistency of pattern type expressed across trials for
each of the 200 units in the 2-population spiking model (left) and the 4 population spiking model (right). Each unit was classified as displaying one of
the pattern types in its average PSTH histogram (across 20 trials). The ordinate indicates the percentage of trials in which the dominant pattern (the
pattern occurring most often across trials and is typically that which is observed in the averaged PSTH histogram) of the average was actually
exhibited by the unit. In the 2-population graph, units 1–100 are all members of one population, while units 101–200 are part of the other
population. In the 4-population graph, units 1–50, 51–100, 101–150, and 151–200 are the members of populations 1 through 4 respectively. Note
that the overall average variability in pattern expression is the same in the 2- and 4-population models, with the classified pattern type of each unit
being displayed in approximately 47% of the trials, and an approximate range of 30–70% of trials showing different patterns on any given trial.
However, while the variability is distributed evenly across both populations in the 2-population model, in the 4-population model the variability is
significantly greater in units in those populations exhibiting primarily inhibitory patterns (populations 2 and 4).
doi:10.1371/journal.pone.0006399.g009
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As was the case in the 2-population spiking model, the specific

pattern exhibited by a unit in the 4-population spiking network in

any given trial of the simulated working memory task can vary

from the predominant pattern observed in the average PSTH

histogram (Figure 10). Figure 9C (right) indicates for each unit in

the network the percentage of the total number of trials in which

its pattern behavior differed from its dominant pattern type. We

see that units in the network, on average, exhibit pattern activity

different than their average classified pattern type approximately

54% of the trials, with individual units exhibiting different patterns

over a range of 25% to 70% of trials. This variability is very similar

to that observed in the 2-population spiking model, and once again

is within the range observed in the real cortical neurons. However,

in contrast to the 2-population network, variability is not

uniformly distributed across populations. In the 4 population

network there is a greater degree of partitioning of the activity of

the networks into those primarily exhibiting non-responsive and

excitatory patterns, and non-responsive and inhibitory patterns.

Populations of units of primarily excitatory or the non-responsive

memory pattern types exhibit their predominant pattern much

more reliably than those populations of units of primarily

inhibitory and non-responsive pattern types. Thus the more

distributed architecture resulted in increased reliability in

persistently active populations.

Figure 10. Raster plots of 10 trials (left) for an excitatory (A) and an inhibitory (B) unit from the 4-population 2000 unit spiking
network. Note that different pattern types occur on different trials. Figures A and B (right) show an expanded version of 4 of the 10 trials from both
units to highlight different patterns exhibited. From top to bottom of the expanded trials, the excitatory unit shows a decaying rate, nonresponsive,
increasing rate, and persistent stable firing rate pattern, and the inhibitory unit shows decaying inhibition, stable inhibition, increasing rate excitation,
and increasing inhibition. C) Rasters from 4 trials selected from a real neuron recorded from the prefrontal cortex during presentation of the same
memorandum of the cross-modal task exhibiting stable persistent activation during the delay in the average PSTH. Although the cells exhibits stable
persistent activation on average, on specific trials the cell exhibits the decaying rate activation pattern.
doi:10.1371/journal.pone.0006399.g010
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Spiking Unit Network’s Variability Scaling With
Population Size

We next examine the dependence of pattern type, firing rate

statistics and variability as a function of population size. To do this

we produced a 2- and 4-population spiking model as above

consisting of 2000 units. We first analyze the range of memory

pattern types in the spiking networks during simulated working

memory tasks. Average PSTH histograms over 20 simulated trials

of a working memory task were generated and examined for each

unit in the network. As was the case in the 2- and 4 population

spiking networks consisting of 200 units, the range of excitatory

and inhibitory patterns, in addition to the non-responsive pattern

are exhibited by the units in the network (Figure 11). The specific

baseline frequencies, delay frequencies and deltas (changes in

frequency from baseline to delay period) exhibited by the units for

each pattern fall within the ranges observed in the real parietal and

prefrontal cells. Figure 12 shows the distribution of patterns types

exhibited by all 2000 units of the 2- and 4-population spiking

networks. The relative percentage of excitatory and inhibitory

patterns is similar to that observed in the 200 unit networks with

excitatory patterns being slightly more prominent than inhibitory

patterns.

The firing rate model produces a trajectory in the phase plane

which corresponds to a specific pattern type. Depending on the

connections and other parameters, the stimulus causes the

trajectory to remain above or below the separatrix of the phase

space. In terms of the spiking model the firing rate model

trajectory corresponds to the mean of the trajectory of all units.

Depending on how close to the separatrix that mean trajectory is

after the stimulus, fluctuations about the mean from various

sources of stochasticity in the spiking model will result in a

probability that units will make transitions to trajectories

corresponding to pattern types different than that of the mean

trajectory. The resulting pattern types will have a distribution

reflecting this. Conversely the closer the system is to one of the

stable attractors of the system, the less probable it is for a given

level of noise that the system trajectory will depart from the pattern

of the mean trajectory.

There are 3 primary sources of stochasticity in the spiking

model networks, not present in the mean field model that produce

fluctuations resulting in units behavior departing from the single

pattern type of the mean trajectory: 1) heterogeneity in the

connections between units, 2) heterogeneity in the maximum

facilitation, and 3) the noise present in all the units’ activity.

Increasing population size reduces the source of noise resulting

from heterogeneous connections, and thus reduces the overall

amplitude of fluctuations. Figure 13 shows the reliability with

which units in the 2000 unit 2- and 4-population spiking models

exhibit there dominant patterns. It can be seen that neurons

exhibit their dominant pattern more reliably than in the 200 unit

network. However, increasing population size cannot eliminate

type variability across trials particularly when the system is near

the separatrix. It can be seen from Figure 13 that the average

reliability of units expressing a single pattern type across the

overall network is greater for the 2000 unit networks than the 200

unit networks (75% vs. 47% respectively in the 4 population

model). However, individual units still exhibit high variability in

the pattern type exhibited from trial to trial ranging between

exhibiting the dominant pattern type 100% of the time to

approximately as low as 45% of trials. Thus while reliability in

Figure 11. Average PSTH histograms of 16 units randomly chosen from the 2000 unit 4-population spiking model. Note that the
entire range of pattern types continue to be exhibited (excitatory and inhibitory stable, decaying, and ramping delays and nonresponsive) with firing
statistics similar to real neurons.
doi:10.1371/journal.pone.0006399.g011
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firing can be achieved by increasing population size and averaging

across units of a population, this does not eliminate transitions by

units from the mean pattern type or from their dominant pattern

type from trial to trial.

A reduction in the source of variability due to noise present in

all neurons during simulation—i.e. the Weiner noise–can be

achieved by averaging across trials. Figure 12A and 12B (bottom)

shows the distribution of the average histograms obtained for the

units in the 200 and 2000 unit population models across 20 trials.

It can be seen that this averaging produces a distributions which

primarily consist of patterns corresponding to the canonical

bistable persistent activity (activation and inhibition). While this

type of averaging is not physiologically relevant in the sense that

populations carry out working memory each trial, and not as an

average across trials, it does represent the typical averaging carried

out to characterize cell behavior in studies of working memory (i.e.

average PSTH histograms across trials determine cell pattern

type).

An analysis of the intra-trial variance of firing rate in the model

units revealed high variability in the distribution of ISIs during

both baseline and delay periods of the model (Figure 14a). The CV

of ISIs in the majority of units ranged in the baseline across all

pattern types between 0.4 and 1 with a mode of approximately 0.6.

During the delay period the distribution of intra-trial ISI CVs was

bimodal with peaks at approximately 0.45 and 0.75 and most units

falling within the range of 0.4 and 1 as in the baseline. These

ranges of the CV overlap significantly with that observed in the

real prefrontal and parietal cell populations, although their overall

means are lower. Focusing on the stable excitation and inhibitory

patterned activity, units exhibited decreasing average CV from

baseline to the delay period in stable excitatory pattern units, and

increasing average CV from baseline to the delay period in stable

Figure 12. Distributions of patterns exhibited across 20 trials of the simulated task. A) top: Distribution of pattern occurrence for the 2-
population, 2000-unit spiking network. The distribution is similar to that observed for the 200 unit networks and the parietal and prefrontal neuronal
populations. Bottom: Distribution of patterns exhibited in the average (across 20 trials) PSTH histograms for the 2-population, 2000-unit spiking
network. Note that the distribution of average PSTH exhibits the bistable excitatory and inhibitory patterns more prominently than actually exhibited
from trial to trial by the units. B) top: Distribution of pattern occurrence for the 4-population, 2000-unit spiking network. The distribution shows
similar relative occurrences of the persistent excitatory and inhibitory patterns (stable, ramping, decaying) as all previous networks and real neuronal
data. Relative changes in specific pattern occurrences (i.e. decrease in the prevalence of the nonresponsive patter) result from each population’s
activity approaching that of its corresponding mean firing rate model single pattern with increasing size. Thus a larger number of populations would
be needed (i.e. greater than 4) to maintain the relative occurrence of all patterns and thus to maintain an invariant distribution. Bottom: Distribution
of patterns exhibited in the average (across 20 trials) PSTH histograms for the 4-population, 2000-unit spiking network. Note that the average PSTHs
exhibited are essentially all the bistable excitatory and inhibitory patterns. Thus analysis of average patterns across trials might falsely indicate that
these are the only patterns of relevance occurring.
doi:10.1371/journal.pone.0006399.g012
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Figure 13. Reliability of units in the 2000 unit networks for exhibiting from trial to trial the pattern indicated by each unit’s average
PSTH histogram. A) Reliability of each unit in the 2-population, 2000 unit network. The average reliability (percentage of trials exhibiting the
pattern observed in the average PSTH histogram) ranges from approximately 40–100% of trials, with an average of approximately 47%. This is similar
to that observed for the 200 unit 2- and 4- population spiking models. B) Reliability of each unit in the 4-population, 2000 unit network. The average
reliability is significantly higher across all 2000 units (approximately 75%) although the range of variability of individual units is similar to that
observed in each of the previous networks. These reliability values are similar to that observed in the real cortical data of parietal and prefrontal cells.
doi:10.1371/journal.pone.0006399.g013
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inhibitory pattern units (Figure 14b). In the real parietal and

prefrontal cell populations, stable excitatory and inhibitory cells

exhibit high CV in their ISIs during both baseline and delay, with

the CV decreasing from baseline to delay in stable excitation cells

and increasing in stable inhibitory cells. In parietal cortex, the CV

of the ISIs in cells exhibiting stable persistent excitation

significantly decreased (p,0.001 paired t-test) from and average

of 1.17 during the baseline to 1.02 in the delay. In prefrontal

cortex the CV in those cells decreased insignificantly from an

average of 1.03 to 1.0. In parietal cells exhibiting stable persistent

inhibition in parietal cortex, the CV of the ISIs increased

insignificantly from 1.19 to 1.2, while in prefrontal cortex the

CV increased insignificantly from 1.02 to 1.03 on average.

Discussion

The results of this study demonstrated that recurrent networks

with dynamic synapses inherently produce the different persistent

firing rate patterns observed in real cortical neurons during

working memory. The persistent patterns produced are robust

with respect to variations of the parameters in the network. That

is, the different patterns occur over a wide range of values of the

parameter space, and given patterns do not occur only for a very

narrow set of parameter values. Further, the statistics of those

patterns fall within the ranges of variation observed in firing rate

pattern behavior of real cortical neurons. For example the changes

in firing rate from baseline to the delay period can take values

along an apparent continuum with absolute changes in firing rate

of less than 100% of the baseline rate. For the majority of

persistently activated cells recorded from parietal and prefrontal

cortex of primates during working memory this corresponds to

changes in firing rate of less than 10 Hz. The present network

demonstrates a mechanism beyond previous solution for achieving

these realistic low delay firing rates [33–35,46–49]. While the

expression of any particular delay frequency or rate of ramping or

decay of firing rate of the units can be dependent on the particular

parameters, the occurrence of any of the working memory patterns

takes place across wide continuous ranges of network parameters

and inputs, and thus do not involve fine tuning and are stable with

respect to noise in the input.

Bistable firing rates are one of the possible activities of the

model. However, the present work has focused on the range of

working memory-correlated patterns of firing rate and their

simultaneous, complementary occurrences in the working memory

Figure 14. Analysis of spiking variability. A)Distributions of the coefficient of variation of the interspike intervals for units of the 2000 unit
spiking model during the baseline and delay. Distributions correspond to cells exhibiting all patterned delay behaviors. High variability in ISI firing
occurs during baseline and delay periods. Delay CVs show a bimodal distribution across all pattern types. B) Mean baseline and delay ISI CV for stable
persistent excitation delay cells (left) and stable persistent inhibition delay cells (right). The coefficient of variation decreases from baseline to delay in
excited delay cells and increases in inhibited delay cells in agreement with the behavior observed in the database of prefrontal and parietal cells.
doi:10.1371/journal.pone.0006399.g014
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network as opposed to only fixed states that the networks or their

neuronal constituents may adopt. The spiking networks exhibited

all of the general patterns correlated with working memory that

are observed in the database of microelectrode recordings of

parietal and prefrontal cortical neurons. In addition, the statistics

and firing rates of the units fall within the ranges observed in real

cells, with the occurrence of the different pattern types similar in

proportion to that observed in the cortical populations. In terms of

the behavior of individual neurons, bistable activity is typically

only observed as an average over many trials of a working memory

task. Across trials, cells exhibit different average frequencies, and

even within individual trials, cells exhibit significant variability in

firing rather than a single stable rate [5,49–51]. This is indicated

from a high coefficient of variation in both baseline and delay

periods in units exhibiting stable delay excitation and inhibition

patterns. This is in agreement with database of real parietal and

prefrontal stable delay units as well as previous neurophysiological

studies in which CVs of within trial ISIs were around 1.0. Changes

in CV from baseline to delay period for the model units further

agreed with that observed in the parietal and prefrontal database

with the CV decreasing for stable excitatory pattern cells, and

increasing for stable inhibitory pattern cells. High variability in

ISIs has been observed in previous neurophysiological studies [49–

51], although in some cases the change from baseline to delay

observed has been different than that of the present cell

populations. This may result from the frequencies or types of

persistent patterned activity observed in those studies during the

delays (e.g. bursting behavior). In addition to variability within

trials of stable persistent activity cells, from trial to trial, neuron

activity may adopt specific memory correlated patterns different

from the most prominent one that emerges in the average across

many trials. This not only includes changing between the different

persistent excitatory patterns from trial to trial, but even changing

between persistent activation and inhibited patterns. Thus while a

population of cells may exhibit a particular pattern with

consistency, individual cells of that population do not. In the 2-

population spiking model with 200 units variability in firing

pattern across trials was the same for both populations, with the

majority of units exhibiting changes from their most prominent

pattern type (including changing between persistent excitation and

inhibited patterns) in 40% to 60% of the trials. In the 4-population

spiking model, while the overall variability was essentially the same

as in the 2-population model, the variability in pattern across trials

depended on the types of patterns prominently exhibited by the

particular populations. In populations exhibiting excitatory

patterns the majority of units displayed a different pattern on

35% to 45% of the trials, and in populations exhibiting inhibited

patterns, the majority of units displayed different patterns on 40%

to 60% of the trials. Thus a more distributed architecture resulted

in a more reliable occurrence of excitatory memory pattern types

within units, in addition to a more stable concomitant occurrence

of complimentary pattern types. Working memory therefore

appeared to be more stable in the more widely distributed

network. The reliability of exhibiting a given pattern across trials

increases only partially with the size of the network. Looking at the

4-population network with an order of magnitude more unit

results in a network that still exhibits the range of pattern types

with relative proportions similar to that seen in the smaller

network and in real cortical neurons. Although overall, the

average percent of trials that units exhibit their most dominant

pattern type increases (i.e. 75% compared to approximately 47%),

many units continue to exhibit their dominant pattern on less than

a majority of the trials. The reason for this is that increasing

population size decreases fluctuations due primarily to stochasti-

city in the connections between units, which of course does not

drop to zero. In addition other sources of stochasticity remain such

as noise in unit activity, and stochasticity in the facilitation. Thus

given a particular stimulus, units’ trajectories in the phase plane

will pass with some proximity to the boundary (separatrix) between

the fixed bistable states of the system, and given the closeness to

the separatrix and the amount of stochasticity, will have a

significant chance on any given trial of crossing over to a trajectory

corresponding to a different pattern than the mean trajectory of

the population, or that which occurs most often for a particular

unit. As a result, there is a relatively invariant distribution of

pattern occurrence that changes modestly with increasing

population size. It is interesting to note that artificially reducing

the other sources of stochasticity by for example averaging across

trials, that one produces pattern distributions exhibiting essentially

only bistable patterns. That is if we look at the average PSTH

activity of the networks across trials they tend to be either stable

activation cells, or stable inhibition cells. While this type of

reduction of stochasticity is not physiologically meaningful since

working memory takes place trial to trial and cannot require

averaging over many trials, data from unit recording experiments

typically report unit activity as average (across trials) PSTH

histograms. Thus the prevalence of bistability may be overesti-

mated. Rather in real cortical data as well as in the model we see

the variability as in the model.

While the firing pattern varies from trial to trial in cells, there

are also significant variations from trial to trial in the delay

frequencies for any particular patterns exhibited. The concept of a

network with fixed connectivity and bistability between units is not

indicated by such activity, and thus a dynamic connectivity is

reasonable to consider. The idea of bistable activity corresponding

to fixed attractor states may apply at the level of a population of

neurons, and could be the essential neuronal correlate of working

memory. However, the majority of persistent activity patterns

observed consists of cells whose firing rates decay or accelerate

during working memory (cue-coupled or response-coupled), and

these populations should be taken into account in addition to

bistability. In the present model, as stated above, bistable attractor

states are present and could correspond to working memory. Here

however, a second additional role is suggested for these states in

terms of modulating the firing rate activity, resulting in decaying

and ramping firing patterns. That is, without necessarily

representing memory states in and of themselves, the attractor

states allow the network, which represents working memory and its

complementary functions, to become active and behave with the

necessary dynamics to mediate cross-temporal contingencies. The

key component, resulting here from facilitation and observable in

the phase plane, is the presence of the bottleneck through which

the trajectories of the system pass. The bottleneck modulates the

rate at which the trajectories approach the stable attractors, thus

creating the patterned activities within the actual range of

frequencies observed in the cortex. This mechanism might be

present and modulate activity through other components of the

network in addition to facilitation. For example Durstewitz [37]

has previously demonstrated that a bottleneck or ‘‘ghost’’ of a line

attractor could be achieved at a neuronal level through

interactions between firing rate output and calcium gated ion

channels, generating the climbing firing rate activity of set cells.

Therefore, while the bistability (or multiple attractor states) could

represent working memory, it plays the additional role of

influencing the dynamics of the system such that the resulting

trajectories correspond to different classes of working memory

behavior (i.e. cue-coupled or response-coupled delay period

patterns). The lower attractor state of the system, as is usual, is
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identified with baseline firing rates. Trajectories of the system not

crossing the saddle separatrix remain in the basin of attraction of

this attractor and ultimately return to baseline firing rates,

adopting one of the classes of persistent activation associated with

memory storage. In contrast, trajectories crossing the saddle

separatrix approach the stable state corresponding to a higher

firing frequency. Depending on the rate at which the system

approaches the higher state, the firing pattern adopted is either

bistable memory behavior (rapid or very slow approach), or

ramping cell behavior associated with preparation for a behavioral

or motor response. From these considerations it might be

predicted that ramping cells and fixed rate memory cells in

working memory should exhibit higher average firing rate changes

from baseline than decaying-rate memory cells. An examination of

the firing rate changes of prefrontal and parietal cells indicates that

this is indeed the case. In parietal cortex, fixed rate memory cells

exhibit an average difference between baseline and delay periods

of approximately 9 Hz, set cells 7 Hz, and decaying rate memory

cells 6 Hz. In prefrontal cortex the same trend is observed with

stable rate memory cells exhibiting the greatest mean change in

firing rate from baseline to delay period (approximately 4.3 Hz),

followed by set cells (3 Hz) and decaying rate memory cells (2 Hz).

The fact that the fixed rate memory cells exhibit the largest

average change in firing rate from baseline to delay is consistent

with some percentage of those cells’ activity corresponding to the

high firing rate bistable state in addition to those exhibiting only

apparent bistability.

The dynamic synaptic facilitation is the component of this

model which creates the bottleneck in the phase plane, and gives it

its unique characteristics. Specifically it is facilitation which

determines the amount of persistent activation, which, since it

can adopt a continuous range of values, enables the change in

firing rate from baseline to memory period to fall along a

continuum. The bottleneck determines the rate at which the firing

rates decay towards the baseline attractor (or increases towards the

higher firing rate attractor) to adopt the continuum of firing rate

values. The decay rate can be sufficiently slow such that no decay

or acceleration of firing is observed for the duration of a memory

period. Thus the result is an apparent or virtual bistability, which

for all intents and purposes can be extended for as long as working

memory is defined by the parameters of a working memory task.

The fact that the rate at which persistent activation waxes or

wanes is highly adjustable is consistent with the behavior of cells in

the cortex during working memory. It has been observed in

working memory experiments [27,52–53] that the rate of decay

and/or the rate of acceleration of persistent activation adjust to the

duration of the memory period. The dynamic synapses make this

phenomenon easy to incorporate. Adjusting the maximum of

facilitation or other parameters, changes the bottleneck so that the

rate of decay (or ramping) can become longer or shorter along a

continuum.

Another prediction from the dynamics of the model is that the

rate of persistent activation correlates with baseline rate. In the

majority of delay activated cells, the magnitude of firing rate

increases are less than 100% of baseline, with the magnitude of the

delay period firing rate change increasing nonmonotonically with

baseline rate increases. The largest magnitude increases in delay

period frequency are in those cells with the largest baseline firing

rates, while the largest percentage changes are those with low

baseline rates. This is naturally incorporated in the present model.

The range of rates over which the population can exhibit memory

cell behavior is bounded by the saddle separatrix. Once facilitation

pushes the system’s trajectory beyond the separatrix, further

increasing facilitation (or judiciously adjusting other parameters)

does not result in further continuous increases in persistent

activation delay rates, but rather a change in the activation pattern

itself. The parameters of the model can be adjusted however,

raising the frequency of the baseline state and incrementing the

entire range of frequencies within its basin of attraction. Thus both

baseline and delay rates increase in a correlated fashion, and due

to the nonlinearity of the nullcline of the synaptic activity, the

proportional increase in frequency is nonmonotonic.

The specific simultaneous patterns which may be exhibited in

the populations are dependent on the relative strength of the inter-

population connection strength, the intra-population connection

strength, and whether the inter-population connectivities are

mutually net inhibitory, or a combination of excitatory and

inhibitory. The phase diagram of the 2-population firing rate

model reveals a number of behavioral trends. For an excitatory-

inhibitory connectivity between populations, the networks can

exhibit a range of concomitant activities which includes memory

cell activity in both populations, and simultaneous cue-coupled/

response-coupled behavior. In contrast, with a mutually inhibitory

connectivity between populations these particular behaviors are

absent, and simultaneously occurring fixed-rate-memory/re-

sponse-coupled behavior is present over only an extremely narrow

range of the parameters. Thus memory being maintained

simultaneously in both cortical areas occurs in the 2-population

model only within the E-I connectivity scheme. During working

memory, the simultaneous presence of memory cells in prefrontal

cortex and another cortical area important to the sensory modality

of the memorandum has been indicated by numerous studies. In

addition to prefrontal cortex, memory cells have been observed for

example in posterior association cortex including inferotemporal

cortex [54–55], and posterior parietal cortex [56–57], and their

simultaneous presence in multiple cortical areas have been

indicated in imaging studies [55,58–60]. The overlapping presence

of cue-coupled and response-coupled cells have also been

confirmed and have been implicated in working memory networks

[61]. It is suggested that these populations would cooperate and be

engaged in the transfer of information from a perceptual network

to a motor network. The two populations would cooperate to

enable the processing of information from one network to the

other with translation from perception into action.

As the network becomes more distributed, increasing to four

populations, simultaneous memory cell behavior and cue-cou-

pled/response-coupled behaviors becomes more robust with these

concomitant behaviors occurring over a wide continuous range of

the parameters as can be observed by the increased areas of those

respective behaviors over larger continuous ranges of the

parameters in the phase diagrams (Figure 6). While the specific

connectivity between populations in different cortical areas in

working memory networks is unknown, it is suggestive to consider

the possible effects on each population’s activity in the model when

another is shut down as in reversible lesion studies. For example in

the 4-population model, termination of the activity two popula-

tions changes the phase diagrams to that of the 2-population

model. Depending on the specific local parameters (i.e. the

connectivity between populations), the effect can be a net increase

in persistent activity, a decrease, or elimination of such activity to a

non-responsive pattern. Studies of reversible lesions in which one

cortical area is cooled while recording cell activity in another has

shown that some cells increase their firing rate during the delay,

while other will show decreases or become non-responsive [58,62–

63]. A question is whether the net effect of one cortical area on the

other is excitatory or inhibitory as might as determined by more

cells increasing persistent activation or decreasing it. While no

definitive results exist, from these studies the data indicate that
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more neurons increase their activity in prefrontal cortex as a result

of cooling posterior association cortices, while more neurons

decrease their activity in posterior association cortex as a result of

cooling prefrontal cortex. This could be indicative of an effective

E-I coupling between cortical areas. Looking at the potential

changes in the phase diagrams of the models going from the 4-

population model (with connectivity of both the E-I and I-I type)

to 2 populations, such behavior is the general trend over the

majority of the parameter space. Further lesion studies or

microstimulation studies may elucidate the functional connectivity

of global network in light of the model.

In addition to a distributed architecture affecting the stability of

memory pattern behavior and modulating activity enabling the

occurrence of complimentary patterned behaviors, certain work-

ing memory pattern behaviors apparently are exclusively a

function of a distributed architecture rather than the facilitation

mechanism alone. Particularly the ramping delay inhibition

pattern which is observed in the cortical data was present only

in the distributed versions of the model. Another phenomenon is

the existence of large regions of the parameter space in which one

population exhibits the non-responsive pattern, while the other

population exhibits memory cell behavior (fixed-rate, decaying, or

ramping). In the database of real cells, the majority of neurons

from parietal and prefrontal cortex exhibit the non-responsive

pattern of behavior. Interspersed within these populations of non-

responsive cells are neurons that exhibit the other patterns. From

the models we see that the non-responsive pattern is a common

part of a working memory network coexisting with the other

patterned behaviors. Studies of patterns in spike sequence of such

cells [64–66] have indicated that while not exhibiting significant

differences between baseline and delay firing rates, such cells can

exhibit differences in the patterning of the spike sequence in these

periods; indicating participation in the working memory network.

The fact that the non-responsive pattern arises as a prominent one

in the models, overlapping with the range of memory pattern

behaviors suggests that these populations may play a role in the

dynamics of working memory networks.

It should be noted that the present analysis supplements the

general attractor picture rather than replacing, or invalidating it.

Cells with apparent bistable activity with high firing rates above

baseline, while apparently rare in the cortex [5], may still be a

fundamental neuronal substrate of working memory. In the

present model not only is this activity present, but also the myriad

other patterns with firing statistics and variability similar to those

which constitute much of the activity correlated with working

memory are accounted for.
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