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Abstract

Precise regulation of Wnt signaling is important in many contexts, as in development of the vertebrate forebrain, where
excessive or ectopic Wnt signaling leads to severe brain defects. Mutation of the widely expressed oto gene causes loss of
the anterior forebrain during mouse embryogenesis. Here we report that oto is the mouse ortholog of the gpi deacylase
gene pgap1, and that the endoplasmic reticulum (ER)-resident Oto protein has a novel and deacylase-independent function
during Wnt maturation. Oto increases the hydrophobicities of Wnt3a and Wnt1 by promoting the addition of
glycophosphatidylinositol (gpi)-like anchors to these Wnts, which results in their retention in the ER. We also report that oto-
deficient embryos exhibit prematurely robust Wnt activity in the Wnt1 domain of the early neural plate. We examine the
effect of low oto expression on Wnt1 in vitro by knocking down endogenous oto expression in 293 and M14 melanoma cells
using shRNA. Knockdown of oto results in increased Wnt1 secretion which is correlated with greatly enhanced canonical
Wnt activity. These data indicate that oto deficiency increases Wnt signaling in vivo and in vitro. Finally, we address the
mechanism of Oto-mediated Wnt retention under oto-abundant conditions, by cotransfecting Wnt1 with gpi-specific
phospholipase D (GPI-PLD). The presence of GPI-PLD in the secretory pathway results in increased secretion of soluble Wnt1,
suggesting that the gpi-like anchor lipids on Wnt1 mediate its retention in the ER. These data now provide a mechanistic
framework for understanding the forebrain defects in oto mice, and support a role for Oto-mediated Wnt regulation during
early brain development. Our work highlights a critical role for ER retention in regulating Wnt signaling in the mouse
embryo, and gives insight into the notoriously inefficient secretion of Wnts.
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Introduction

Wnts are a family of secreted, cysteine-rich signaling proteins

that affect cell fate and proliferation in a wide variety of contexts

[1,2]. Because vertebrate Wnt proteins are highly conserved and

more hydrophobic than predicted based on sequence, it has been

difficult to generate antisera that recognize Wnts in vivo, or to

visualize them at endogenous expression levels [3,4,5,6,7,8]. Wnts

are also inefficiently secreted, tending to linger in the endoplasmic

reticulum (ER) [1]. These challenges have delayed understanding

of the distribution and biochemical nature of Wnts in vertebrate

organisms. Although a great deal is known about the molecular

pathways that mediate the Wnt response, little is known about the

mechanisms underlying Wnt production [8,9,10]. In the latter

regard, recent advances have revealed that Wnts are lipid-

modified in Wnt-producing cells in vivo, by the O-acyltransferase

porcupine. Palmitic and palmitoleic acids are covalently linked to

Wg, Wnt1 and Wnt3a during their maturation, which serve to

stimulate their secretion and signaling activities [5,7,11,12,13]. Wg

also associates with lipoprotein particles, which allows signaling

over many cell diameters [7,14]. These recent insights indicate

that Wnt production and activity rely on hydrophobic mecha-

nisms, and further suggest that Wnt function is integrally

associated with the lipid environment of cells [9,10].

Evidence from Drosophila, C. elegans, Xenopus, zebrafish,

chicken, and mouse has indicated that Wnts act as morphogens

in the developing embryo, forming concentration gradients across

cell fields which generate pattern [14,15,16,17,18,19,20,21,22].

Wnts play an important role in the generation of antero-posterior

(AP) pattern along the developing neural axis [22]. Evidence

indicates that early neural plate cells are transformed into more

posterior fates by a gradient of Wnt activity that is lowest at the

anterior end of the neuraxis, and highest posteriorly

[16,17,18,19,23,24]. Because the forebrain forms at the low end

of the Wnt gradient, it is particularly and exquisitely sensitive to

the posteriorizing influences of Wnt signals [25,26,27,28,29].

Forebrain formation will not occur unless Wnt activity in the

anteriormost neurectoderm is severely limited [18,23,30,31,32].
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The recessive, lethal otoxray mutation causes forebrain trunca-

tions in mice that closely resemble those in dkk1, ICAT, six3 and

hesx1 mutants [23,33,34,35,36,37,38]. Dkk1 and ICAT are

extracellular and intracellular Wnt inhibitors, respectively. Dkk1

is secreted by the prechordal plate mesendoderm and protects

forebrain development in apposed neurectoderm [39,40,41,42].

The six3 and hesx1 transcription factors are expressed in

prechordal neurectoderm from early neural plate stages, and both

are repressed by Wnt signaling [23,30,37,43,44]. Six3 in turn

directly represses transcription of Wnt1, which is normally

expressed in immediately posterior medial neural plate cells

[23,45,46]. Hesx1 may indirectly repress Wnt1 signaling [30].

These repressive interactions serve to restrain Wnt1 to its medial

domain, in order to generate and maintain an anterior zero-to-

very low Wnt activity zone, which is required for the development

of forebrain fates. Ectopic Wnt1 expression and Wnt activity in the

anteriormost neural plates of six3 and hesx1-deficient embryos are

reported as the molecular bases of the failure of forebrain

development in these mice [23,30]. Precise regulation of Wnt

signaling is thus critical for normal forebrain development,

especially at early stages, when the neurectoderm is fate-labile

[47].

We have used a forward genetics approach in our study of the

oto mouse [33]. To add to our previous phenotypic characteriza-

tion of oto, we now reveal the identity of the oto gene, and present

an investigation into the molecular function of the Oto protein.

Phenotypic parallels with Wnt-inhibitor mutant mice initially

suggested that oto might act as a Wnt antagonist during early brain

development. Instead, we find that Oto regulates Wnt secretion

via a novel mechanism. We show that Oto is a widely expressed,

ER-resident glycoprotein involved in adding atypical glycopho-

sphatidylinositol (gpi) anchors to Wnts 1 and 3a, which results in

their retention in the ER. We further show that Oto is required for

the correct initiation of Wnt signaling in the Wnt1 domain of the

early neural plate. In oto-deficient embryos, neurectodermal Wnt

signaling in the Wnt1 domain begins prematurely and robustly,

which is consistent with the loss of Oto-mediated Wnt retention.

The early neural plate in oto mutants thus exhibits an abnormally

large medial domain of Wnt activity, and the oto embryo

subsequently develops with a truncated forebrain.

Our results reveal the existence of a novel Oto-dependent

mechanism that retains Wnts in the ER of Wnt producing cells.

We also present evidence that intracellular cleavage of gpi anchor

lipids stimulates Wnt secretion. We propose that gpi-anchoring of

Wnts provides a means of accumulating, and then releasing, a

regulated burst of Wnt ligands. Conversely, in the absence of oto,

we show that active Wnt flows out of the cell in a relatively

uninhibited manner. We thus describe a new mechanism involved

in the production of Wnt ligands, that has an important role

during mammalian embryogeneis. Given the widespread expres-

sion of oto throughout mammalian life, this novel mode of Wnt

regulation likely extends to other Wnt-dependent processes in

development and disease.

Results

Identity of the oto gene
The recessive, lethal otoxray mutation was mapped to a 284

kilobase interval on chromosome 1 which contains two genes,

TFIIIc and oto/pgap1 (Fig. 1a). Northern blot analysis reveals

reduced expression of only oto/pgap1 in mutant mouse adult tissues

and oto-deficient embryos (Fig. 1b,c). The mRNA size and cDNA

sequence of this gene is normal in mutants, indicating that the x-

ray lesion disrupts a regulatory region which attenuates transcrip-

tion. To test whether this hypomorphic allele is responsible for the

otoxray mutant phenotype, we used a BAC (bacterial artificial

chromosome) transgenic rescue approach. Three BACs, each

containing the complete oto/pgap1 gene, individually rescued the

developmental defects and restored viability to oto homozygotes

(Supplementary Table S1). The generation of a second insertional

allele (otoins, Supplementary Fig. S1) provides further evidence that

the correct gene was identified [48]. Doubly heterozygous otoxray/

otoins and otoins/otoins embryos show variable forebrain defects

identical to those in otoxray/otoxray embryos (Fig. 1d–h). The otoins/

otoins mutant in Fig. 1h was not the most severe otoins/otoins mutant

recovered; homozygous otoins mutants can be as severely affected in

the forebrain as otoxray mutants.

Oto increases Wnt hydrophobicity
Oto is orthologous to rat PGAP1, an ER-resident transmem-

brane glycoprotein [38,49]. PGAP1 has gpi deacylase activity; it

removes palmitate from the inositol ring of gpi anchors [49]

(Fig. 2). Because oto forebrain defects resemble those in Wnt

inhibitor mutants [23,30,34,35,36,37] and PGAP1 resides in the

ER [49], we surmised that Oto might act on Wnts in the early

secretory pathway. To explore this, we performed co-expression

experiments in 293 cells. We chose Wnt3a initially because

overexpression of Xwnt3a suppresses expression of anterior neural

markers in neuralized animal caps [21], and because wnt3a mutant

mice show oto-like vertebral transformations [50]. For detection

purposes, Oto was amino-terminally tagged with a 3xflag epitope;

Wnt3a was detected via a carboxy-terminal HA tag. Like PGAP1,

Oto localizes to the ER in transfected cells (Fig. 3a). Oto is fully de-

N-glycosylated with Endoglycosidase H (EndoH, not shown), an

enzyme that cleaves immature, high mannose N-glycans from the

protein core (NEB). Resistance to EndoH is conferred after a

protein exits the ER, during processing in later secretory

compartments [51]. The EndoH-sensitivity of Oto also indicates

that Oto resides in the ER.

When expressed alone, Wnt3a protein appears in both RIPA-

soluble and insoluble (pelleted) phases (Fig. 3b). Three bands appear

in each phase; lowest is naked polypeptide, and middle and upper

bands are singly and doubly N-glycosylated isoforms, respectively.

In transient transfections, when the amount of Oto DNA is varied

and Wnt3a DNA is constant, an interesting pattern emerges. When

Oto is present, a new insoluble isoform of Wnt3a appears, at the

expense of soluble Wnt3a. As Oto expression increases, more

Wnt3a is converted to the hydrophobic isoform. This isoform is

upshifted relative to naked Wnt3a, migrating at 42 kDa; smaller,

insoluble degradation products are also observed. Since its

formation is Oto-dependent, we will call the 42 kDa isoform Oto-

modified Wnt3a. We use this designation for convenience and do

not intend to imply that Oto directly catalyzes a modification

reaction. After de-N-glycosylation with PNGaseF, Oto-modified

Wnt3a still migrates at 42 kDa while Wnt3a expressed alone

collapses to the 0 glycosylation state (Fig. 3c), revealing that the Oto-

modification is not an N-glycan. Because the 4:1 ratio of Oto:Wnt

DNA yielded the most Oto-modified Wnt3a, this ratio was used in

subsequent experiments, with the control being a 4:1 DNA ratio of

empty vector:Wnt or gfp:Wnt.

Hydrophobicity of Wnt3a can be increased by palmitoylation

on a conserved cysteine, C77 [5], and by addition of palmitoleic

acid to serine 209 (S209) [13]. Both of these lipidations are

mediated by porcupine [12]. To determine whether Oto’s

modification of Wnt3a involves C77, we tested a Wnt3a deletion

construct lacking the palmitoylated residue (Wnt3aD31–107).

Wnt3aD31–107 is fully soluble in RIPA when expressed alone,

but is completely shifted to the insoluble pellet when expressed

Wnt Is ER-Retained
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with Oto (Fig. 3d). Thus the Oto modification appears to be

independent of C77 palmitoylation. We did not directly address

the possible role of S209 in this study.

To measure the apparently novel hydrophobicity change in

Wnt3a caused by Oto co-expression, we performed hydrophobic

interaction chromatography (HIC) using butyl sepharose. Proteins

bind to butyl sepharose via their hydrophobic surfaces and

moieties [7]. A protein’s hydrophobicity can be measured by the

stringency of its elution conditions [7]. Insoluble material only,

isolated from cells expressing full length Wnt3a or Oto+Wnt3a,

was incubated with butyl sepharose. Insoluble material was

prepared under reducing conditions in 1% SDS immediately

before incubation with hydrophobic matrix (see Methods for

details), which is likely to disrupt any pre-existing protein

interactions. Bound proteins were eluted from the matrix with

the mild non-ionic detergent Triton X100 (TX100), or with

denaturing SDS. While a significant quantity of Wnt3a alone

elutes with TX100, the majority of Oto-modified Wnt3a requires

SDS for elution (Fig. 3e). Under these conditions, the Oto protein

elutes in a distinct peak from Oto-modified Wnt3a (not shown),

indicating that Oto and Wnt3a bound to the matrix indepen-

dently. These data reveal that Oto-modified Wnt3a is intrinsically

more hydrophobic than Wnt3a itself.

Although Oto-modified Wnt3a migrates more slowly than

naked Wnt3a, it is not glycosylated (Fig. 3c); its signal peptide has

been cleaved (Fig. 4a); and its formation is independent of N-

glycosylation (Fig. 4b). The gpi deacylase activity of PGAP1 is

supplied by a lipase domain with a serine-dependent active site

[49]. Previous work has established that point mutation of the

catalytic serine (S174) eliminates deacylase function [49]. We have

not tested directly for this gpi deacylase activity in Oto. Based on

the high homology to rat PGAP1 and the predicted presence of the

same lipase domain in Oto, it is quite likely that Oto also has the

deacylase function, but this is not strictly proven. Nevertheless, we

mutated the serine residue within the putative active site to an

alanine (S174A) in mouse Oto as was done in PGAP1 [49]. S174A

Oto still modifies Wnt3a (Fig. 4c), indicating that hydrophobic

modification of Wnt3a is a distinct and novel function of the Oto

protein. At this time it is not clear whether Oto functions as a

catalyst for the Wnt modification reaction, or as a required

cofactor.

Oto-modified Wnt3a is retained in the ER
In order to characterize the interaction between Wnt3a and

Oto, full length Wnt3a was immunoprecipitated from transfected

cell extracts using an HA affinity matrix. When Wnt3a is

Figure 1. Identification of the oto gene. a.Genes in the vicinity of the oto interval (indicated by the green bar, with mapping markers above) are
shown. Red bars represent rescuing BACs. b. Gene expression in wildtype (wt) and an extremely rare adult oto mutant (mut) shows reduced oto
mRNA in mutant tissues. c. oto expression is reduced in E10.5 oto heterozygotes (het) and homozygotes (mut). d–h. Heads of E9.5210 embryos (side
views, anterior left), showing telencephalic vesicle (red arc), eye if present (red arrowhead), and isthmus (yellow arrowhead). Both oto alleles yield
similar severely (e, f) and moderately (g, h) affected mutants.
doi:10.1371/journal.pone.0006191.g001

Wnt Is ER-Retained
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immunopurified from soluble extracts of cells co-expressing Oto

and Wnt3a under non-denaturing conditions, Oto is also

recovered, suggesting that Oto and Wnt3a associate in cells

(Fig. 5a). To examine hydrophobic Oto-modified Wnt3a, proteins

were extracted from insoluble pellets using denaturing/reducing

conditions (see Methods for details). When Wnt3a is immunopre-

cipitated from such insoluble extracts of Oto+Wnt3a cells, Oto is

robustly co-immunoprecipitated, again suggesting that Oto and

Wnt3a interact (Fig. 5a). Oto expressed alone does not bind to the

HA matrix (Fig. 5a). In a separate experiment, Wnt3a was

immunopurified from 35S-labeled Oto+Wnt3a insoluble extracts

using the same method. The major protein that co-immunopre-

cipitates with modified Wnt3a is correctly sized to be Oto (Fig. 5b).

While it appears that Oto and Wnt3a bind directly, other linking

proteins or binding partners may be present at low concentrations,

and although we think it unlikely, it is possible that minor residual

disulfide bridges and/or protein denaturation may contribute to

the observed Oto/Wnt association.

Since Oto is an ER-resident protein like its rat ortholog PGAP1

[49], our observation of an association between Oto and Wnt3a

raised the possibility that Oto acts to retain Wnts in the ER. To

examine this directly, Wnt3a was immunoprecipitated from the

media of 35S-labeled cells. Reduced levels of Wnt3a are recovered

from Oto+Wnt3a conditioned medium compared to Wnt3a

medium, indicating that Oto decreases Wnt3a secretion (Fig. 5c).

When Wnt3a is visualized by HA-mediated immunofluores-

cence, it localizes predominantly to the ER as previously reported

(not shown) [1]. Immunofluorescent images of Wnt3a protein in

equivalent fields of confluent transfected cells show an obvious

increase in the Wnt3a signal in cells that were co-transfected with

Figure 2. Diagram of a gpi anchor. Individual components are color-coded as shown. Gray box represents the outer leaflet of the cell membrane.
Sites of cleavage by PI-PLC, nitrous acid (HONO), GPI-PLD, and inositol deacylase are indicated.
doi:10.1371/journal.pone.0006191.g002

Wnt Is ER-Retained
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Oto as apposed to empty vector, consistent with Wnt3a being cell-

retained by Oto (Fig. 5d and data not shown). The greater Wnt3a

brightness in Oto cells was seen repeatedly and reproducibly, and

is not due to differences in transfection efficiency. Thus four

separate experimental results combine to indicate that Oto retains

Wnt3a in the ER: Wnt3a’s EndoH-sensitive state when co-

expressed with Oto, association of the Oto and Wnt3a proteins,

reduced Wnt3a secretion in Oto co-expressing cells, and increased

Wnt3a signal intensity in Oto/Wnt3a co-transfected cells.

Oto modifies and ER-retains Wnt1
To see if Oto modifies other Wnts, we also looked at Wnt1. Like

Wnt3a, Wnt1 signals via the canonical pathway and is lipidated by

porcupine [7,12,13]. Oto and Wnt1 were co-expressed in 293 cells

as usual. When equal proportions of extracts are examined, a

strikingly large quantity of hydrophobic Wnt1 protein is seen in

Oto+Wnt1 cells compared to gfp+Wnt1 (Fig. 6a), much more than

is recovered in Oto+Wnt3a cells (Fig. 3b). Co-IP experiments

reveal that Oto associates with soluble and insoluble Wnt1 as it

does with Wnt3a (not shown). As for Wnt3a, PNGaseF digestion

confirms that Oto-modified Wnt1 migrates at 42 kDa, immedi-

ately above the naked Wnt1 polypeptide, when Wnt1 quantities

are normalized (Fig. 6b). Both soluble and insoluble Wnt1 are

recovered from Oto+Wnt1 cells in fully EndoH-sensitive states

(not shown), indicating that Oto-modified Wnt1 is located in the

ER. To look at protein localization directly, Oto and Wnt1 were

immunolabeled and visualized by confocal microscopy in

cotransfected cells. The confocal images show that the two

proteins colocalize (Fig. 6c). When Wnt1 is immunolocalized in

gfp vs. Oto cotransfected cells, the immunolocalized Wnt1 signal is

much brighter in Oto co-expressing cells (Fig. 6d). As seen with

Wnt3a, co-expression of Oto and Wnt1 is associated with reduced

Wnt1 secretion (see panel d of final figure in this manuscript).

Therefore the data are consistent with a role for Oto in ER-

retaining Wnt1.

Oto-modified Wnt3a contains a gpi-like anchor
If Oto and Wnt bind directly in the ER under in vivo conditions,

their association could be sufficient to explain the observed ER

retention of Wnts. It is also possible that the dramatic increase in

Wnt hydrophobicity independently reduces the Wnt secretion. To

explore this question further, we sought additional insight into the

nature of the Oto modification. The analysis was continued using

Wnt3a, since Oto apparently modifies and retains both Wnts

similarly. Because Oto encodes the gpi deacylase PGAP1 [49], we

looked for evidence of gpi modification. A gpi anchor is a

hydrophobic moiety composed of a conserved core of phos-

phoethanolamine, mannose (MN) and glucosamine (GlcN) linked

via inositol to a doublet of fatty acids (Fig. 2). Gpi anchors are

synthesized and covalently attached to proteins in the ER [52]. To

see if gpi anchor components are present in Oto-modified Wnt3a,

we performed separate metabolic labeling experiments with 3H-

ethanolamine (3H-EthN), 3H-GlcN, and 3H-MN. When aliquots

of all proteins from 3H-EthN-labeled insoluble extracts are

resolved and blotted, a 42 kDa band consistent with the size of

Oto-modified Wnt3a is visible in the autoradiograph (Fig. 7a).

Probing the same blot as a Western with HA verifies that the

Figure 3. Oto localizes to the ER and increases Wnt hydropho-
bicity. a. Gfp-Oto (transmembrane) and the ER marker dsRedER
(luminal) were co-expressed and visualized in a single cell. They overlap
significantly (merge, yellow), illustrating that Oto resides in the ER like
its rat ortholog PGAP1. Western blots from transfected 293 cells are
shown in b–e. * = Oto-modified Wnt3a, {= degradation product. 0–2
indicates the number of N-glycans on Wnt3a. b. Co-expression with Oto
converts Wnt3a to an insoluble isoform migrating at the novel position
of 42 kDa (*). c. PNGaseF-mediated deglycosylation of Oto-modified

Wnt3a does not change its migration. d. Wnt3a lacking amino acids 31–
107 cannot be palmitoylated and therefore is soluble. When co-
expressed with Oto, it becomes insoluble. e. Most Wnt3a elutes with
the non-ionic detergent TX100, while most Oto-modified Wnt3a elutes
with SDS due to its increased hydrophobicity.
doi:10.1371/journal.pone.0006191.g003

Wnt Is ER-Retained
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42 kDa band is indeed Oto-modified Wnt3a (Fig. 7a). This

labeling experiment was repeated, except Wnt3a was immuno-

purified prior to blotting. Again, a likely signal is visible on the 3H-

EthN autorad, and western blotting confirms that this signal

corresponds to Oto-modified Wnt3a (Fig. 7b). The same approach

reveals that deglycosylated Oto-modified Wnt3a incorporates 3H-

GlcN (Fig. 7b) and 3H-MN (not shown).

A commonly used method of testing for the presence of a gpi

anchor on a protein is in vitro cleavage with phosphatidylinositol-

specific phospholipase C (PI-PLC; Fig. 2) [53]. PI-PLC is a

bacterial enzyme that cleaves lipids off the gpi anchor, and this

often results in altered migration of the gpi-linked protein on SDS-

PAGE. The prion protein for example shifts upward on SDS-

PAGE gels after digestion with PI-PLC [53]. Similarly, following in

vitro incubation with PI-PLC, we found that immunopurified Oto-

modified Wnt3a shows a visible upshift (Fig. 7c).

Oto-modified Wnt3a behaves like a gpi-linked protein in other

fashions as well. For instance, ZnCl2 increases gpi anchoring by

stimulating Zn-dependent metalloenzymes of the gpi biosynthetic

pathway [54,55]. The addition of ZnCl2 to Oto+Wnt3a cells

increases the yield of Oto-modified Wnt3a in a dose-dependent

manner (Fig. 8a). Conversely, treating cells with the Zn-chelator

1,10-phenanthroline (PNT) inhibits gpi biosynthesis and prevents

formation of gpi-anchored proteins [54]. When PNT alone is

added to Oto+Wnt3a cells, the quantity of Oto-modified Wnt3a

decreases, again in a concentration dependent way, while Oto

levels are not affected (Fig. 8b). Co-treating cells with PNT and Zn

reverses PNT’s inhibitory effect on Oto-modified Wnt3a (Fig. 8c).

Additionally, cotransfecting Oto and Wnt3a with PigF, an enzyme

necessary for the phosphoethanolamine transferase reaction

during gpi biosynthesis [56], increases the yield of Oto-modified

Wnt3a (not shown). Collectively, these data demonstrate that the

Wnt3a hydrophobic modification exhibits the characteristics of a

gpi anchor.

Wnt activity is premature in oto mutants
Wnt1 is expressed in the medial neural plate in mouse, and is

required for the development of the midbrain and anterior

hindbrain [57,58]. The onset of Wnt1 transcription is tightly

controlled, with transcripts first detectable in the neural plates of

presomite [45,59] and one somite stage embryos [23,46,58,60,61].

Wnt1 therefore is expressed in the right time and place to be

regulated by Oto, provided that Oto is also expressed in the neural

plate. The expression of oto mRNA during development was

examined from E5.5-18.5 using a combination of northern blots

and in situ hybridization on whole mount and sectioned embryos.

oto was expressed at all stages examined. At E7.5, when embryos

are gastrulating, oto is ubiquitously expressed, showing elevated

expression in the anterior midline (Fig. 9a). During E8 when

somitogenesis begins, oto continues to be expressed throughout the

embryo, showing highest expression in the dorsal neural folds

(Fig. 9b). To look closely at oto expression in the developing

forebrain and midbrain during the early neural plate stage (E8.3,

,4–5 somites), we examined oto expression in sections (Fig. 9c–f).

In an anterior section that contains forebrain and midbrain

regions (Fig. 9c,d), oto is ubiquitously expressed (Fig. 9e). In a

section immediately adjacent to that in Fig. 9e, the location of the

forebrain territory was verified by visualizing expression of the

Figure 4. Modification of Wnt3a is independent of signal peptide cleavage, N-glycosylation, and gpi deacylase function. a. The
signal peptide of Wnt3a was flag-tagged by cloning Wnt3a into the pFlag7 expression vector (Sigma). The signal peptide is efficiently cleaved from
Wnt3a in the absence and presence of Oto. b. Oto robustly modifies Wnt3a in the presence of tunicamycin, an inhibitor of N-glycosylation. c. The gpi
deacylase function of Oto was destroyed by mutating the active site Serine (S174) to Alanine. The resulting mutant protein still modifies Wnt3a. Oto-
modified Wnt3a bands (*) are indicated throughout; { indicates a degradation product.
doi:10.1371/journal.pone.0006191.g004

Wnt Is ER-Retained
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forebrain-specific gene six3 (Fig. 9f). After E8, oto continues to be

widely expressed in embryos throughout gestation (not shown).

The expression results in Fig. 9a–f are consistent with Oto and

Wnt1 being co-expressed in the early neural plate.

Our biochemical studies and the Wnt-like appearance of oto

defects suggested that altered Wnt signaling is involved in the oto

phenotype. To examine canonical Wnt signaling in mutant

embryos directly, we incorporated the BAT-gal transgenic Wnt

reporter, which consists of lacZ driven by b-catenin and TCF

responsive elements [62]. To maximize chances of seeing defective

Wnt signaling, all embryos were minimally fixed and over-stained.

Under these conditions, lacZ+ cells were visible within minutes in

caudal areas, where Wnt activity is highest.

Sixty-one BAT-gal embryos from oto intercrosses ranging from

E7.5 to E8.5 were initially examined. In BAT-gal embryos E8.25–

E8.5, no differences in neurectodermal or non-neurectodermal

Wnt staining were detected (not shown). However, some variation

in staining was seen in embryos from E8.0–E8.25. It should be

noted that only the anteriormost portions of embryos could be

examined from E8.0 to E8.5, because canonical Wnt activity in

the posterior portions of embryos is completely stained from E8.0

(Fig. 9g–j). After E8.5, the anterior portions as well are so heavily

stained that any differences could not be effectively investigated.

To look at the variations seen in E8.0–E8.25 embryos further,

we focussed on a subset of 20 neural plate stage BAT-gal embryos

having 0–3 somites. In our analysis, in wildtype underfixed and

overstained embryos, Wnt activity in the neural plate is detectable

at 2–3 somites at the earliest. In oto-heterozygous and wildtype

embryos with 1–2 somites (E8.0), no significant Wnt activity is

apparent in the anterior neural plate (Fig. 9g,h). In wildtype and

oto heterozygous embryos (oto hets do not show any morphological

defects), Wnt activity is first detected in the medial neural plate at

2–3 somites (E8.2, Fig. 9i). At this stage, embryos have visibly

larger neural plates than E8.0 embryos, due to the rapid growth

occurring during this gestational period. By striking contrast, oto

mutants show bold staining in the medial neural plate at just 1–2

Figure 5. Oto associates with Wnt3a and reduces its secretion. a. Immunopurification of Wnt3a-HA from soluble (Sol) and insoluble (IN)
transfected cell extracts using HA matrix. Oto co-immunoprecipitates with Wnt3a in the soluble and insoluble fractions (right), without binding HA
matrix (center). b. Immunoprecipitation of Wnt3a from insoluble extracts of metabolically-labeled Oto+Wnt3a cells shows that a protein that is
correctly sized to be Oto associates with Wnt3a in the apparent absence of other major binding partners. * = Oto-modified Wnt3a. c. Cells were
metabolically labeled, and soluble Wnt3a-HA was HA-immunopurified from conditioned media (Sol media) at the indicated times. Less Wnt3a is
recovered from the medium of Oto+Wnt3a cells, indicating that Oto inhibits Wnt3a secretion. d.Wnt3a was visualized by HA-mediated
epifluorescence (green) in fields of confluent transfected cells. The Wnt3a signal is much brighter in Oto+Wnt3a cells, reflecting a greater amount of
Wnt3a within Oto co-expressing cells.
doi:10.1371/journal.pone.0006191.g005
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somites (Fig. 9j), when the neural plate as a whole is still relatively

small in size. 3/20 embryos displayed significant staining in the

medial neural plate at 1–2 somites, and in each of these staining

was localized to the medial neural plate as shown in Fig. 9j.

Genotyping of the full set revealed that these 3 embryos were oto

homozygotes. One additional oto homozygote was recovered in the

set of 20 that did not show premature Wnt activity. This is not

surprising given that the severity of the oto phenotype is quite

variable; a significant fraction of oto homozygotes show no

detectable morphological defects [33]. No BAT-gal changes were

seen in oto hets, which are phenotypically normal [33].

We previously showed that expression of the forebrain-specific

and Wnt-responsive hesx1 gene is reduced in oto mutants.

Interestingly, we first saw a hesx1 deficit in mutants at ,2–3

somites [33]. Current data indicates that canonical Wnt signaling

represses hesx1 expression [30,44]. Therefore our present and

previous results combined suggest that the premature Wnt1

activity in oto mutants (Fig. 9j) is responsible for reducing hesx1

expression in the early oto-mutant forebrain; these results are

summarized in Fig. 9k.

Oto knockdown increases Wnt1 secretion and activity
The Oto-mediated ER retention of Wnt1/3a we have observed

supports the conclusion that Oto acts to retard Wnt secretion, and

conversely suggests that reduced oto expression could lead to

premature or excessive Wnt secretion. To test the effects of

reduced oto levels, we designed shRNAs targeting oto mRNA in

order to knock down endogenous oto expression [63]. Two

independent shRNAs toward oto were designed, which had similar

effects. Cotransfection tests illustrated that these shRNAs effec-

tively reduce Oto protein levels (not shown). We used two cell lines

in oto knockdown experiments, 293 cells and the human melanoma

M14 cell line [64]. Neither of these cell lines is canonically Wnt-

responsive [26,65], and so should not show growth stimulation in

response to secreted Wnt; as expected, cell numbers remained

constant in our knockdown experiments (Fig. 10a and not shown).

For 293 cells, Wnt1 was cotransfected with oto shRNA (shoto), and

for M14 melanoma cells, only shoto was transfected, since these

cells express Wnt1 endogenously (data not shown and GNF

SymAtlas) [66]. Knockdown of endogenous oto in 293 and M14

melanoma cells dramatically increases the amount of soluble Wnt1

recovered from the media (Fig. 10a). As a control, the culture

media were examined by immunoprecipitation for the abundant

cytoplasmic protein GAPDH, but none was recovered (not

shown), revealing that elevated Wnt1 levels are not due to cell

lysis. These results indicate that the level of Oto expression

correlates with the level of secreted Wnt1; less Oto in the ER

results in more Wnt1 in the extracellular space.

In oto embryos, we have observed increased Wnt activity in the

Wnt1 domain of the neural plate (Fig. 9j). Consistently, in shoto

knockdown cells, we have observed increased Wnt1 protein in

conditioned media (Fig 10a). However, it is important to

determine whether the Wnt1 secreted by oto knockdown cells is

not only greater in abundance, but also biologically active. To

address this, we generated stable shoto knockdown cells from the

M14 line. We chose to do activity experiments with M14s because

Figure 6. Oto modifies Wnt1 and retains it in the ER. a.Oto modifies Wnt1 (*) robustly when Oto and Wnt1 are co-expressed in 293 cells. 0–3
indicates the number of N-glycans on Wnt1. b. When the quantity of Wnt1 is normalized between control (16) and Oto (1/46) samples and N-glycans
removed with PNGaseF, it becomes clear that Oto-modified Wnt1 (*) migrates at 42 kDa, like Oto-modified Wnt3a. c. Gfp-Oto (green) and Wnt1-HA
(red) were co-expressed and visualized in a single cell using confocal microscopy. They overlap significantly (merge, yellow), indicating that Wnt1
localizes to the ER with Oto. The nucleus is stained with DAPI (blue). d. Wnt1 was visualized by HA-mediated fluorescence (red) in fields of confluent
transfected cells. The Wnt1 signal is much stronger in Oto cotransfected cells, reflecting Oto-mediated retention of Wnt1.
doi:10.1371/journal.pone.0006191.g006
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these cells express both oto and Wnt1 endogenously. In the first

assay, we generated 4-day conditioned media (CM) from shoto

and control M14 cells, and applied these to NIH3T3 cells that

stably express a canonical Wnt luciferase reporter. NIH3T3 cells

are capable of responding to Wnt signals via the canonical Wnt

pathway [67]. As a control, purified Wnt3a protein was added to

reporter cells at 50 ng/mL. Wnt activity was measured and

normalized using a dual luciferase system, and results are

expressed as the mean luminescence intensity (RLU) of 6–10

independent trials per condition. The Wnt activity induced by

shoto cells consistently exceeded that of control M14 cells by

greater than 6.5 fold on average (Fig. 10b). In the shoto1 and

shoto2 cell lines, real time RT-PCR revealed that the level of oto

mRNA was reduced 2–3 fold relative to control cells (Fig. 10b,c

and not shown).

In the CM activity experiments, there was variability in the

intensity of the Wnt response (Fig. 10b). Variability between

different experimental sets is explained by the age of responding

cells; we observed that later passaged NIH3T3 cells responded to

CM and purified Wnt3a control protein more weakly than earlier

passaged cells (compare Fig. 10b left vs. right). As a separate point,

some loss of activity likely resulted from the nature of the Wnt1

protein; Wnts produced endogenously are hydrophobic due to

porcupine-mediated lipidations [7,12,13] and tend to stick to

plastic surfaces in the absence of detergents, causing losses during

pipetting, storage, and general handling. To eliminate this

potential source of variability, we adopted a co-culture approach,

in which Wnt-producing M14 cells were plated together with

responding cells. This approach did yield much higher Wnt

activity readings than the CM method (Fig. 10c), but did not

eliminate variability in the Wnt response elicited by shoto cells.

This variability may be an intrinsic property of oto-deficient cells,

and/or due to the fact that these are knockdown rather than

knockout cells. Taken together with the overexpression studies,

these activity experiments indicate an inverse dose-response

relationship between oto expression levels and Wnt activity, with

lower oto levels resulting in production of more active Wnt signal.

GPI-PLD relieves retention of Wnt1
A lingering question remains; what is the role of the Wnt gpi

anchor itself in Wnt secretion? We addressed this by co-

transfecting mammalian gpi-specific phospholipase D (GPI-PLD)

with Wnt1 alone or with Oto+Wnt1, and then examined the

consequences on Wnt secretion. GPI-PLD is an enzyme that

specifically cleaves lipids from gpi anchored proteins, and it can do

so within the ER [68]. Consistent with the idea that it is a gpi

anchor that modifies Wnt1, co-expression of GPI-PLD dramat-

ically increases the levels of soluble Wnt1 in conditioned media in

gfp and Oto co-transfected cells (Fig. 10d). Conversely, GPI-PLD

has no effect on secretion of the control protein NShh in the

absence (Fig. 10e) or presence (not shown) of co-transfected Oto.

These results indicate that intracellular cleavage of gpi anchor

lipids relieves ER retention of Wnt1, and in so doing augments its

secretion.

Discussion

We present evidence that Oto/PGAP1 functions as a novel

component of the Wnt pathway during mouse forebrain

development. Interestingly, another study has recently identified

Figure 7. Oto-modified Wnt3a has the hallmarks of a gpi-anchored protein. a. Transfected cells were metabolically labeled with 3H-
ethanolamine, and all insoluble proteins were resolved by SDS-PAGE, blotted, and exposed to film to visualize 3H-ethanolamine-labeled proteins
(left). The identical blot was then probed with HA to detect Wnt3a-HA (right). Oto-modified Wnt3a incorporates 3H-ethanolamine, while Wnt3a
expressed alone does not. b. Transfected cells were metabolically labeled with 3H-ethanolamine (upper) or 3H-glucosamine (lower) and Wnt3a-HA
was immunopurified (IP) from insoluble extracts. Left is autorad, right is Western in both cases. Oto-modified Wnt3a incorporates the gpi anchor
components 3H-ethanolamine and 3H-glucosamine. In the lower panel, immunopurified material was digested with PNGaseF prior to analysis, to
remove 3H signal due to N-glycosylation. c. Immunopurified Oto-modified Wnt3a was incubated with or without PI-PLC in vitro, then analyzed by
western blotting. PI-PLC-digested Oto-modified Wnt3a shows a gel upshift (right) compared to undigested (left), due to PI-PLC-mediated cleavage of
gpi anchor lipids. * = Oto-modified Wnt3a.
doi:10.1371/journal.pone.0006191.g007

Wnt Is ER-Retained

PLoS ONE | www.plosone.org 9 July 2009 | Volume 4 | Issue 7 | e6191



Ci-PGAP1 as an essential component of the canonical Wnt

pathway during embryogeneis of the chordate Ciona intestinalis

[69]. This study and ours support the idea that Oto/PGAP1 can

function both as a gpi deacylase and as a regulator of Wnt

signaling. We further show that overexpression of Oto leads to a

dramatic increase in the hydrophobicities of co-expressed Wnt3a

and Wnt1. Oto modification may extend to other Wnts, given the

high degree of protein conservation in this family, and the

widespread expression of oto in embryos and adults. Our

preliminary results indicate that Wnt5a is also Oto-modifiable

(not shown). Gpi-anchoring by the widely expressed Oto protein

likely contributes to explaining why Wnts are poorly secreted by

mammalian cells [1].

The characterizations reported here show that the hydrophobic

modifications on Wnt3a and Wnt1 have the hallmarks of gpi

anchors. While the appended moiety itself is clearly a chemical

relative of the conventional gpi anchor, the process by which the

protein is modified is apparently unrelated. For instance, a

conventional gpi anchored protein is produced by a transamida-

tion reaction in which the carboxy terminus of the protein is

cleaved and replaced with the gpi anchor [52]. In the case of Oto-

modified Wnt3a and Wnt1, the carboxy termini remain intact,

and the gpi-like anchor is attached internally by an as yet

undefined reaction mechanism (unpublished observations). Fur-

thermore, a conventional gpi anchor allows its linked protein to

become tethered to the plasma membrane via its anchor lipids,

after the protein has exited the secretory pathway [70]. Despite

our careful analysis, gpiWnts have not been detected on the

plasma membrane. Instead, our immunolocalization and enzy-

matic analyses indicate that gpiWnt accumulates and lingers in the

ER in an immature, hydrophobic state. Further studies are

necessary to determine the site of gpi anchorage in Wnts, although

these studies are not at all trivial given the extreme hydrophobic-

ities of Wnts 1 and 3a, which are not only gpi-linked, but

covalently modified by at least two other lipids as well [5,12,13].

Others have shown that porcupine is responsible for adding

palmitic acid and palmitoleic acid to Wnt3a at C77 and S209

respectively [5,12,13]. Our data in Figure 3 indicate that the Oto

modification continues to be added to Wnt3a when C77 is deleted.

Our subsequent data show that the Oto modification is a gpi-like

anchor. These results demonstrate that the Oto modification does

not depend on porcupine’s modification of C77, and further that

the hydrophobic groups added by porcupine and Oto are distinct

in nature. Moreover, these results raise the possibility that the Oto

modification proceeds independently of porcupine, although to

prove this unequivocally, we would have to mutate S209 also.

Alternatively, although Oto and porcupine add different lipid

groups to Wnts, it is possible that Oto and porcupine have

competitive or synergistic effects during Wnt production.

While the sites of porcupine modification are known, we do not

know the sites of gpi anchor addition in Wnts 1 and 3a, and our

preliminary work indicates that this is a complex problem. We

therefore devised an alternative way to assay the function of the Wnt

gpi anchor in Wnt secretion. Rather than preventing anchoring

through site specific mutagenesis and then testing the effect on Wnt

secretion, we asked the cell to remove the anchor by cotransfecting

Oto and Wnt1 with GPI-PLD. If the gpi anchor mediates Wnt

retention, then cleaving anchor lipids should release it and allow the

protein to proceed through the secretory pathway. The GPI-PLD

experiment supports the idea that cleavage of anchor lipids relieves

ER retention (Fig. 10d,e). These data in turn suggest that a major

role of anchor lipids may be to retain Wnts in the ER via tethering to

the ER membrane. Although we have not proved that GPI-PLD

cleaves lipids from gpiWnt1 directly, our results are consistent with

this conclusion, and are supported by the observation that PI-PLC,

the bacterial equivalent of GPI-PLD, cleaves anchor lipids from

Oto-modified Wnt3a in vitro (Fig. 7c). The detected Oto/Wnt

association may contribute to Wnt retention as well. Alternatively or

in addition, under Oto-abundant conditions another step may be

necessary to release Wnt1 from the ER in a maximal way, such as

degradation or inactivation of the Oto protein.

By contrast, our finding that extracellular levels of NShh are not

changed by GPI-PLD co-expression suggests that NShh is not

modified by gpi (Fig. 10e). Similarly, preliminary Oto/NShh and

gfp/NShh co-expression experiments showed no apparent signs of

NShh modification (not shown). The lack of evidence for NShh

modification thus far suggests that the enhancing effect of GPI-

PLD on Wnt1 secretion is due to the specific action of GPI-PLD

on gpi-linked proteins, and not to a general effect on all secretory

proteins. Additionally, the greatest augmentation in extracellular

Wnt1 levels was observed in cells not cotransfected with Oto (i.e.,

gfp/Wnt1/PLD cells). Importantly, this suggests that Wnt1 is

modified endogenously in the 293 cell line. Accordingly, the

42 kDa insoluble Wnt1 isoform was occasionally seen on Western

blots of insoluble material from control gfp/Wnt1 transfected 293

Figure 8. Oto-modified Wnt3a behaves like a gpi anchored
protein. a. The addition of ZnCl2 increases the yield of Oto-modified
Wnt3a (*) in a dose-dependent manner, by stimulating Zn-dependent
enzymes of the gpi biosynthetic pathway. b. 1,10-phenanthroline (PNT),
a Zn chelator, decreases the amount of Oto-modified Wnt3a by
inhibiting gpi biosynthesis, without affecting synthesis of Oto. c. ZnCl2
reverses the inhibitory effect of PNT.
doi:10.1371/journal.pone.0006191.g008
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Figure 9. oto deficiency augments Wnt activity in the Wnt1 domain of the early neural plate. a, b. Whole mount in situ shows that oto
mRNA (purple) is expressed widely from E7.5–E8.5, correctly placed to act on Wnt1 in vivo.oto mRNA is prominent in the anterior of embryos at E7.5
(a, arrowhead = anterior, neural plate outlined in white), and in the neural folds at E8.5 (b, 6–8 somites). c–f. Anterior sections (c) were examined by
radioactive in situ (e, f). Bright field, labeled view of the section in e (d). Dark field views show oto (e), and six3 (f) in adjacent sections; only
expressing cells are visible (white = highest expression level). g–j. Canonical Wnt signaling (blue–green) was visualized in embryos using the BAT-gal
Wnt reporter. Embryos are shown in side view, with anterior left; p = presumptive pericardial cells. Neural plate subregions are outlined in distinct
colors (Ant = anterior, red; Med = medial, blue; Post = posterior, yellow). otoxray/+ = heterozygote, +/+ = wildtype (wt), otoxray/otoins = homozygous oto
mutant. In the neural plates of oto heterozygous (g) and wildtype embryos (h), Wnt activity is essentially absent in the medial presumptive Wnt1
domain at E8.0 (1–2 somites). i. In wt embryos, medial neurectodermal Wnt activity first appears at E8.2 (2–3 somites), when the neural plate is larger
in size. j. In oto mutants at E8.0, robust Wnt signaling is detected prematurely in the medial neurectoderm, when the neural plate is still relatively
small. k. A dorso-anterior view cartoon of (posteriorly-truncated) early somite stage neural plates from wt and oto embryos with subregions labeled
as in g–j, and not showing forebrain defects in the oto case. The Wnt activity results in h & j are diagrammed, as are the expression patterns of the
Wnt-repressible hesx1 gene that are typical to each genotype [33]. The arrows represent Wnt1’s hypothesized repressive effect on hesx1.
doi:10.1371/journal.pone.0006191.g009
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cells (not shown). In preliminary studies, we have found evidence

for endogenous gpi-anchored Wnt1 in untransfected M14

melanoma cells as well (JSZ unpublished), which express high

levels of Wnt1 [66]. Detection of gpiWnt1 in endogenous settings

strongly suggests that Oto-dependent gpi anchoring of Wnts has a

genuine role in the cell, and is not an artifact of overexpression.

We speculate that Oto-dependent gpi anchoring provides a

mechanism for accumulating Wnt proteins as gpi-linked isoforms

within Wnt producing cells for release at a later, regulated time

point. In such a hypothetical scenario, Oto/Wnt co-expressing

cells would generate a supply of Wnt held in reserve in the ER via

gpi anchoring. An endogenous gpi-phospholipase would then

remove anchor lipids from Wnt to trigger resumption of Wnt

maturation, thereby yielding a regulated burst of Wnt ligands.

When oto is lacking however, our evidence suggests that Wnts

travel through the secretory system in a relatively uninhibited

manner. In shRNA-mediated oto-deficient 293 and M14 cells,

significantly more soluble Wnt1 is secreted into the media during a

set time compared to controls (Fig. 10a). In M14 oto knockdown

cells, secreted Wnt1 is also highly active (Fig. 10b,c). These data

indicate that Wnt ligands secreted by oto-deficient cells are mature,

active, and greater in quantity due to reduced Oto-mediated ER

retention. We were not able to look directly at ER localization of

Wnts in embryos. To our knowledge, antibodies that detect

mammalian Wnt proteins at endogenous expression levels have

not yet been generated [4].

The oto mutant phenotype is consistent with our biochemical

studies. In oto-deficient embryos, Wnt signaling in the Wnt1

domain of the neural plate is detected earlier than normal, at 1–2

somites. In the context of our biochemical results, the simplest

explanation is that active Wnt1 is secreted prematurely in the

mutant due to decreased Oto-mediated ER retention. In oto

mutants, the domain of Wnt activity in the medial neural plate is

similar in size and area to that seen in older wildtype embryos

(Fig. 9i,j). But importantly, in the mutant the Wnt activity domain

is in the context of a neural plate that is smaller overall.

Consequently, the area allocated to develop as forebrain is smaller

than normal. Therefore the oto neural plate resembles an ectopic

Wnt situation, in which the medial Wnt domain overlaps the

posterior region of the forebrain competence zone. Moreover, at

1–2 somites when we detect premature Wnt1 activity in oto

mutants, studies show that murine neurectoderm is uncommitted

and labile enough to be respecified with regard to fate [47]. Thus

the relatively large area of Wnt activity in oto neurectoderm is

expected to posteriorize the anterior neural plate, resulting in loss

of forebrain cells (Fig. 1d–h) [33].

Posteriorization of the oto forebrain may occur by two possible

mechanisms. First, the Wnt activity visualized in Fig. 9j does not

cover the anteriormost neural plate, suggesting that anteriormost

cells may not directly experience Wnt signaling in oto. In this case,

posteriorization of the oto forebrain may occur by means of a second

signal, a relay mechanism. Or, a Wnt activity gradient may extend

all the way to the anterior in oto, with the lowest levels of the gradient

falling below the level of detection. Although there are precendents

for morphogenetic signals being propagated by relay [71,72,73], the

Wnt gradient mechanism seems more apt. Indeed, evidence

indicates that Wnt signaling has a role even in anteriormost

development [74]. When tcf3-mediated Wnt signaling was blocked

during Xenopus embryogenesis, expression of extreme anterior

markers was inhibited [74]. Given this result and the strong

Figure 10.oto knockdown increases Wnt1 activity in vitro, and GPI-PLD reduces Oto-mediated Wnt1 retention. a. Transient shRNA
knockdown of endogenous oto (shoto) increases the quantity of Wnt1 protein in conditioned media from 293 and M14 melanoma cells. The level of
HDAC1 protein in cell extracts does not vary, indicating that cell number remains constant. b. Stable shRNA-mediated knockdown of endogenous oto
by 3 fold in two independent M14 lines (shoto1 & shoto2) increases endogenous Wnt activity in conditioned media (CM) by at least 6.5 times on
average, compared to control CM (M14). Data from two separate experiments are plotted (left, right). CM from experimental cells or purified Wnt3a
(50 ng/mL, control) was applied to responding NIH3T3 cells stably expressing a canonical Wnt luciferase reporter. The mean luminescence intensity
(RLU) per condition is indicated by number, and each number represents the mean of 10 (left) or 6 (right) independent trials. Error bars represent one
standard deviation. c. Stable knockdown of oto mRNA by 2 fold in M14 cells (shoto1) augments Wnt activity by an average of 2 fold compared to
controls (M14) in a co-culture assay (8 trials per condition). Wnt3a control and data analysis are as described in b. d. Co-expression of gpi-specific
phospholipase D (GPI-PLD) and Wnt1 in transfected 293 cells increases secretion of Wnt1 in the presence (left) and absence (right) of cotransfected
Oto, suggesting that cleavage of anchor lipids reduces ER retention of Wnt1. e. GPI-PLD does not affect secretion of NShh.
doi:10.1371/journal.pone.0006191.g010
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evidence for the existence of a functional Wnt gradient in the

vertebrate neural plate [14,15,16,19,21,22,23,24], it seems more

likely that loss of the forebrain in oto results from a Wnt gradient that

fails to taper to its lowest levels, due to a foreshortened forebrain

domain. Direct examination of the indicated Wnt gradient will

require the development of more sensitive in vivo methods for

detecting Wnt ligands and/or Wnt activity.

Wnt1 expression studies by others support the gradient

mechanism, and indicate that Wnt1 expression in mouse normally

extends into the posterior forebrain domain of the early neural

plate. From 1–3 somites, a Wnt1-lacZ reporter shows a soft,

unrefined anterior Wnt1 border with lacZ+ cells trailing into the

forebrain domain [45,46]. At four somites, a 5.5 kb Wnt1

enhancer drives lacZ expression in a pattern similar to normal

Wnt1, with lacZ cells appearing within the posterior forebrain

[59,60]. At neural tube stages, Wnt1 is expressed in the dorsal

neural tube with an anterior limit at the zona limitans

intrathalamica (ZLI) [46]. The ZLI is a signaling center that

forms within the diencephalic portion of the posterior forebrain

[75,76]. The finding that ZLI positioning is Wnt-regulated in the

neural plate in mouse, chick, and zebrafish [20,22,77,78] suggests

that Wnt activity normally extends into the prospective posterior

diencephalic region at early somite stages. Therefore it is quite

possible that a premature, anteriorly shifted Wnt1 activity gradient

is solely responsible for posteriorizing the oto forebrain. Alterna-

tively, another as yet unidentified Wnt may also be involved,

although if so, the activity of this other putative Wnt would be

reflected in the BAT-gal readout.

Placing our results in a molecular context, the earliest oto forebrain

defect was detected at 2–3 somites, when hesx1 expression is reduced

in the anterior neurectoderm [33]. Hesx1 function is required in the

anterior neurectoderm itself, not in anterior mesendoderm or

anterior visceral endoderm, in order to preserve forebrain develop-

ment [37]. Recent data reveal that hesx1 expression is repressed by

canonical Wnt signaling [30,44]. Our results suggest that the

observed premature Wnt signaling in oto mutants is responsible for

repressing hesx1 in the anterior neural plate. By correlation, hesx1 and

six3-deficient embryos show similar forebrain defects to oto mutants,

and also show excessive Wnt1 expression and/or Wnt activity in the

neural plate [23,30,36,37]. In these latter mutants however, the

primary defect is loss of the Wnt-repressive effects of Hesx1 or Six3,

which then allows derepression of Wnt1 in anterior neural cells. In

the oto case, our data indicate the reverse, and suggest the primary oto

defect is prematurely robust Wnt activity in the Wnt1 domain, which

then represses hesx1 by encroaching upon its domain from the

posterior direction (Fig. 9k). Our combined biochemical and

phenotypic results support the following interpretation of oto

forebrain defects. Decreased ER retention of Wnt1 in oto-deficient

neurectoderm leads to premature Wnt signaling in the Wnt1 domain;

in the younger, smaller oto neural plate, this Wnt activity covers too

much of the anterior neural region, repressing hesx1 expression and

curtailing anterior neural development.

While it is possible that dysregulation of other secreted proteins

may contribute to oto forebrain defects, the salient premature

neurectodermal Wnt activity in the oto mutant is likely to be the

major factor contributing to the forebrain deficit, given the

demonstrated potency of Wnts in mediating neural posterioriza-

tion in vertebrates [18,23,25,26,27,28,29,30,31,32,34,35,78]. Oth-

er candidate proteins that Oto might hypothetically regulate are

expected to be limited to the set of secretory proteins involved in

patterning the regions affected by oto mutation, the head and the

vertebrae. Because oto is widely expressed in embryos and adult

tissues and is essential for survival [33], the oto mouse is likely to

provide insight into other Wnt-dependent processes in mammalian

organisms. Significantly, we have also uncovered an independent

role for Oto in regulating development of the hippocampus

(unpublished observations). The variety of Wnt-related phenotypes

in the oto mutant, together with evidence that at least two distinct

Wnts can be Oto-regulated, indicate that Oto plays a role in

determining the timing or level of Wnt activity in multiple

contexts.

In conclusion, the most novel and exciting aspect of the oto

forebrain phenotype is the indicated underlying molecular

mechanism. In other mutant mouse lines referenced here

[23,30,34,35,36], the responsible genes encode Wnt antagonists

that repress Wnt transcription or the Wnt response. As a result of

these and other studies, much is known about Wnt regulation at

the level of the responding cell. By contrast, little is known about

Wnt regulation at the level of ligand production [8,9,10]. Our

results shed new light on the latter process, indicating that Oto

regulates Wnt signaling by retaining Wnts in the ER of Wnt

producing cells via gpi anchoring. Our results also demonstrate

that Oto-mediated Wnt regulation is critical for development of

the mammalian anterior forebrain, which includes the telenceph-

alon, the largest and most evolutionarily advanced portion of the

mammalian brain.

Methods

Ethics Statement
All mice were treated in accordance with the established rules

and recommendations of our IACUC protocols and UCSF’s

animal care committee, and with the welfare of the animals

carefully considered.

Genetics
The otoxray mutation was successively backcrossed onto

C57BL6/J and mapped by standard meiotic mapping. Animals

were genotyped using PCR-based, polymorphic microsatellite

markers (www.broad.mit.edu/mouse/) that vary by size between

C57BL6/J and DBA2/J (Fig. 1a). New markers were designed to

binary repeats in the oto interval. The MICER insertional allele of

oto [48] was introduced into ES cells, then into blastocysts. BAC

DNAs (http://bacpac.chori.org/) were prepared using the Qiagen

Large Construct kit, sizes verified on FIGE gels, and transgenic

mice were made. Mice doubly heterozygous for a BAC and the

otoxray mutation were crossed to otoxray heterozygotes. oto/oto;

BAC+/2 mice were born at normal Mendelian frequency and

were viable and fertile (Supplementary Table S1). Mice doubly

heterozygous for BAT-gal and an oto mutation were crossed to oto

heterozygotes; resulting embryos were fixed for 5 min in cold 4%

PFA, rinsed, stained overnight at room temperature with Xgal,

and post-fixed. Stained embryos were individually examined and

photographed, then genotyped.

Molecular Biology & Reagents
A sequence verified, wildtype oto cDNA was obtained by RT-

PCR from adult mouse kidney, and cloned into the pFlag7

expression vector (Sigma). Mouse Wnt3a and Wnt1 DNA

expression constructs encoding Wnts tagged with HA at their

carboxy termini were purchased from Upstate. Wnt3aD31–107

was made by removing the ScaI/SmaI fragment from mouse

Wnt3a. Candidate genes for oto were evaluated by RT-PCR,

whole mount in situ [33,79] and Northern blotting (Northern Max

kit, Ambion). shRNA toward oto (AAGAAGCCAAACCATA-

CAAAGTT) was cloned into the pSiRPG vector. Antibodies were

purchased from the following sources: mouse anti-flag M5 (Sigma);

rat anti-HA high affinity (Roche); goat and rabbit anti-Wnt1
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(R&D Systems, Abcam, Zymed/Invitrogen); rabbit anti-HDAC1

(Cell Signaling); secondaries (Amersham, Rockland). Reagents:

protein G agarose (Roche), Egfp and dsRedER vectors (Clontech),

EndoH and PNGaseF (NEB).

Cell culture and Biochemistry
293 cells were cultured in DMEM (Invitrogen), and M14 cells in

RPMI-1640 (ATCC), each plus 10% fetal calf serum (Hyclone), in

5–6% CO2. Transient transfections were done using Cytofectene

(BioRad, discontinued) or the equivalent Metafectene (Biontex,

Germany). Transfected cells were cultured for 42–48 h, scrape

harvested, and lysed in Hepes-buffered RIPA (20 mM Hepes

pH 7, 150 mM NaCl, 0.5% sodium deoxycholate, 0.5% NP–40,

0.1% SDS, Roche Complete protease inhibitors). Lysate viscosity

was reduced with benzonase nuclease (Novagen). Lysates were

spun at maximum speed for 10 min at 4uC, and supers collected in

fresh tubes to yield soluble extracts. Insoluble extracts for

immunoprecipitation (IP) were prepared by resuspending pelleted

material in a small volume of 1% SDS, 20 mM Hepes pH 7,

150 mM NaCl, 10 mM DTT, heating for 10 min at 80uC, diluting

106with SDS-free RIPA, then spinning at max speed for 10 min to

pellet debris, and collecting supers in fresh tubes. Wnts were

immunoprecipitated for at least 3 nights. Insoluble extracts for gels

only were prepared by solubilizing pelleted material in 0.5% SDS,

1% b-mercaptoethanol. Samples were analyzed by reducing SDS-

PAGE on 4–12% or 10% Bis-Tris gels in MOPS (Invitrogen).

Proteins were transferred onto PVDF (Amersham and Millipore)

using the X-Cell II system (Invitrogen) at 30V for 1.5–2 h on ice.

Proteins on blots were detected with ECL Plus (Amersham) and

Kodak Biomax Light film. Cells were labeled by adding 140 mCi/

ml of 2:1 35S-methionine:35S-cysteine (ARC) for 30 min, or

0.5 mCi/mL 3H-labeled reagent (ARC) for 6–24 h. To visualize
35S, gels were dried and exposed to film. For 3H, gels were blotted

and exposed to film for one month at 280uC using Kodak

Transcreen LE intensifying screens. For butyl sepharose (Amer-

sham) chromatography, insoluble extracts were prepared as for IP

except they were diluted with RIPA lacking detergents, then

incubated with butyl beads for 90 min at room temperature. Beads

were washed, then eluted with Hepes-buffered solutions. For PI-

PLC digests, 5 mL of immunoprecipitated modified Wnt3a on HA

beads was sonicated in 15 mL PBS+0.1% Triton X-100 for one

hour, then PI-PLC (Glyko) was added or not, and samples

incubated overnight. In oto knockdown assays (Fig. 10b,c), shRNAs

toward oto were transfected, and cells+media harvested after 5 days.

For GPI-PLD experiments, gfp or Oto DNA was mixed with NShh

DNA 4:1, and then one part GPIPLD DNA was cotransfected with

one part 4:1 mix. For IPs from media, media was collected, residual

cells pelleted and removed, and RIPA reagents, protease inhibitors,

and sodium azide added. Media was then precleared with protein G

agarose overnight, and the desired protein immunoprecipitated.

Wnt activity assays
For activity experiments, stable shoto lines in M14 cells were

generated by selecting shoto-transfected cells with 1 mg/mL

puromycin. Wnt reporter cells were made by stably transfecting

NIH3T3 cells with a canonical Wnt luciferase reporter, construct-

ed by cloning the enhancer element of Super8xTOPFlash

containing 8 TCF/LEF binding sites into the pGL4.28 vector

(Promega) upstream of the minimal promoter element. Luciferase-

mediated luminescence was measured using the Dual-Glo kit

(Promega). In conditioned media (CM) experiments, cells were

plated and CM was collected after 4 days. CM or purified Wnt3a

at 50 ng/mL was applied to reporter cells for 6 hours. In co-

culture experiments, on day 1 NIH3T3 reporter cells were plated

at 20,000 cells per well (24-well plate) and transfected with the

Renilla luciferase normalization control vector RL-SV40 (Pro-

mega). On day 2, 40,000 M14 or shoto cells were plated on top of

the reporter cells. Control reporter cells (no co-culture) were

stimulated with 50 ng/mL Wnt3a. On day 3, cells were lysed and

luciferase activity measured. In all experiments, each condition

was repeated 6–10 times, and the mean luminescence intensity

was calculated and plotted with one standard deviation. For

measuring oto expression in stable shoto cells, mRNA was

extracted from one million cells per line in triplicate, and RT-

PCR products quantitated using a real-time assay.

Supporting Information

Table S1 BAC transgenic rescue of oto. otoxray carriers were

intercrossed with animals heterozygous for both otoxray and a BAC

encoding the genomic oto gene. Representative data from one

rescuing bac, RPCI23-34H22, is shown. Viability was scored. The

otoxray mutation is perinatal lethal; only 0.4% of oto homozygotes

have lived to adulthood (2/446 animals), and these were infertile.

The observed column lists the number of viable adult animals

recovered with the indicated genotypes. Predictions are based on

the total number of animals scored. Bac transgenic mutant animals

are born at normal Mendelian frequency (yellow), have normal

head morphology, and are fertile, revealing that BAC-mediated

restoration of oto expression eliminates the oto phenotype.

Found at: doi:10.1371/journal.pone.0006191.s001 (0.35 MB TIF)

Figure S1 Derivation of the MICER insertional allele of oto.

Homologous recombination of MICER clone MHPN237e12 with

the endogenous oto locus in the vicinity of exons 5 and 6 results in a

duplication and frameshift after exon 6. 0, +1, and +2 show the

reading frame between indicated exons. The otoins allele is a likely

null.

Found at: doi:10.1371/journal.pone.0006191.s002 (0.31 MB TIF)
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