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Abstract

Introduction: Common variable immunodeficiency disorder (CVID) is a heterogeneous syndrome, characterized by deficient
antibody production and recurrent bacterial infections in addition abnormalities in T cells. CD4+CD25high regulatory T cells
(Treg) are essential modulators of immune responses, including down-modulation of immune response to pathogens,
allergens, cancer cells and self-antigens.

Objective: In this study we set out to investigate the frequency of Treg cells in CVID patients and correlate with their
immune activation status.

Materials and Methods: Sixteen patients (6 males and 10 females) with CVID who had been treated with regular
intravenous immunoglobulin and 14 controls were enrolled. Quantitative analyses of peripheral blood mononuclear cells
(PBMC) were performed by multiparametric flow cytometry using the following cell markers: CD38, HLA-DR, CCR5 (immune
activation); CD4, CD25, FOXP3, CD127, and OX40 (Treg cells); Ki-67 and IFN-c (intracellular cytokine).

Results: A significantly lower proportion of CD4+CD25highFOXP3 T cells was observed in CVID patients compared with
healthy controls (P,0.05). In addition to a higher proportion of CD8+ T cells from CVID patients expressing the activation
markers, CD38+ and HLA-DR+ (P,0.05), we observed no significant correlation between Tregs and immune activation.

Conclusion: Our results demonstrate that a reduction in Treg cells could have impaired immune function in CVID patients.
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Introduction

Common variable immunodeficiency disorder (CVID) is the

most frequent symptomatic primary immunodeficiency, charac-

terized by recurrent bacterial infections, hipogamaglobulinemia

and impaired antibody responses [1–4]. CVID patients usually

present recurrent respiratory infections, and elevated incidence of

autoimmune, gastrointestinal, lymphoproliferative, and granulo-

matous diseases [5–7]. Although genetic defects associated with

CVID have been described, they are rare [7–9].

Over the last 20 years various facets of cellular and

immunological dysfunctions in CVID have been described, for

example, abnormalities in B cell populations, low frequencies of

naive CD4 T cells, and an increase in cellular activation [10–14].

A new classification of this disease has recently been proposed

according to the B cell phenotype [15–17]. However, a significant

number of studies have shown alterations in phenotype and

function of T cell subpopulations [13,18,19,20].

T cell functional defects compromise T cell activation and

proliferation [12,18]. Abnormalities in the secretion of cytokines

[13,21–23], defects in early T cell receptor (TCR) signaling events

[10,24], and impaired expression of activation markers including

CD40-ligand, attractin and L-selectin [25–27] have been described.

In addition, current studies have described a breakdown in

mechanism of tolerance in CVID subjects with autoimmunity [28].

Tolerance to self antigens is an active process that has central

and peripheral components [29]. Among T cell subsets, a

subgroup of CD4+ T cell, referred to as regulatory T cells (Tregs),

has an important role in controlling other immune responses,

maintaining peripheral self-tolerance [29,30]. Treg cells are

characterized by the expression of CD25 and the Forkhead family

transcription factor (FOXP3) [29,31] and play a significant role in

down regulating the immune response to a variety of non-self

antigens, such as microbial, tumor and alloantigens [31–33].

Tregs are dysfunctional in several human diseases [30,34] and

are a potential target for therapeutic modulation [30,35]. In
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CVID, recent reports describe a decreased frequency of Treg cells

[28,36]. Here, we investigate the frequency of Tregs in CVID

patients, and their relationship to cell activation status.

Materials and Methods

Subjects
Sixteen patients with a diagnosis of CVID according to the criteria

established by the Pan-American Group for Immunodeficiency

(PAGID) [37] and, fourteen healthy controls were enrolled in the

study. The patients were recruited at the Division of Clinical

Immunology at UNIFESP (Sao Paulo, Brazil). All patients were on

regular intravenous immunoglobulin (IVIG) substitution therapy. For

each subject, complete blood counts and lymphocyte subsets were

performed, and the blood sample was collected immediately before

IVIG infusion. Clinical information was collected by questionnaire

based on the medical charts. The subjects’ characteristics are shown in

Table 1. Among patients with autoimmunity two were receiving oral

corticosteroids, in a dosage less than 0.5 mg/Kg on alternative days.

After approval by the local institutional review board (IRB, Comitê de

Ética em Pesquisa da Universidade Federal de São Paulo/UNIFESP),

written informed consent was obtained from all participants or their

legal representatives.

Sample collection
Peripheral blood mononuclear cells (PBMC) were isolated by

density-gradient sedimentation using Ficoll-Paque (Pharmacia Biothec,

Upssala, Sweden). Isolated PBMC were then washed twice in Hank’s

balanced salt solution (Gibco, Grand Island, NY). Cells were

cryopreserved in RPMI 1640 (Gibco), supplemented with 20% heat-

inactivated fetal bovine serum (FBS; Hyclone Laboratories, Logan

UT), 50 U/ml of penicillin (Gibco), 50 mg/ml of streptomycin (Gibco),

10 mM glutamine (Gibco) and 7.5% dimethylsulphoxide (DMSO;

sigma, St Louis, MO). Cryopreserved cells from all subjects (patients

and controls) were stored in liquid nitrogen for a mean time of 2.5

months (1–5 months) until used in the assays. On the day of assay,

PBMC were rapidly thawed in a 37uC water bath and washed in

RPMI 1640 supplemented with 10% fetal calf serum, 100 U/ml of

penicillin, 100 mg/ml of streptomycin and 20 mM glutamine (R10).

Cells were counted, checked for viability and resuspended in R10 at

concentration of 10 6cells/ml.

Flow cytometry
The following monoclonal antibodies were used in the assays:

CD3- peridin chlorophyll protein (PerCP) and CD4- allophyco-

cyanincarbocyanin 7 (APC-Cy7), and in addition to: HLA-DR-

FITC, CD38- PE, CD8-APC, CCR5- PeCy7 (panel A); OX40-

fluorescein isothiocyanate (FITC), CD127- phytoerythrin (PE),

FOXP3- allophycocyan (APC), CD25- phycoerithrincarbocyanin

(PE-Cy7) (panel B); intracellular staining for cytokines was

performed using mouse anti-human Ki-67- FITC mouse anti-

human interferon (IFN -c) -PE-Cy7 Ki-67-FITC, all from BD

PharMingen (panel C). Fluorescence-minus-one (FMO) was used

for gating strategy [38].

Thawed PBMC were centrifuged at 1500 g for 15 minutes and

transferred into V-bottom 96-well plates (Nunc, Roskilde, Den-

Table 1. Clinical and laboratory characteristics of studied subjects.

Controls Patients P -value

(n = 14) (n = 16)

Age in years (median, IQR) 28 (13–30) 24 (16.5–31.2)

Gender (female %) 64% 63%

Age at diagnosis in years (median, IQR) _ 22 (13–26)

Age at first symptoms in years (median, IQR) _ 12 (3–16)

Delayed to diagnosis in years (median, IQR) _ 9 (4–12)

Autoimmune complications (n, %) _ 6 (37.5%)

Chronic pulmonar disease (n, %) _ 12 (75%)

IgG mg/dl (median, IQR) _ 574 (481–1052)

WBC (cells/mm3, median, IQR)

Leucocytes 5,690 (5,295–7062) 7,185 (6,032–9432) 0.047

Neutrophils 2,976 (2140–3529) 4,490 (3,793–5484) 0.01

Monocytes 463 (409–505) 531 (314–627) 0.69

Lymphocytes 2,296 (1,878–2,493) 1,638 (1,204–2,128) 0.59

T CD3+ 1,735 (1,367–1,838) 1,226 (1,021–1,842) 0.83

T CD4+ 918 (707–1000) 550 (477–875) 0.16

T CD8+ 556 (504–628) 803 (583–414) 0.19

CD4+: CD8+ T cell ratio 1.64 (1.37–1.8) 0.95 (0.77–1.36) 0.01

B cell phenotyping according to EUROCLASS

smB+21normal 6 (37.5%)

Smb+21low 7 (43.7%)

smB-21low 2 (12.5%)

B- 1 (6.2%)

IQR: Inter -quartile range.
doi:10.1371/journal.pone.0006269.t001

Treg Cells in CVID
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marK) in 200 ml of staining buffer [phosphate-buffered saline (PBS)

supplemented with 0.1% sodium azide (Sigma) and FBS, pH 7.4–

7.6)] with the panel of surface monoclonal antibodies. Cells were

incubated at 4uC in darkness for 30 minutes, washed twice and then

resuspended in 200 ml of fixation buffer [1% paraformaldehyde

(Polyscience, Warrigton, PA) in PBS, pH 7.4–7.6.

For panel B, cells were resuspended in 50 ml of staining buffer with

monoclonal antibody FOXP3, then were incubated at 4uC in darkness

for 30 min, washed twice and resuspended in 200 ml of 2% of

paraformaldehyde (PFA). For panel C, intracellular staining was

performed after surface with CD3- PerCP, CD4-APC-Cy7 and CD8-

APC. Cells were incubated with 100 ml of 4% fixation buffer and

washed with permeabilization buffer (PBS supplemented with 0.1%

sodium azide, 1% FBS and 0.1% saponin; Sigma). Each sample was

resuspended in 100 ml of permeabilization buffer, incubated for 15

minutes at room temperature in darkness, washed with 100 ml of

staining buffer and incubated for 30 minutes at 4uC in darkness with

either without antibody (unstained tube) or anti-Ki67–FITC, anti-

IFN-c–PE–CY7 in 50 ml of staining buffer. Cells were washed with

170 ml of staining buffer and resuspended in 100 ml of 1%

paraformaldehyde (PFA) for flow cytometry analysis. Samples were

acquired on a FACSCanto, using FACSDiva software (BD Bioscienc-

es), and analyzed with FlowJo software (Tree Star, San Carlo, CA).

Fluorescence voltages were determined using matched unstained cells.

Compensation was carried out using CompBeads (BD Biosciences)

single stained with CD3-PerCP, CD4-APC-CY7, CD4-PE-CY7,

CD3-PE or CD3-APC. Samples were run for a minimum of

300,000 events in a live lymphocyte gate.

Statistical analyses
Groups were compared using non-parametric models; data are

reported as median and interquartile range (IQR). Comparisons

among groups were carried out using the Mann Whitney test.

Correlations were performed using the Spearman non-parametric

test. P - values were considered significant if below 0.05.

Results

CD8+ T lymphocytes are highly activated in patients with
CVID

We assessed the characteristics of the lymphocyte subsets in 30

subjects, among CVID patients and healthy controls. Further analysis

using a combination of activation markers showed a marked up-

regulation of CD38+ and CCR5+ expressing CD4+ T cells in the

CVID patients (P = 0.04) (data not shown) and an increased frequency

of CD38+ expressing CD8 T cells in CVID patients compared to

controls (P = 0.002). Both high co-expression levels of HLA-DR+

(P = 0.008) or CCR5+ (P = 0.021) confirmed the high level of CD8 T

cell activation in CVID patients, (Figure 1A–C). Four out of 16 patients

had a marked increase in T cell activation. Of these, just one, 24 year

old male, presented autoimmune hepatitis, the others had no particular

associated pathology.

Circulating Tregs are diminished in patients with CVID
We defined Tregs by a series of gating strategies that best

represent this suppressor T cell population (FOXP3+CD25highC-

D127lowCD4+ T cells) Figure 2. In Figure 3, we show that the

frequency of Tregs was markedly reduced in CVID patients,

(P = 0.03 and P = 0.003) compared to healthy controls (Figure 2).

Interestingly, stratifying our patients based on autoimmune

status did not reveal any differences in Tregs frequency (data not

shown). A similar result was observed when we classified CVID

patients according to EUROclass [16] (data not shown). The

impact of Tregs and immune activation is well documented [44,

46], however in a regression analysis, we did not observe any

association between CD4+ or CD8+ T cell activation status and

the frequency of Tregs in this cohort (data not shown).

Higher activation was not reflected in higher
spontaneous production of IFN-gamma and expression
of Ki-67

Presumably due to the high level of T cell activation in CVID,

we predicted this would lead to an elevated level of T cell

functionality. We thus assessed CD4+ and CD8+ T cell

proliferation by measuring Ki-67 nuclear antigen expressed in

the G1, S, G2, and M phases, but not in the G0 phase, of the cell

cycle. We also assessed for spontaneous IFN-gamma production in

the absence of any stimuli in the CVID cohort. No difference was

observed in either Ki-67 expression or spontaneous IFN-gamma

production compared to controls subjects (data not shown).

Discussion

Previous reports have demonstrated abnormalities in cellular

immunity on CVID pathogenesis that affect activation and

Figure 1. Comparisons of CD8+CD38+ (A), CD8+HLA-DR+ (B) and CD8+CD38+CCR5+ (C) T cell percentages in PBMC in healthy
controls (CTL) and CVID patients showing significant difference in the activation. Figure 1A-, P = 0.002; Figure 1B-, P = 0.008; Figure 1C,
P = 0.021.
doi:10.1371/journal.pone.0006269.g001

Treg Cells in CVID
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proliferation of T cells and, consequently, B cell differentiation and

production of antibody [10,12,19,39]. However, there are few

studies examining the influence of Tregs in CVID subjects [36,40].

We observed that our patients presented significantly higher

levels of CD8+ T cell activation. The percentage of Tregs

expressing CD25highFOXP3+ was found to be lower in CVID

subjects compared to controls but no significant association

between Treg cells and immune activation was observed in these

patients.

One of the greatest difficulties in studying Tregs is to select the

combination of markers that best describe these subsets and

currently the most common markers used to define these cells are

CD25high and FOXP3+ [41–43]. The absence of IL-7R (CD127)

on CD4 T cells has proven to be a reliable delineator of selection

for Treg cells with the highest suppressive function [44–46]. Our

results using these markers are in line with previous reports,

showing a reduced number of Treg cells in CVID patients [28,36].

It is important to emphasize that these results were observed in a

small group of Brazilian patients with different demographic and

clinical characteristics to European subjects, which suggests that

the proportion of Tregs could be directly related to this

immunodeficiency.

Figure 2. Flow cytometric panels showing the gating strategy from healthy and CVID patients. (A) The gate is set around the population
of lymphocytes; (B) CD3 T cells that were evaluated for (C), FOXP3, CD25; (D) Side scatter and CD3+FOXP3+CD25highCD127low. (E) The gate is set
around the population of FOXP3+CD25highCD127lowCD4+ T cells. Fluorescence minus one was used to define the gate used. Arrows indicate the
gated population subsequently analyzed.
doi:10.1371/journal.pone.0006269.g002

Figure 3. Comparison of Treg cell subsets between healthy
controls (CTL) and CVID patients. In CVID group there was a
significant lower percentage of FOXP3+CD25highCD127lowCD4+ T cell
(P = 0.0034).
doi:10.1371/journal.pone.0006269.g003

Treg Cells in CVID
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Fevang et al. described that CVID patients with splenomegaly

had a lower proportion of Tregs compared to others CVID

patients [36], as our study, just included one patient with

splenomegaly, this suggests that others clinical complications must

be associated with reduced Treg population. One topic for further

discussion is whether this low percentage is the cause or

consequence of clinical complications observed in CVID patients.

No differences were observed in Tregs frequency when

comparing CVID patients with and without AID. Despite

preliminary studies having suggested an association between these

cells and AID in CVID [40], it has not been established and can be

influenced by other associated clinical complications that affect not

only the frequency, but the profile of cytokine secreted by Tregs.

All patients analyzed were being treated with IVIG and, the

correlation between Tregs and IVIG has already been described

showed and expansion of Tregs in animal models [47], however

we observed a reduced frequency of these cells in CVID subjects.

Also, it has been demonstrated that Tregs increases the

intracellular expression of TGF-b, IL-10 and FOXP3 following

the addition of IVIG [48], but unfortunately we did not analyze

the cytokine secretion by Tregs in our patients.

Furthermore, considering the increase of T cell markers

activation in CVID subjects, specially CD8+ T cells, without a

significant increase in IFN-g production, we suggest that these cells

could have a suppressor function, according to previous reports

and this result probably was unaffected by IVIG replacement

[22,49]. The similar percentage of cells expressing proliferation

marker (Ki67) between the two groups could reflect the absence of

lymphoproliferative disease in our sample, since contrasting results

have been described in the literature [12,23].

To summarize, this paper shows that CD25highFOXP3+C-

D127low expressing Treg cells were lower in CVID patients, which

suggests that Tregs cells can be impaired in CVID, thus having

influence on the mechanism pathogenic of this complex

immunodeficiency.
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