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Abstract

Background: African horse sickness virus (AHSV) causes a non-contagious, infectious disease in equids, with mortality rates
that can exceed 90% in susceptible horse populations. AHSV vaccines play a crucial role in the control of the disease;
however, there are concerns over the use of polyvalent live attenuated vaccines particularly in areas where AHSV is not
endemic. Therefore, it is important to consider alternative approaches for AHSV vaccine development. We have carried out a
pilot study to investigate the ability of recombinant modified vaccinia Ankara (MVA) vaccines expressing VP2, VP7 or NS3
genes of AHSV to stimulate immune responses against AHSV antigens in the horse.

Methodology/Principal Findings: VP2, VP7 and NS3 genes from AHSV-4/Madrid87 were cloned into the vaccinia transfer
vector pSC11 and recombinant MVA viruses generated. Antigen expression or transcription of the AHSV genes from cells
infected with the recombinant viruses was confirmed. Pairs of ponies were vaccinated with MVAVP2, MVAVP7 or MVANS3
and both MVA vector and AHSV antigen-specific antibody responses were analysed. Vaccination with MVAVP2 induced a
strong AHSV neutralising antibody response (VN titre up to a value of 2). MVAVP7 also induced AHSV antigen–specific
responses, detected by western blotting. NS3 specific antibody responses were not detected.

Conclusions: This pilot study demonstrates the immunogenicity of recombinant MVA vectored AHSV vaccines, in particular
MVAVP2, and indicates that further work to investigate whether these vaccines would confer protection from lethal AHSV
challenge in the horse is justifiable.
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Introduction

African horse sickness (AHS) is a non-contagious, infectious

disease of equids caused by African horse sickness virus (AHSV)

[1]. It is transmitted by the bite of certain Culicoides biting midge

species [2–4]. In susceptible populations of horses, mortality rates

can exceed 90% [5]. Nine different serotypes of the virus have

been identified, based on the specificity of its interactions with

neutralising antibodies in serum neutralisation assays [6].

The AHSV genome is composed of ten dsRNA segments, which

encode seven structural proteins VP 1–7 and four non-structural

proteins NS1, NS2, NS3 and NS3a [7]. AHSV particles are

organised as three concentric layers of proteins. The outer capsid

consists of two proteins VP2 and VP5. VP2 is the principal

serotype specific antigen of AHSV, and the majority of

neutralising epitopes are located on VP2 [7–9]. The virus core,

consists of two major proteins, VP7 which forms the core surface

layer, and VP3 which forms the innermost ‘subcore’ shell. The

subcore surrounds the 10 segments of the viral genome, and

contains three minor proteins VP1, VP4 and VP6 that form the

core associated transcriptase complexes [7].

AHSV is endemic in tropical and sub-tropical areas of Africa,

south of the Sahara [1], but epizootics of AHSV have also occurred

outside Africa, resulting in high mortality rates and severe economic

loses, such as those reported in the Middle East in 1959, or in North

Africa and Spain during 1969 and 1987 [10,11]. In the latter

outbreaks, an extensive vaccination program and movement control

measures led to complete eradication of the disease [12,13].

Vaccination plays an essential role in the control and prevention

of the disease and vaccine development has been one of the main
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focuses of AHS research. Live polyvalent vaccines for AHSV are

commercially available in South Africa, and have been developed

by cell-culture attenuation of the virus [14]. However, concerns

still exist over their use, particularly in those countries where the

disease is not endemic because of potential gene segment

reassortment between field and vaccine strains, potential reversion

to virulence and inability to distinguish vaccinated from infected

animals [1,14–17]. In the past, inactivated vaccines have been

shown to induce protective immunity [18,19], but are not readily

available.

For these reasons, research has focused on the development of

recombinant subunit and virus-like particle AHSV vaccines using

baculovirus expression systems. These recombinant vaccines in

conjunction with novel diagnostics allow the differentiation

between vaccinated and naturally infected animals and may

provide homologous protection against AHSV challenge [20,21].

However, these types of vaccines have yet to be used for

commercial vaccine production.

Another strategy that has been used for AHSV and other viral

vaccines is the use of live viral vectors. These have the ability to

introduce the recombinant gene product into the MHC class-I

pathway of antigen presentation and therefore prime cytotoxic T

cells as well as generate humoral immunity [22–24]. Most recently,

recombinant Venezuelan equine encephalitis virus-derived replicon

vectors, individually expressing the VP2 and VP5 genes of AHSV-4,

have been developed. However, in initial tests these constructs failed

to induce neutralizing antibodies in horses [25].

Poxvirus based vectors have been established as a potent system

for the development of candidate recombinant vaccines for many

viral diseases [26,27]. In the case of AHSV, the potential of poxvirus

vector vaccination has been demonstrated using a recombinant

Vaccinia virus (Western Reserve (WR) strain) expressing AHSV-4

VP2 [28]. However, WR strain derived vaccinia viruses still

replicate in mammals and some concerns exist over their safety. For

this reason, the use of poxvirus vectors with limited replication

capacity, are preferred for vaccine development.

The modified vaccinia Ankara (MVA) strain was derived after

more than 570 passages in primary chick embryo fibroblasts [29].

The resulting virus has lost the ability to productively infect

mammalian cells [30]. Virus replication is blocked at a late stage of

morphogenesis in mammalian cells, leaving expression of late, as

well as early, viral genes unimpaired [29]. MVA was shown to be

non-pathogenic even for immunodeficient animals and recombi-

nant viruses were found to be able to synthesise high levels of a

foreign protein in human cells, demonstrating the potential of

MVA as a safe and efficient expression vector [29]. Recent studies

have also provided evidence for the safety and immunogenicity of

recombinant modified vaccinia Ankara (MVA) in ponies [31,32].

For these reasons recombinant MVA was chosen as a vector for

AHSV antigens.

Due to the lethality of AHSV challenge studies and the number

of animals that would be required it was deemed important to

carry out this pilot investigation to determine whether it is possible

to induce an AHSV-specific immune response in ponies by

vaccination with recombinant MVA viruses expressing AHSV

proteins. For this we constructed three recombinant MVA viruses

expressing three antigens of AHSV-4: VP2, VP7 and NS3, and

characterised the antibody responses that were generated. These

antigens were chosen for several reasons. Studies using recombi-

nant VP2 vaccines in horses have demonstrated that VP2 induces

a neutralising antibody response, which is serotype specific,

affording protection against homologous virus challenge [21,28].

AHSV-9 VP7 has been shown to provide protection in the mouse

model against a heterologous challenge with a known lethal dose

of AHSV-7 [33]. NS3 was chosen as it is known to stimulate

antibody responses in the horse [34,35] and studies with closely

related bluetongue (BTV) have demonstrated that NS3 may also

be a CTL target for BTV-immune sheep [36,37].

The results of this study demonstrate the immunogenicity of

recombinant MVA vectored AHSV antigens, in particular

MVAVP2. Further work with MVANS3 is needed, however, the

use of MVAVP2 and MVA VP7 in a lethal challenge study in the

future would be justified.

Results

Characterisation of recombinant MVA viruses
Confirmation of gene expression of the recombinant MVA

viruses used as vaccines in this study was tested in quail

fibrosarcoma (QT35, ECACC Ref. No. 93120832) and equine

skin fibroblasts (ESF) infected cells by detection of the expressed

AHSV gene product, or, where no antibody was available,

detection of specific RNA transcripts. Both VP2 and VP7 were

detected in infected cell lysates by western blotting with VP2 and

VP7 specific monoclonal antibodies at the expected molecular

weights of ,116 and ,38 kDa, respectively (Figure 1). The

detection signal for VP2 was stronger in QT35 than in ESF cells,

revealing a potential difference in expression levels of this protein

between these cell lines. Expression of VP7 was also confirmed by

indirect immunofluorescence (data not shown). Expression of NS3

protein from MVANS3 was not tested due to a lack of NS3-

specific antibody reagents. The functionality of the vaccinia P7.5

NS3 expression cassette was confirmed by detection of NS3-

specific RNA sequences at 4 hours post-infection in MVANS3

infected QT35 and ESF cells by RT-PCR. The cDNA amplicons

generated were the expected size (670 bp). The absence of

contaminating genomic DNA in all of the RNA extracts was

confirmed by negative PCR results using RNA templates

(Figure 2).

Analysis of antibody responses to MVA
Following an initial vaccination with recombinant MVA viruses,

all of the ponies displayed transient inflammation at the sites of

inoculation and slight elevation of rectal temperatures. This was not

observed following subsequent inoculations. All the ponies were

seronegative for MVA prior to vaccination. Following the initial

dose, a slight increase in MVA specific antibody levels was observed

by 21 days post vaccination in four animals, but had declined again

by day 35. Antibodies against MVA were detected in all animals

after the second vaccination (day 35), the serum titres ranging from

0.75 to 2.25 on day 42 but these had declined by day 77. A third

dose boosted the antibodies again, and the range of titres was

narrower than after the second vaccination (Figure 3).

Analysis of antibody responses to AHSV antigens
Western blots. An antibody response against AHSV VP2

was detected in both MVAVP2 vaccinates by western blotting

using sera taken at 42 and 84 days post vaccination (Figure 4).

Recombinant baculovirus expressed VP2-V5 was similarly

detected at ,116 kDa with the anti-V5 mAb. For both ponies,

the VP2-V5-specific band was more evident using the samples

collected on day 84 (after the third vaccination) than on day 42

(after the second vaccination).

An antibody response against VP7 was detected at 42 and 84

days post vaccination in one of the two MVAVP7 vaccinates (pony

5859) (Figure 5), with a faint band corresponding to VP7

(,38 kDa) observed for sera collected on days 42 and 84. No

antibodies to VP7 were detected in the other MVAVP7 vaccinated

AHSV Recombinant Vaccine
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pony (5717) (data not shown). No antibodies to immunoprecip-

itated NS3 were detected in either of the ponies vaccinated with

MVANS3 (data not shown).

Virus neutralisation test. The virus outer capsid protein

VP2 is the dominant AHSV antigen and the main target of

homologous virus neutralising (VN) antibodies. Therefore, success

Figure 1. Detection of MVAVP2 or MVAVP7-expressed VP2 and VP7 protein, respectively, within QT35 and ESF cells. Cell lysates of
uninfected cells (lanes 1,3,5 and 7) and cells infected at high MOI with MVA-VP2 (lanes 2 and 4) or MVA-VP7 (lanes 6 and 8), and harvested at 24 hours
post-infection, were separated by SDS-PAGE on 10% gels. Immunoblotting was conducted with either anti-VP2 mAb (lanes 1–4) or anti-VP7 mAb
(lanes 5–8).
doi:10.1371/journal.pone.0005997.g001

Figure 2. Detection of NS3 RNA transcripts from MVANS3. 1% agarose gels showing RT-PCR and PCR products using RNA templates extracted
from MVA infected QT35 and ESF cells 4 hours post infection. Tracks 1–3 QT35 RNA extract RT-PCR products. Tracks 4–6 QT35 RNA extract PCR
products. Tracks 7–9 ESF RNA extract RT-PCR products. Tracks 10–12 ESF RNA extract PCR products. Expected product size 670 bp. Tracks 1, 4, 7, & 10
MVANS3; 2, 5, 8, & 11 MVA wild type; 3, 6, 9, & 12 pSC11NS3 plasmid.
doi:10.1371/journal.pone.0005997.g002

AHSV Recombinant Vaccine
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of vaccination with MVAVP2 was also assessed by determining

whether a VN antibody response was induced. The results of the

VN test are shown in Table 1. Both ponies were seronegative prior

to vaccination. Following the initial vaccination the serum VN

antibody titres in both ponies were low. However, following the

first MVAVP2 boost (day 35) VN titres increased rapidly

(maximum VN titre of 2). The titres remained at a similar level

until at least day 84.

Discussion

In recent years, there has been an unprecedented emergence of

the Culicoides transmitted pathogen BTV in Europe and the

Mediterranean. This has been attributed to the northward

expansion of the major BTV vector, Culicoides imicola, possibly

influenced by climate change; as well as the involvement of

indigenous European Culicoides species [38,39]. Due to the

similarities between BT and AHS viruses and their vectors, it

has been suggested that should AHSV incur into Europe there is

the potential for it to become as widespread as BTV [39,40]. As

there are concerns over the use of modified live AHSV vaccines,

the development of efficacious and safer AHSV vaccines, suitable

for use in both endemic and non-endemic regions, is therefore an

important focus of AHSV research. Poxvirus vectored vaccines,

with enhanced safety due to limited replication are of particular

interest. Indeed, recombinant canarypox virus based vaccines for

the prevention of equine influenza, West Nile virus or equine

herpesvirus infections have already been developed for use in

horses, and for the prevention of the closely related BTV in sheep

[41–44]. Vaccination of horses with recombinant MVA based

vectors has also been shown to be an effective means of inducing

protective immunity to influenza virus infection [32,45].

A recent study comparing recombinant canarypox and MVA

vectors has demonstrated that antigen production by recombinant

MVA was greater than that from recombinant canarypox virus in

certain mammalian cell lines and primary human cells tested [46].

This observation was primarily due to a longer duration of antigen

production in recombinant MVA-infected cells. Antigen produc-

tion by MVA was also noted to be greater in human dendritic

cells, and resulted in enhanced T-cell stimulation in an in vitro

antigen presentation assay [46]. Therefore, the potential of

recombinant MVA viruses, expressing AHSV proteins, to induce

AHSV-specific immune response in ponies was investigated.

In this study we successfully generated three recombinant MVA

viruses, MVAVP2, MVAVP7 and MVANS3, Western blots using

both MVAVP2 and MVAVP7 infected QT35 and ESF cell lysates

confirmed that these recombinant viruses were infectious and able

to express the AHSV antigens in equine cells. We did not have

access to NS3-specific antibodies and therefore it was difficult to

evaluate NS3 protein expression in MVA infected cells. However,

detection of NS3 specific sequences by RT-PCR from total RNA

extracted from QT35 and ESF cells infected with MVANS3

suggested the expression cassette was functional and so the

recombinant MVANS3 was used in the vaccination studies.

Following vaccination with recombinant MVA viruses, all the

ponies remained healthy, although transient inflammation of the

inoculation sites and elevation of rectal temperatures were

observed after the initial vaccinations. This is suggestive of an

active infection, and was probably associated with the MVA

vector, as subsequent inoculations did not induce these reactions

indicating pre-existing immunity to the MVA. Indeed, MVA-

specific neutralising antibody responses were demonstrated in all

ponies after the initial vaccination. After subsequent vaccinations

all the ponies showed an anamnestic response and produced

higher levels of MVA neutralising antibodies. This is consistent

with other work carried out in the horse [31].

Following the second vaccination (day 42), VP2 specific

antibody responses were demonstrated for both MVAVP2-

vaccinated ponies by western blotting. The neutralising activity

of the antibody response was confirmed by AHSV VN test, with

titres rising to 1.8/2 units (ponies 5843 & 4246 respectively) after

the second vaccination. This is a promising result, because in a

previous study using recombinant vaccinia expressing AHSV-4

VP2, significant neutralising titres were not observed in vaccinated

horses until after the third inoculation [28]. Furthermore, the VN

Figure 3. Development of neutralising antibodies against MVA following vaccination. MVA plaque reduction neutralisation titre of sera
taken from ponies following initial vaccination with recombinant MVA and two subsequent boosts. Arrows denote days of vaccination.
doi:10.1371/journal.pone.0005997.g003

AHSV Recombinant Vaccine
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titres observed in this study are at similar levels to those recorded

in the literature, which have been observed to provide protection

against lethal AHSV challenge [21,28].

Antibody responses following MVAVP7 immunisation were also

observed, albeit in only one of the two vaccinates. In the mouse

model, mice vaccinated with recombinant AHSV VP7 have also

shown very variable anti-VP7 antibody responses. However, VP7

vaccination still conferred protection against heterologous challenge

with a lethal dose of AHSV and it was suggested that this protection

was unlikely to be due to the antibody-mediated immune response

alone, but may have been related to cell-mediated responses [33].

Additional work to investigate whether this is the case in the horse is

therefore required.

Neither of the ponies vaccinated with MVANS3 developed NS3

specific antibody responses during the study period, despite

showing clear neutralising antibody responses to the MVA vector.

Although NS3 mRNA could be demonstrated in vitro, the

expression of the NS3 protein could not be confirmed. It is

possible that the protein was expressed at very low levels due to

rapid degradation after translation. Previous studies of BTV-NS3

have indicated that it is poorly expressed in mammalian systems

infected with BTV although it is expressed well in insect cell

systems [47,48]. The low expression of NS3 in mammalian cells

may therefore be a normal property of the AHSV Segment-10

mRNA.

The impact of previous immunity to both replication competent

and replication deficient vaccinia virus has been investigated in

several studies and is suggested to reduce the effectiveness of

subsequent vaccinations [22,24,49,50]. The second MVAVP2

vaccination in this study was found to boost VP2 specific antibody

titres, despite a pre-existing antibody response to the MVA vector,

although the third vaccination did not increase the VNAb

response any further. Therefore, it may be necessary to investigate

methods to enhance immune responses generated against the

AHSV antigens. The use of DNA priming prior to vaccination

with recombinant MVA has been used successfully in several

studies [24,51,52] and could be applied to future work with the

recombinant MVA AHSV vaccines.

In summary, the ability of recombinant MVA viruses encoding

AHSV proteins (VP2, VP7, and NS3) to induce AHSV antigen-

specific antibody responses was investigated. The confirmation of

antibody responses against VP2 and VP7, in particular induction

Figure 4. Detection of immunoprecipitated, recombinant-baculovirus-expressed VP2V5 with MVAVP2-vaccinated pony serum.
Lysates of uninfected Sf9 cells (lanes 1,3,5,7 and 9) and Sf9 cells infected with recombinant baculovirus FBVP2-V5 were immunoprecipitated with anti-
V5tag mAb and Protein G agarose. The immunoprecipitates were separated by SDS-PAGE on 10% gels, and immunoblotted with MVAVP2 vaccinated
pony sera (4256, 5483) (lanes 1–8) or anti-V5tag mAb (lanes 9 & 10). The pony sera tested were derived from a pre-vaccination control bleed (lanes 1 &
2) and three post-vaccination bleeds (lanes 3–8) from days 21, 42, and 84, respectively. A non-specific band was present to some extent in each lane
at ,50 KDa.
doi:10.1371/journal.pone.0005997.g004
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of strong virus neutralising antibody by MVAVP2, warrant the

further investigation of MVA vectored AHSV vaccines, to

investigate whether they also induce cellular immune responses

and ultimately induce protection from both homologous and

heterologous AHSV challenge.

Materials and Methods

Generation of recombinant MVA viruses expressing VP2,
VP7 and NS3

The cDNA copies of genome segments 2, 7 and 10 from the

Madrid 1987 strain of AHSV-4 (IAH reference collection number:

SPA1987/01) [53] were generated using previously described

methods [54] and cloned into plasmid pT7-Blue (Novagen,

Madison, USA) using standard molecular biology techniques.

The AHSV genes were subcloned into the vaccinia transfer

vector pSC11 downstream of the vaccinia P7.5 promoter [55], to

generate pSC11VP2, pSC11VP7 and pSC11NS3. Integration of

the expression cassettes into the thymidine kinase (TK) locus of

MVA, was achieved by infecting QT35 cells grown in Glasgow

minimum essential medium (GMEM) supplemented with 10%

foetal calf serum, 10% tryptose phosphate broth, 2 mM L-

glutamine, 100 units/ml penicillin and 100 mg/ml streptomycin

(all from Sigma-Aldrich, Dorset, UK), with wild type MVA (MOI

0.05 for 1 h, 37uC) followed by transfection with pSC11VP2,

pSC11VP7 or pSC11NS3 using Lipofectamine 2000 (Invitrogen,

Paisley, UK). Cells were incubated for 48–72 hours at 37uC, 5%

CO2. The cells were scraped from the plastic and pelleted at

15006g for 10 minutes. The pellet was resuspended in 1 ml serum

free GMEM and freeze-thawed three times to lyse the cells and

release the cell-associated virus particles.

Recombinant viruses, denoted as MVAVP2, MVAVP7 and

MVANS3, were purified by selecting for Lac Z marker gene

expression and TK negative phenotype, using methods that have

been described previously [55]. Pure recombinant MVAVP2,

MVAVP7 and MVANS3 virus stocks were propagated in QT35

cells, titrated and used for vaccination of ponies. The MVANS3

virus stock was purified once over a sucrose cushion as described

previously [32]. MVAVP2 and MVAVP7 virus stocks were not

purified before vaccination.

Confirmation of AHSV gene expression from
recombinant MVA

MVANS3 Reverse Transcriptase (RT)-PCR. Total RNA was

extracted from ESF and QT35 cells infected with the recombinant

MVA using RNeasy mini kit (Qiagen, Crawley, UK) and DNase

treated with the Turbo DNA-free kit (Ambion, Huntindon, UK).

Figure 5. Detection of recombinant baculovirus-expressed VP7 with MVA-VP7-vaccinated pony serum. A semi-purified preparation of
recombinant baculovirus FBVP7-expressed VP7 was separated by by SDS-PAGE on 10% gels, and immunoblotted with MVA-VP7-vaccinated pony sera
(lanes 1–4) or anti-VP7 mAb (lane 5). The pony sera tested were derived from a pre-vaccination control bleed (lane 1) and three post-vaccination
bleeds (lanes 2–4) from days 21, 42, and 84, respectively.
doi:10.1371/journal.pone.0005997.g005

Table 1. AHSV-neutralising antibody responses in ponies
vaccinated with MVAVP2.

Post-vaccination titres*

Day Pony 5483 Pony 4246

(V1) 0 neg neg

28 0.4 0.6

(V2) 35 0.3 0.5

42 1.8 1.9

56 1.6 2

(V3) 77 1.6 2

84 1.7 1.7

91 1.35 N.T.

Positive control 2.5

Negative Control neg

*Expressed as the reciprocal of the highest dilution that provided .50%
protection of the Vero cell monolayer.

doi:10.1371/journal.pone.0005997.t001

AHSV Recombinant Vaccine
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RT-PCR reactions were set up using Superscript one-step RT-PCR

kit (Invitrogen), with 5 ml RNA template, using NS3 specific primers

NS3f (59-ACTGTGGATCCTCATGAATCTAGCTGCAA-39)

and NS3r (59-GATACGAATTCCTAGCTTTCGCCATAC-39) as

forward and reverse primers, respectively. A PCR was also set up

using the same primer set as for the RT-PCR to confirm the absence

of DNA in the samples.

Analysis of VP2 and VP7 expression by recombinant MVA
using Western blotting

26106 QT35 cells or ESF were mock infected or infected with

MVAVP2 or MVAVP7 (MOI of 3), and harvested at 24 h post-

infection. Cell lysates were prepared using 200 ml of ice-cold

solubilisation buffer [20 mM Tris-HCL, 150 mM NaCl, 1%

sodium deoxycholate, 1% Tergitol, 0.1%, SDS, 2 mM EDTA (all

supplied by Sigma-Aldrich), supplemented with protease inhibitors

(Roche, Mannheim, Germany) prior to use], centrifuged at

179006g for 15 minutes at 4uC, and the supernatants retained.

Lysates were mixed 1:1 with Laemmli sample buffer, heated at

95uC for 5 minutes, and separated by SDS-PAGE on 10%

polyacrylamide gels. The separated protein was transferred to

nitrocellulose, blocked overnight at 4uC with 0.05% Tween20/

phosphate buffered saline (PBS-T) supplemented with 5% bovine

serum albumin (Sigma-Aldrich) and 5% non-fat milk powder, prior

to immunodetection. Blots were probed with monoclonal antibodies

(mAb) 8BC2 and 10AB1 specific for VP2 and VP7 of AHSV-4

respectively [56,57] provided by INGENASA (Madrid, Spain).

Following extensive washing with PBS-T, membranes were

incubated with a goat anti-mouse horseradish peroxidase (HRP)-

conjugated secondary antibody (Dako, Glostrup, Denmark) diluted

1:1000 in blocking buffer, again washed thoroughly in PBS-T, and

bound antibodies visualised with an enhanced chemiluminescence

kit (Amersham Biosciences, Little Chalfont, UK). Protein separation

was visualized with rainbow pre-stained markers (Bio-Rad Labo-

ratories, Hemel Hempstead, UK) and biotinylated protein markers

(Bio-Rad Laboratories) were additionally used for marker-visual-

isation on ECL Hyperfilm (Amersham Biosciences).

Generation of recombinant baculoviruses expressing
AHSV proteins

A baculovirus expression system was used in order to obtain a

source of antigens for use in immunological assays. The VP2, VP7

and NS3 genes were PCR amplified with gene specific primers

containing restriction enzyme recognition sequences. The VP2 was

amplified using primers 59-CTTGAATTCGGACCATGGC-

GTCCGAGTTTGGAATATTG-39 and 59-GAAGAATTCCT-

TCCGTTTTTGCGAGTAACTTCG-39; VP7 was amplified with

primers 59-GTTCGCGGCCGCACCATGGACGCGATAGCAG-

CAAG-39 and 59-GTTCGCGGCCGCAATCTAGTGGTAGG-

CTGCTAG-39; and NS3 was amplified with 59-ATCGGATCCAC-

CATGAATCTAGCTG-39 and 59-ATATTCTCGAGTGCTT-

TCGCCATACT-39. In the case of VP2 and NS3 the genes were

antigenically tagged. The carboxyterminal V5 antigen tags were

generated by subcloning the PCR amplicons into the MCS site of

plasmid pcDNA6/V5-His C (Invitrogen) in frame with the tag

sequences. Subsequently the pcDNA6VP2 and pcDNA6NS3 were

digested with PmeI (New England Biolabs, Ipswich, UK) and the V5

tagged versions of VP2 and NS3 ligated into the MCS site of

pVL1393 (Invitrogen) downstream of the polyhedrin promoter. In

the case of VP7, the amplicon was digested directly with restriction

enzyme and cloned into the MCS site of pVL1393.

Recombinant baculoviruses were generated by homologous

recombination, according to manufacturer’s instructions, using

flashBAC (NextGen Sciences Ltd, Huntingdon, UK), a baculo-

virus circular DNA lacking part of the essential gene ORF1629.

Briefly, Sf9 cells seeded in EX-CELL 420 serum-free medium

(Sigma-Aldrich) were co-transfected with the baculovirus

pVL1393 shuttle vectors, Cellfectin (Invitrogen) and flashBAC

and incubated for 5 days at 28uC. Following the incubation period

the medium containing the seed stock of recombinant baculovirus

was harvested.

The recombinant baculoviruses, denoted as FBVP2-V5, FBVP7

and FBNS3-V5 were grown in Sf9 cells, cells pelleted by low speed

centrifugation and lysed in solubilisation buffer. This was used as

an antigen source in Western blots to analyse the antibody

responses of the vaccinated ponies.

Ponies, vaccination procedures and sampling
Six Welsh mountain ponies were divided into three groups of two

animals, each group being vaccinated with MVAVP2 (ponies 4256

& 5483), MVAVP7 (ponies 5859 & 5717) or MVANS3 (ponies 0758

& 0907). Vaccinations were performed by administering a dose of

108 plaque forming units (pfu) on days 0, 35 and 77, using a

combination of intramuscular and intradermal routes. Intradermal

vaccination was performed using a needle-less injection device

(Injex, Anaheim, USA). Serum samples were collected weekly

during the vaccination study for analysis of the antibody response.

All work involving experimental ponies was performed under a

Home Office Project Licence and had been approved by the

Animal Health Trust’s Ethical Review Committee.

Analysis of MVA-specific antibody responses by plaque
reduction neutralisation test (PRNT)

Anti-vaccinia MVA antibody responses were analysed in the

vaccinated animals by a plaque reduction neutralisation test.

Doubling dilutions of serum samples collected from the vaccinated

animals were made in 100 ml volume of serum-free growth

medium in triplicate wells of 96-well plates and incubated with

102 pfu/100 ml of MVANS3 for 2 hours at 37uC, 5% CO2. One

hundred microlitres of the sera-virus suspension was then added to

96-well plates containing pre-formed monolayers of QT35 cells.

After 2 hours incubation 100 ml of growth medium was added and

the plates incubated overnight at 37uC, 5% CO2. The following

day the medium was removed from the wells, the cells fixed with

0.5% glutaraldehyde (Sigma-Aldrich), washed twice with 2 mM

magnesium chloride (Sigma-Aldrich) in PBS and stained with an

X-gal sensitive stain (10 mM potassium ferricyanide/ferrocyanide,

0.02% Tergitol, 0.01% sodium deoxycholate, 0.5 mg/ml X-gal,

2 mM magnesium chloride in PBS). After 30 minutes incubation

at 37uC, the plates were washed again and the number of blue

plaques formed in each well was determined. Virus infectivity was

considered to be neutralised in each well when more than a 90%

reduction in the number of plaques was observed relative to the

positive control. Serum titres were calculated according to the

Karber formula [58], the highest serum dilution showing virus

neutralisation being considered as the end-point.

Analysis of AHSV-specific antibody responses by Western
blotting

An immunoprecipitation method was employed to obtain a

partially purified and concentrated source of VP2 or NS3 antigen,

respectively. Uninfected, FBVP2-V5 or FBNS3-V5-infected Sf9

cell lysates were immunoprecipitated with anti-V5 mAb. Lysates

were first pre-adsorbed against Protein G agarose (Calbiochem,

Darmstadt, Germany) and then mixed overnight at 4uC with

Protein G agarose and anti-V5 mAb (Invitrogen), according to the
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manufacturer’s guidelines. Samples were washed four times with

solubilisation buffer, then mixed 1:1 with 26 Laemmli sample

buffer. The immunoprecipitates were eluted from the protein G

agarose by heating at 85uC for 5 minutes. The antigen source for

VP7 consisted of partially purified VP7 crystals, generated using

previously described methods [59]. Immunoprecipitates of VP2

and NS3, and purified VP7 were separated by SDS-page on 10%

polyacrylamide gels, and Western blotting conducted as described

above.

Blots were probed with equine serum samples (1:100) or mAb to

VP2 (undiluted), VP7 (1:100), or anti-V5 antibody (1:5000),

diluted in blocking buffer. Equine sera labelled membranes were

probed with a goat anti-horse HRP-conjugated secondary

antibody diluted 1:10,000 in blocking buffer (Jackson ImmunoR-

esearch Laboratories, West Grove, USA).

Analysis of AHSV-VP2-specific antibody responses by
AHSV virus neutralisation test

Serum samples from the MVAVP2 vaccinates, AHSV seropos-

itive (positive control) and AHSV seronegative horses (negative

control) were heat inactivated for 30 minutes at 56uC, and serially

diluted in quadruplicate wells of a 96-well microtitre plates using

DMEM [Dulbecco modified minimum essential medium supple-

mented with 0.6% Penicillin/Streptomycin (all supplied by Sigma-

Aldrich)] as diluent. The serum dilutions were incubated with 100

TCID50 of AHSV serotype 4 at 37uC for 1 hour and then

overnight at 4uC. A virus titration in the absence of horse serum

was made to confirm that the virus dose per well was 100 TCID50.

The following day 26104 Vero cells in RPMI medium

supplemented with 0.6% Penicillin/Streptomycin, 0.6% L-gluta-

mine and 5% adult bovine serum (all supplied by Sigma-Aldrich),

were added to every well and the plates incubated for 3 days at

37uC, 5% CO2. The plates were checked for AHSV cytopathic

effect (cpe), with the end-point of the assay being taken as the

highest dilution that prevented AHSV cpe in the wells. Serum

titres were then calculated by the Karber formula [58].

Acknowledgments

Thanks are due Mr. F. Montesso, Equine Resources Manager (Animal

Health Trust), and his staff, for excellent care of the ponies.

Author Contributions

Conceived and designed the experiments: RSC ES PPCM BB NDP JLNW

JCO. Performed the experiments: RSC ES JCO. Analyzed the data: RSC

ES JCO. Contributed reagents/materials/analysis tools: SM SR PPCM

BB JCO. Wrote the paper: RSC BB JCO.

References

1. Mellor PS, Hamblin C (2004) African horse sickness. Vet Res 35: 445–466.

2. Meiswinkel R, Paweska JT (2003) Evidence for a new field Culicoides vector of
African horse sickness in South Africa. Prev Vet Med 60: 243–253.

3. Mellor PS (1994) Epizootiology and vectors of African horse sickness virus.

Comp Immunol Microbiol Infect Dis 17: 287–296.

4. Mellor PS, Boned J, Hamblin C, Graham S (1990) Isolations of African horse
sickness virus from vector insects made during the 1988 epizootic in Spain.

Epidemiol Infect 105: 447–454.

5. Mellor P, Capela R, Hamblin C, Hooghuis H, Mertens P, et al. (1994) African
Horse Sickness in Europe: Epidemiology. In: Nakajima H, Plowright W, eds.

Tokyo, 8–11 June 1994. R&W Publications (Newmarket) Ltd. pp 61–64.

6. Howell PG (1962) The isolation and identification of further antigenic types of

African Horsesickness virus. Onderstepoort Journal of Veterinary Research 29:
139–149.

7. Roy P, Mertens PP, Casal I (1994) African horse sickness virus structure. Comp

Immunol Microbiol Infect Dis 17: 243–273.

8. Burrage TG, Trevejo R, Stone-Marschat M, Laegreid WW (1993) Neutralizing
epitopes of African horsesickness virus serotype 4 are located on VP2. Virology

196: 799–803.

9. Ranz AI, Miguet JG, Anaya C, Venteo A, Cortes E, et al. (1992) Diagnostic
methods for African horsesickness virus using monoclonal antibodies to

structural and non-structural proteins. Vet Microbiol 33: 143–153.

10. Mellor PS, Boorman J (1995) The transmission and geographical spread of African
horse sickness and bluetongue viruses. Ann Trop Med Parasitol 89: 1–15.

11. Lubroth J (1988) African horse sickness and the epizootic in Spain 1987. Equine

Practice 10: 26–33.

12. Rodriguez M, Hooghuis H, Castano M (1992) African horse sickness in Spain.
Vet Microbiol 33: 129–142.

13. Sanchez-Vizcaino JM (2004) Control and eradication of African horse sickness

with vaccine. Dev Biol (Basel) 119: 255–258.

14. Van Dijk AA (1999) African Horse Sickness Vaccine Development. In:

Wernery U, Wade J, Mumford J, Kaaden O, eds. R&W Publications
(Newmarket) Ltd.

15. OIE (2005) Terrestrial Animal Health Code. OIE, http://www.oie.int/eng/

Normes/mcode/en_chapitre_2.5.14.htm#rubrique_peste_equine.

16. House JA (1998) Future international management of African horse sickness
vaccines. Arch Virol Suppl 14: 297–304.

17. Veronesi E, Hamblin C, Mellor PS (2005) Live attenuated bluetongue vaccine

viruses in Dorset Poll sheep, before and after passage in vector midges (Diptera:
Ceratopogonidae). Vaccine 23: 5509–5516.

18. House JA, Lombard M, Dubourget P, House C, Mebus CA (1994) Further

studies on the efficacy of an inactivated African horse sickness serotype 4
vaccine. Vaccine 12: 142–144.

19. House JA, Lombard M, House C, Dubourget P, Mebus CA Efficacy of an

inactivated vaccine for African Horse Sickness virus serotype 4; 1992; Paris,
France. 1991 (June 17–21) CRC Press, Inc, pp. 891–895.

20. Du Plessis DH, Van Wyngaardt W, Gerdes GH, Opperman E (1991)

Laboratory confirmation of African horsesickness in the western Cape:

application of a F(ab’)2-based indirect ELISA. Onderstepoort J Vet Res 58: 1–3.

21. Roy P, Bishop DH, Howard S, Aitchison H, Erasmus B (1996) Recombinant

baculovirus-synthesized African horsesickness virus (AHSV) outer-capsid protein
VP2 provides protection against virulent AHSV challenge. J Gen Virol 77(Pt 9):

2053–2057.

22. Kundig TM, Kalberer CP, Hengartner H, Zinkernagel RM (1993) Vaccination

with two different vaccinia recombinant viruses: long-term inhibition of
secondary vaccination. Vaccine 11: 1154–1158.

23. Rocha CD, Caetano BC, Machado AV, Bruna-Romero O (2004) Recombinant

viruses as tools to induce protective cellular immunity against infectious diseases.

Int Microbiol 7: 83–94.

24. Hanke T, Blanchard TJ, Schneider J, Hannan CM, Becker M, et al. (1998)

Enhancement of MHC class I-restricted peptide-specific T cell induction by a
DNA prime/MVA boost vaccination regime. Vaccine 16: 439–445.

25. Maclachlan NJ, Balasuriya UB, Davis NL, Collier M, Johnston RE, et al. (2007)

Experiences with new generation vaccines against equine viral arteritis, West

Nile disease and African horse sickness. Vaccine.

26. Drexler I, Staib C, Sutter G (2004) Modified vaccinia virus Ankara as antigen
delivery system: how can we best use its potential? Curr Opin Biotechnol 15:

506–512.

27. Brochier B, Boulanger D, Costy F, Pastoret PP (1994) Towards rabies

elimination in Belgium by fox vaccination using a vaccinia-rabies glycoprotein
recombinant virus. Vaccine 12: 1368–1371.

28. Stone-Marschat MA, Moss SR, Burrage TG, Barber ML, Roy P, et al. (1996)
Immunization with VP2 is sufficient for protection against lethal challenge with

African horsesickness virus Type 4. Virology 220: 219–222.

29. Sutter G, Moss B (1992) Nonreplicating vaccinia vector efficiently expresses

recombinant genes. Proc Natl Acad Sci U S A 89: 10847–10851.

30. Meyer H, Sutter G, Mayr A (1991) Mapping of deletions in the genome of the

highly attenuated vaccinia virus MVA and their influence on virulence. J Gen
Virol 72(Pt 5): 1031–1038.

31. Breathnach CC, Soboll G, Suresh M, Lunn DP (2005) Equine herpesvirus-1

infection induces IFN-gamma production by equine T lymphocyte subsets. Vet

Immunol Immunopathol 103: 207–215.

32. Breathnach CC, Rudersdorf R, Lunn DP (2004) Use of recombinant modified
vaccinia Ankara viral vectors for equine influenza vaccination. Vet Immunol

Immunopathol 98: 127–136.

33. Wade-Evans AM, Pullen L, Hamblin C, O’Hara R, Burroughs JN, et al. (1997)

African horsesickness virus VP7 sub-unit vaccine protects mice against a lethal,

heterologous serotype challenge. J Gen Virol 78(Pt 7): 1611–1616.

34. Bougrine SI, Fihri OF, Fehri MM (1998) Western immunoblotting as a method
for the detection of African horse sickness virus protein-specific antibodies:

differentiation between infected and vaccinated horses. Arch Virol Suppl 14:

329–336.

35. Laviada MD, Roy P, Sanchez-Vizcaino JM, Casal JI (1995) The use of African
horse sickness virus NS3 protein, expressed in bacteria, as a marker to

differentiate infected from vaccinated horses. Virus Res 38: 205–218.

36. Andrew M, Whiteley P, Janardhana V, Lobato Z, Gould A, et al. (1995) Antigen

specificity of the ovine cytotoxic T lymphocyte response to bluetongue virus. Vet
Immunol Immunopathol 47: 311–322.

AHSV Recombinant Vaccine

PLoS ONE | www.plosone.org 8 June 2009 | Volume 4 | Issue 6 | e5997



37. Janardhana V, Andrew ME, Lobato ZI, Coupar BE (1999) The ovine cytotoxic

T lymphocyte responses to bluetongue virus. Res Vet Sci 67: 213–221.
38. Gubbins S, Carpenter S, Baylis M, Wood JL, Mellor PS (2008) Assessing the risk

of bluetongue to UK livestock: uncertainty and sensitivity analyses of a

temperature-dependent model for the basic reproduction number. J R Soc
Interface 5: 363–371.

39. Purse BV, Mellor PS, Rogers DJ, Samuel AR, Mertens PP, et al. (2005) Climate
change and the recent emergence of bluetongue in Europe. Nat Rev Microbiol

3: 171–181.

40. Wittmann EJ, Baylis M (2000) Climate change: effects on culicoides–transmitted
viruses and implications for the UK. Vet J 160: 107–117.

41. Minke JM, Fischer L, Baudu P, Guigal PM, Sindle T, et al. (2006) Use of DNA
and recombinant canarypox viral (ALVAC) vectors for equine herpes virus

vaccination. Vet Immunol Immunopathol 111: 47–57.
42. Boone JD, Balasuriya UB, Karaca K, Audonnet JC, Yao J, et al. (2007)

Recombinant canarypox virus vaccine co-expressing genes encoding the VP2

and VP5 outer capsid proteins of bluetongue virus induces high level protection
in sheep. Vaccine 25: 672–678.

43. Minke JM, Toulemonde CE, Coupier H, Guigal PM, Dinic S, et al. (2007)
Efficacy of a canarypox-vectored recombinant vaccine expressing the hemag-

glutinin gene of equine influenza H3N8 virus in the protection of ponies from

viral challenge. Am J Vet Res 68: 213–219.
44. Poulet H, Minke J, Pardo MC, Juillard V, Nordgren B, et al. (2006)

Development and registration of recombinant veterinary vaccines The example
of the canarypox vector platform. Vaccine.

45. Breathnach CC, Clark HJ, Clark RC, Olsen CW, Townsend HG, et al. (2006)
Immunization with recombinant modified vaccinia Ankara (rMVA) constructs

encoding the HA or NP gene protects ponies from equine influenza virus

challenge. Vaccine 24: 1180–1190.
46. Zhang X, Cassis-Ghavami F, Eller M, Currier J, Slike BM, et al. (2007) Direct

comparison of antigen production and induction of apoptosis by canarypox
virus- and modified vaccinia virus ankara-human immunodeficiency virus

vaccine vectors. J Virol 81: 7022–7033.

47. Guirakhoo F, Catalan JA, Monath TP (1995) Adaptation of bluetongue virus in
mosquito cells results in overexpression of NS3 proteins and release of virus

particles. Arch Virol 140: 967–974.
48. Mertens PP, Brown F, Sangar DV (1984) Assignment of the genome segments of

bluetongue virus type 1 to the proteins which they encode. Virology 135:
207–217.

49. Rooney JF, Wohlenberg C, Cremer KJ, Moss B, Notkins AL (1988)

Immunization with a vaccinia virus recombinant expressing herpes simplex
virus type 1 glycoprotein D: long-term protection and effect of revaccination.

J Virol 62: 1530–1534.

50. Sharpe S, Polyanskaya N, Dennis M, Sutter G, Hanke T, et al. (2001) Induction
of simian immunodeficiency virus (SIV)-specific CTL in rhesus macaques by

vaccination with modified vaccinia virus Ankara expressing SIV transgenes:
influence of pre-existing anti-vector immunity. J Gen Virol 82: 2215–2223.

51. Abaitua F, Rodriguez JR, Garzon A, Rodriguez D, Esteban M (2006) Improving

recombinant MVA immune responses: Potentiation of the immune responses to
HIV-1 with MVA and DNA vectors expressing Env and the cytokines IL-12 and

IFN-gamma. Virus Res 116: 11–20.
52. McConkey SJ, Reece WH, Moorthy VS, Webster D, Dunachie S, et al. (2003)

Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by
recombinant modified vaccinia virus Ankara in humans. Nat Med 9: 729–735.

53. Mertens P, Attoui H (2007) Isolates of African horse sickness virus (AHSV) in the

dsRNA virus collection at IAH Pirbright. Institute for Animal Health, Pirbright.
http://www.iah.bbsrc.ac.uk/dsRNA_virus_proteins/ReoID/AHSV-isolates.

htm.
54. Maan S, Rao S, Maan NS, Anthony SJ, Attoui H, et al. (2007) Rapid cDNA

synthesis and sequencing techniques for the genetic study of bluetongue and

other dsRNA viruses. J Virol Methods 143: 132–139.
55. Chakrabarti S, Brechling K, Moss B (1985) Vaccinia virus expression vector:

coexpression of beta-galactosidase provides visual screening of recombinant virus
plaques. Mol Cell Biol 5: 3403–3409.

56. Martinez-Torrecuadrada JL, Diaz-Laviada M, Roy P, Sanchez C, Vela C, et al.
(1996) Full protection against African horsesickness (AHS) in horses induced by

baculovirus-derived AHS virus serotype 4 VP2, VP5 and VP7. J Gen Virol 77(Pt

6): 1211–1221.
57. Martinez-Torrecuadrada JL, Diaz-Laviada M, Roy P, Sanchez C, Vela C, et al.

(1997) Serologic markers in early stages of African horse sickness virus infection.
J Clin Microbiol 35: 531–535.

58. Karber G (1931) Beitrag zur kollektiven Behandlung pharmakologischer

Reihenversuche. Naunyn-Schmiedebergs Archiv fur experimentale Pathologie
and Pharmacologie. pp 480–483.

59. Maree S, Paweska JT (2005) Preparation of recombinant African horse sickness
virus VP7 antigen via a simple method and validation of a VP7-based indirect

ELISA for the detection of group-specific IgG antibodies in horse sera. J Virol
Methods 125: 55–65.

AHSV Recombinant Vaccine

PLoS ONE | www.plosone.org 9 June 2009 | Volume 4 | Issue 6 | e5997


