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Abstract

Based on theoretical reasoning it has been suggested that the reliability of findings published in the scientific literature
decreases with the popularity of a research field. Here we provide empirical support for this prediction. We evaluate
published statements on protein interactions with data from high-throughput experiments. We find evidence for two
distinctive effects. First, with increasing popularity of the interaction partners, individual statements in the literature become
more erroneous. Second, the overall evidence on an interaction becomes increasingly distorted by multiple independent
testing. We therefore argue that for increasing the reliability of research it is essential to assess the negative effects of
popularity and develop approaches to diminish these effects.
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Introduction

Even if conducted at best possible practice, scientific research is

never entirely free of errors. When testing scientific hypotheses,

statistical errors inevitably lead to false findings. Results from

scientific studies may occasionally support a hypothesis that is

actually not true, or may fail to provide evidence for a true

hypothesis. The probability at which a hypothesis is true after a

certain result has been obtained (posterior probability) depends on

the probabilities at which these two types of errors arise.

Therefore, error probabilities, such as p-values, traditionally play

a predominant role for evaluating and publishing research

findings. The posterior probability of a hypothesis, however, also

depends on its prior probability. Positive findings on unlikely

hypotheses are more likely false positives than positive findings on

likely hypotheses. Thus, not only high error rates, but also low

priors of the tested hypotheses increase the frequency of false

findings in the scientific literature [1,2].

In this context, a high popularity of research topics has been

argued to have a detrimental effect on the reliability of published

research findings [2]. Two distinctive mechanisms have been

suggested: First, in highly competitive fields there might be

stronger incentives to ‘‘manufacture’’ positive results by, for

example, modifying data or statistical tests until formal statistical

significance is obtained [2]. This leads to inflated error rates for

individual findings: actual error probabilities are larger than those

given in the publications. We refer to this mechanism as ‘‘inflated

error effect’’. The second effect results from multiple independent

testing of the same hypotheses by competing research groups. The

more often a hypothesis is tested, the more likely a positive result is

obtained and published even if the hypothesis is false. Multiple

independent testing increases the fraction of false hypotheses

among those hypotheses that are supported by at least one positive

result. Thereby it distorts the overall picture of evidence. We refer

to this mechanism as ‘‘multiple testing effect’’. Putting it simple,

this effect means that in hot research fields one can expect to find

some positive finding for almost any claim, while this is not the

case in research fields with little competition [1,2].

The potential presence of these two effects has raised concerns

about the reliability of published findings in those research fields

that are characterized by error-prone tests, low priors of tested

hypotheses and considerable competition. It is therefore important

to analyze empirical data to quantify how strong the predicted

effects actually influence scientific research.

Here, we assess a large set of published statements on protein

interactions in yeast (S. cerevisiae) with data from recent high-

throughput experiments. Published statements on protein interac-

tions are obtained from data stored in publication databases. We

analyze whether there is a relation between the reliability of published

interactions and the popularity of the interaction partners. In our

analysis, individual literature statements on interactions are treated as

results from individual studies, while the presence of an interaction is

considered as a testable hypothesis. Several statements in the

literature may, for example, indicate that there is an interaction

between protein A and B. Whether this interaction really exists is a

hypothesis that might be either true or false.

Datasets
A considerable part of publications in molecular biology and

related research fields investigate protein interactions because they

are important to understanding the relation between the genotype

of an organism, its environment, and its phenotype. Typically,

these publications focus on simple systems consisting of a few

proteins that together fulfill a specific function, and report
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interactions as inferred from small-scale experiments. Published

statements from such small-scale experiments can be obtained

with text mining approaches, or can be inferred by experts from

scientific publications. Our study is based on both text mined and

expert curated data. We use the text mining system iHOP to

identify published interactions between proteins and genes in titles

and abstracts from the PubMed database. A detailed description of

iHOP has been given earlier [3,4]. For yeast we obtain more than

60,000 published statements on more than 30,000 unique

interactions.

Expert-curated data from IntAct [5] and DIP [6,7] are used as

an additional source for published statements on protein

interactions. DIP and IntAct are leading databases for protein

interactions that contain expert-curated interactions from the

literature and results from high-throughput experiments. To

exclude data from high-throughput experiments and only include

expert-curated interactions from small-scale experiments we only

use those DIP and IntAct interactions that come from experiments

with less than 100 interactions per publication. The resulting

expert-curated set contains more than 6,000 statements on more

than 4,000 interactions.

These published statements on protein interactions can be

evaluated using data from recent high-throughput techniques. We

use datasets from yeast-two-hybrid experiments (Y2H [8,9]; 2,981

interactions), high-throughput mass spectroscopy (HMS [10];

16,896 interactions), tandem affinity purification (TAP [11];

25,616 interactions), and a recently published approach that

combines mass-spectroscopy and affinity purification (COM [12];

67,284 interactions). These high-throughput techniques have been

shown to be highly informative, although they are not free of

errors and biases either [13]. In fact, error rates are likely much

higher for high-throughput experiments than for well-performed

small-scale experiments. High-throughput experiments, however,

test nearly all interactions simultaneously, and their error-rates do

not depend on the popularity of individual proteins. Therefore

they are not influenced by the ‘‘multiple testing effect’’ or the

‘‘inflated error effect’’, and are highly suitable for detecting both

effects. Data from high-throughput experiments are obtained from

the IntAct database [5]. For protein complexes with more than

two interaction partners we use all pair-wise interactions for

comparison of different datasets, as has been done in previous

studies [13].

The popularity of a protein, or the corresponding gene, can be

estimated by the frequency at which it appears in the literature.

Previous studies show that there are large differences in the

frequencies of proteins in the literature [14,15]. This makes data

on protein interaction ideal to study popularity effects in published

research.

Results

About 17% of the individual statements from the unfiltered

iHOP dataset are confirmed by at least one of the high-throughput

techniques. This appears to be relatively small. However, it has to

be considered that some types of interactions, such as protein-

promoter interactions, genetic linkage or epistatis, are frequently

described in scientific publications but cannot be obtained with the

current high-throughput experiments. Moreover, the overlap is

much higher than random (,1%), which suggests that high-

throughput techniques are sufficiently informative to generate a

relative reliability measure for published interactions. For the

expert-curated data from DIP and IntAct which specifically target

protein interactions, confirmation is about 46%. This is higher

than for the iHOP set, but on the other hand iHOP contains about

ten times more published statements than IntAct and DIP.

While for most interactions there is only one statement in

PubMed, some interactions appear several times. For yeast, the

most frequent interaction described in the literature is between

actin (ACT1) and myosin (MYO1), and is stated about 100 times.

Fig. 1A shows that interactions that are described often in the

literature tend to be confirmed more frequently by high-

throughput experiments. Interactions that appear less than three

times are confirmed at a probability of 8%, while interactions that

Figure 1. Relation between the frequency of interactions in the literature and the fraction of interactions confirmed by high-
throughput techniques. Interactions that are described frequently in the literature tend to be confirmed more frequently. Because one would
expect that interactions are more reliable if they are repeated often in the literature, this finding indicates that a comparison with high-throughput
experiments is suitable for evaluating published interactions. B. Relation between the frequencies of the interaction partners in the literature and the
fraction of confirmed interactions. Published interactions are obtained from text mining approaches (iHOP) and from expert-curated data (DIP and
IntAct). For both datasets, the probability that an interaction is confirmed by a high-throughput experiment decreases with increasing popularity of
the interaction partners. Bold lines code for the fraction of published interactions confirmed by at least one experimental technique, thin lines code
for confirmation by at least two techniques. Thus, while interactions that are frequent in the literature tend to be more reliable (Fig. 1A), interactions
of proteins that are frequent in the literature tend to be less reliable. C. Popularity of interaction partners vs. fraction of confirmed iHOP interactions
for different experimental techniques. The negative correlation between the probability of experimental confirmation and popularity of the
interaction partners is present for all different experimental techniques.
doi:10.1371/journal.pone.0005996.g001

Popularity vs. Reliability
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are repeated more than 50 times are confirmed at a probability of

up to 40%. This result illustrates that the overlap with high-

throughput data is indeed a good indicator for the reliability of

published interactions, since interactions that are repeated many

times in the literature can be expected to be more reliable. It also

shows that even for interactions that are very frequent in the

literature, the majority is still not confirmed by high-throughput

experiments which might be because high-throughput experiments

do not capture all types of interactions described in the literature

(see above).

Popularity vs. reliability of protein interactions
Based on these datasets we investigate how the popularity of a

protein relates to the reliability of its interactions described in the

literature. To study the ‘‘inflated error effect’’, we analyze the

relation between the reliability of individual literature statements

and popularity. We assume that the probability wij for a literature

statement to be confirmed by at least one of the high-throughput

experiments depends on the frequency Pi and Pj of the interaction

partners in the literature. Using a logistic regression on the model

ln(wij/(12wij)) = a+b ln(PiPj), we observe a highly significant

negative correlation between confirmation probability wij and

log-transformed popularities of the interaction partners

(a = 21.4160.04; b = 20.02060.005, p = 4.8*1025; N = 62,864

statements). A similar result is obtained when using individual

statements from DIP and Intact (a = 0.3960.09, b = 20.0860.01,

p = 4*10211; N = 6,494 statements). Thus we conclude that

individual literature statements on interactions are less reliable

for more popular genes.

To quantify how popularity influences reliability through the

‘‘multiple testing effect’’, we use a similar approach. We assume that

the probability wij that an interaction that appears at least once in the

literature is confirmed by at least one high-throughput experiments

depends on the frequency Pi and Pj of the interaction partners in the

literature. We observe a negative correlation between confirmation

probability wij and log-transformed popularities of the interaction

partners (a = 20.6960.07, p,2.2*10216; b = 20.2060.01,

p,2.2*10216; N = 30,446 interactions). Thus, there is very strong

evidence for the ‘‘multiple testing effect’’. Interactions of highly

popular proteins tend to be confirmed by high-throughput

experiments at much lower frequency than interactions of un-

popular proteins (see Fig. 1B). This relation is also present when

expert-curated interactions from DIP and IntAct are evaluated

instead of iHOP interactions (Fig. 1B), and when iHOP interactions

are assessed by different experimental techniques individually

(Fig. 1C). Given that different experimental techniques are

influenced by different technical biases, and expert-curated

interactions have different methodological problems than text

mining approaches, it is unlikely that the observed relation between

reliability and popularity is driven by confounding factors.

Discussion

The reliability of research is typically investigated by meta-

analyses that synthesize data from published studies on the same set

of questions. Such meta-studies depend on the manual assessment of

statistical details from each study, which limits this approach to a

few hundred studies. In contrast to traditional meta-studies, our

approach is based on massive data from publication databases and

data mining. Although it cannot incorporate statistical details from

individual publications, it allows us to examine a very large data set

with ten thousands of statements from the scientific literature. We

believe that such an approach is an important and innovative

complement to more traditional methods.

Our approach allows us to provide evidence for two effects of a

high popularity on the reliability of research. First, we find that

individual results on yeast protein interactions as published in the

literature become less reliable with increasing popularity of the

interacting proteins (inflated error effect). This is disquieting

because one plausible possibility to explain this effect is

‘‘significance seeking’’. Second, we find evidence for a negative

effect of a high popularity due to multiple independent testing.

Interactions that are obtained at least once in the literature are less

likely confirmed by high-throughput experiments if the interaction

partners are more popular. The second effect is about 10 times

larger than the first one.

Based on our approach, it is difficult to distinguish between false

positives and true positives of little relevance. It is likely that for

popular genes with many interaction partners, not all interactions

are of equal relevance. Some interactions may, for example, be

only relevant under specific experimental conditions and therefore

do not show up in high-throughput experiments. Thus, part of the

negative relation between popularity and reliability might be

driven by a negative relation between popularity and relevance.

Nevertheless, the observed decrease of about 50% in the

confirmation probability for interactions of popular proteins

indicates that the effects of competition and multiple independent

testing on the reliability of research cannot be neglected. When

interpreting results, the popularity of a research topic has to be

taken into account. This will require increased efforts to determine

how much research is performed on which hypotheses, and how

this information can be incorporated into the synthesis of research.

Counteracting the formation of scientific ‘‘hypes’’ might

diminish some of the problems that result from a high popularity

of research topics. For instance, some of the funding available in

scientific research could be specifically directed towards promising

projects on topics of currently low popularity. The current

dynamics of scientific research, however, seems to favor a certain

degree of herding [15,16]. Therefore, mechanisms, which translate

a high popularity into a high reliability, must be facilitated.

More emphasize could be given to either pre or post publication

evaluation. The current model of pre publication peer review,

however, can hardly be intensified. Post publication evaluation, on

the other hand, shows a promising potential to increase the

reliability of scientific knowledge. A recent study, for example,

indicates that flaws in scientific publications are more likely detected

post publication if they appear in high impact journals [17].

The interactive web or Web 2.0 provides the means to formalize

and facilitate post publication evaluation involving larger parts of

the scientific community. In our opinion, collaborative systems

such as wikis are particularly noteworthy applications [18–20].

Because wikis for scientific content are relatively novel, data are

not yet available to examine their performance in improving the

reliability of scientific knowledge. However, in domains outside of

science, wikis have proven their capabilities to reliably disseminate

knowledge [18]. In the context of post publication evaluation,

wikis with unambiguous authorship attribution [19] could

integrate community review activity directly into improved

versions of publications instead of relying on journals to publish

errata. In addition, the low effort required for publishing in wikis

might help to make negative findings more visible and thereby

reduce the impact of false positives that result, for example, from

multiple independent testing.
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