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Abstract

Background: One of the challenges in exploiting high throughput measurement techniques such as microarrays is the
conversion of the vast amounts of data obtained into relevant knowledge. Of particular importance is the identification of
the intrinsic response of a transcriptional experiment and the characterization of the underlying dynamics.

Methodology and Findings: The proposed algorithm seeks to provide the researcher a summary as to various aspects relating
to the dynamic progression of a biological system, rather than that of individual genes. The approach is based on the
identification of smaller number of expression motifs that define the transcriptional state of the system which quantifies the
deviation of the cellular response from a control state in the presence of an external perturbation. The approach is
demonstrated with a number of data sets including a synthetic base case and four animal studies. The synthetic dataset will be
used to establish the response of the algorithm on a ‘‘null’’ dataset, whereas the four different experimental datasets represent
a spectrum of possible time course experiments in terms of the degree of perturbation associated with the experiment as well
as representing a wide range of temporal sampling strategies. This wide range of experimental datasets will thus allow us to
explore the performance of the proposed algorithm and determine its ability identify relevant information.

Conclusions and Significance: In this work, we present a computational approach which operates on high throughput
temporal gene expression data to assess the information content of the experiment, identify dynamic markers of important
processes associated with the experimental perturbation, and summarize in a concise manner the evolution of the system
over time with respect to the experimental perturbation.
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Introduction

With the advent of microarray technologies for measuring

genome-scale transcriptional responses, there has been a renewed

interest in using computational methodologies to study systemic

responses [1]. The main motivation behind these approaches is

that while the expression levels of thousands of genes have been

measured, there exists a smaller subset which is representative of

the underlying phenomenon being investigated. Thus the primary

difference between the various algorithms that have been proposed

lies in their individual hypotheses as to what comprises an

informative feature of the data, i.e. a characteristic which can be

used to give insight into the importance of a given gene.

Commonly used methods such as ANOVA [2], t-test [3], and

SAM [4] assume that genes which show changes in gene

expression, across conditions or relative to a control state are

relevant, with the difference between the algorithms dependent

upon their associated definition of differential expression.

For deciphering the dynamics of biological responses, temporal

gene expression experiments record transcriptional changes over

time with the goal of establishing a broader range of co-expression

characteristics [5]. It is hypothesized that temporally varying

signals can provide valuable insight into the progression of the

biological system in response to an external perturbation. In light

of this kind of data, it is hypothesized that utilizing only differential

expression may ignore a great deal of information present within a

given temporal gene expression dataset. As such, a number of

powerful methods have emerged that evaluate the presence of

over-populated clusters composed of genes characterized by

similar temporal profiles.[6,7,8,9].

In this paper we hypothesize that an emergent relation between

genes may be an important feature denoting biological relevance of a

gene by being part of a coherent response. This hypothesis arises from

a basic concept of systems biology in which the response of an

organism to an external stimulus is made up of the synchronized

response of a group of genes [10]. To further explore this hypothesis,

we have formulated an algorithm which takes the coordination

between different genes into account. In addition to the set of selected

genes characterized as informative, we hypothesize that the

coordination between different genes and clusters can yield

information as to the overall response of the system and whether

the system has undergone significant experimental perturbations,
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thus indicating whether the experimental result has been successful in

capturing an underlying perturbation.

In this paper we extend the analysis earlier presented in [11] by

demonstrating how to address three critical questions: (i) does the

systemic response exhibit a characteristic underlying dynamic? (ii)

what are the temporal properties of the inferred dynamic? (iii) is

there a minimal set of transcriptional responses that underlie the

emergence of the complex cellular dynamic? The last question is a

potentially critical one as it can allow, through a reductionist

approach, the identification of the minimal complexity that drives

a host’s response to an external perturbation. The latter is a

concept that is attracting ever increasing interest [12]. We

demonstrate the approach through the analysis of five datasets, a

synthetic set to be used as the negative control and four case

studies.

Results

We provide first a short overview of the approach so that the

reader can follow the discussion without delving into the

algorithmic details which will be extensively discussed in later

parts of the manuscript. The algorithm is an integrative clustering

and selection algorithm. Rather than selecting genes based upon

differential expression, the algorithm selects patterns (motifs)

within the data based upon the over-representation of that specific

pattern and its contribution to the overall response of the system.

The proposed algorithm consisted of two primary steps: (i) a fine

grained clustering algorithm to identify an extensive list of putative

clusters, and (ii) a selection operation to determine which of the

clusters are representative of the underlying response. The fine-

grained clustering, based on a symbolic transformation, allows for

the identification of a large number of possible expression motifs.

A selection process which follows allows for the selection of the

subset of most critical and characteristic responses. The combi-

natorial selection of the informative subset of expression motifs will

be performed using a greedy and/or a global method. We have

identified two metrics for quantifying deviations from homeostasis:

a global metric, denoted by D, and a time dependent, termed the

Transcription State denoted by D(t). Our underlying hypothesis is

that only informative motifs should contribute to deviations in the

metrics from homeostasis.

Selection of Informative Motifs
Circadian. In the case of the circadian dataset, the

application of the greedy selection (Figure 1a) demonstrates

that the incorporation of additional motifs past a certain

maximum (24) does not introduce any new information as

indicated by the decrease in the transcriptional state. Associated

with this maximum in the transcriptional state, max(D(t)), is the

plot for the transcriptional state D(t) (Figure 1b) vs. time as well

as the twenty-four clusters associated with the selection

(Figure 1c). In (Figure 1b), we are plotting the deviation of

the set of informative genes from the control state at time 0. The

interesting feature of this plot is that the transcriptional state

appears to change in a periodic manner with period spikes present

at 12 and 36 hours, accounting for a 24 hour periodicity within

the data. Thus, while the proposed algorithm has utilized no

specific information about the periodicity of the data, it was still

possible to discern the underlying pattern within the data. This is

in contrast to the original analysis utilizing the Lomb-Scargle

algorithm which assumes periodicity. The motifs which were

selected by the algorithm are presented in (Figure 1c). While not

all of the selected clusters have a clear 24 hour periodicity, the

majority of the clusters do have a 24 hour oscillatory behavior.

Acute Administration of Corticosteroids. In the case of

the acute administration of corticosteroids the maximum deviation

of the transcriptional state occurs at some intermediate level

(Figure 2a). Beyond this point, as more motifs are added, there is

a decrease in deviation exhibited by the transcriptional state. In a

similar fashion to the circadian dataset, this decrease in the value

of the transcriptional state is associated with the incorporation of

motifs which are either very similar to ones that have already been

added and thus add no information, or are sparsely populated and

thus not significant. The progression of the transcriptional state of

the acute corticosteroid dataset shown in Figure 2b, comparing

the greedy and optimal section as well, and is comprised of a

deviation away from the baseline as the drug is injected into the

system and activates the transcriptional machinery, and a return

back to baseline as the drug is cleared from the system. This

overall systemic response is similar to the response predicted via

the indirect effect model [13]. This suggests that this

transcriptional state is an accurate surrogate to describe the

systemic activity of the drug. The 212 genes divided into 3 clusters

that are associated with this transcriptional state are given in

Figure 2c and 2d for the greedy and optimal respectively, and

interestingly enough the extracted genes essentially follow the

same profile with a deviation away from the baseline state and

then a return back to the original baseline state.

Chronic Administration of Corticosteroids. Under a

chronic administration of corticosteroids, we identify a similar

level of over-representation in the population dynamics as in the

acute administration of corticosteroids. However, while the level of

correlation associated with this dataset is not as low as that of the

acute corticosteroid dataset, it is evident that there exists a subset

of motifs that do show a significantly non-exponential

characteristic. During the greedy selection process, we see a

response which is qualitatively similar to that of the acute

corticosteroid case as well as the circadian dataset in which a

maximum is reached at an intermediate number of clusters (4),

after which there is a decline, Figure 3a. Again, there is a visible

increase in the deviation away from the baseline state as more

clusters are added rather than a strict decrease. Therefore, this

dataset illustrates both a significant perturbation to the system as

well being informative. Running the greedy selection upon this

dataset yielded four different motifs with 67 probe sets associated

with them (Figure 3c). These motifs follow two distinct patterns.

The first pattern is an initial deviation away from the baseline

state, and a return back to baseline, whereas the second motif

represents a sustained up-regulated response. This response is

unusual because it is different from those observed under the acute

case where there all of the profiles had similar characteristics albeit

the profiles were anti-correlated with a few being up-regulated and

the others being down-regulated. With chronic administration, it

appears that the responses are very different because one of the

profiles shows diminished response despite a sustained input of

corticosteroids, whereas other profiles show a sustained response

due to the infusion.

The transcriptional state for this drug administration shows a

similar dynamic, in which there is an initial deviation, and a slight

return to baseline, before a second sustained response takes over

Figure 3b. This response mimics the response that is associated

with sustained corticosteroid administration in which there are some

phenomenon which are transient such as the immuno-suppressive

effect of corticosteroids [14], whereas, although not exclusively, the

metabolic side effects such as muscle wasting appear to be sustained.

Filtering the dataset for over-represented motifs led to a reduction

from 177147 possible motifs to 26 over-populated motifs. From

these 26 over-populated motifs 3 were selected as encompassing the

Transcriptional Dynamics
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optimal set of responses that best describe the dynamics of the

system. The optimal selection identified motifs which showed

sustained activation as well as a short-term response followed by

return to baseline exemplifying a tolerance mechanism associated

with corticosteroids [15]. Likewise the transcriptional state associ-

ated with this set of motifs Figure 3b (solid) appears to show a

more pronounced two-stage effect in which there is an initial

deviation away from homeostasis, a slight return, after which a

secondary effect takes over. Thus, the small decrease that was

evident in the greedy selection was not an artifact of the data, but

rather some intrinsic event.

Burn Injury. The burn injury dataset (GDS599) yielded 4

clusters with 281 probes under the greedy selection (Figure 4c)
and 5 clusters with 307 genes under the optimal selection

(Figure 4d). The global dynamics exhibits a two-wave response

(Figure 4b) consistent with the notion of genetic reprogramming

as previously documented in vivo and in vitro [16,17]. As with the

other datasets, under the greedy selection, we find that there is an

intermediate number of clusters which yield a maximum deviation

in the transcriptional state, after which the inclusion of additional

clusters appears to diminish the appearance of the change between

the different states (Figure 4a). The optimal selection was

conducted upon a subset of 10 clusters all of which had at least 49

genes within them.

The profiles associated with the four clusters can be described as

an early up-regulation event which returns back to a different

state, two bi-phasic responses which contain genes which spike at

two different time points, and finally a late up-regulatory event. In

contrast to the result of the greedy selection, the optimal selection

shows a clear progression in the activation of different genes. In

the optimal selection, our first cluster shows a similar bi-phasic

response as was selected under the greedy selection, whereas our

other clusters essentially show spikes at different time points, which

indicate a cascade of events occurring in sequence, with spikes

occurring at different time points indicating a short period of time

when specific stages in a particular cascade are active. Unlike the

corticosteroid datasets, the optimal selection vs. the greedy

selection yielded some clusters which were qualitatively different,

specifically, the appearance of the gene expression profiles which

spiked at different time points.

Figure 1. a) The transcriptional state as a function of the number of clusters selected for the circadian dataset. Unlike the null synthetic dataset, there
is a maximum at an intermediate number of clusters thus signifying the incorporation of important information. b) the transcriptional state over time
associated with the greedy selection. This response suggests a periodic circadian characteristic which is in agreement with the underlying data. c).
The 24 clusters that were selected as informative genes. The selection of clusters which do not exhibit 24 hour periodicity may be due to the
suboptimal greedy selection.
doi:10.1371/journal.pone.0005992.g001
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However, through the examination of the transcriptional state,

we are able to draw a link between the two results. It is observed

that the burn injury appears to have an initial deviation as the

organism responds to the original stimulus. Then after the

cessation of the initial response of the system, there is a slight

return to the baseline at hour four. However, in both cases, there is

a massive secondary event which occurs that drives the system

either to a new steady state as suggested in the case of the optimal

selection, or uncontrollably in the case of the greedy selection.

Therefore, while the transcriptional state of the system from hours

0-8 appears to be consistent, the final response at 24 hours appears

to be different. Because of the inconsistencies of the burn dataset,

numerous questions arise, specifically whether the inconsistencies

between the two different selection methods represent an artifact

within the algorithm itself, or whether there is some relationship

between the two different results, which if resolvable may be more

indicative of the underlying biological response, as well as aid in

understanding the nature of the differences between the selection

techniques.

Discussion

The micro-clustering performed has allowed us to identify a

large family of clusters. Depending on the nature of the data

sets, we expect (Figure 5) an over-representation of certain

cluster sizes which are indicative of coordinated responses that

cannot be solely explained by random events. When evaluating

the population dynamics of the different datasets, it was

observed that the circadian dataset showed a population

distribution very similar to that of the null dataset. However,

when performing the greedy selection on the null dataset

(Figure 6) and the circadian dataset (Figure 1), we can see a

clear difference between the progression of the transcriptional

state of the null dataset and that of the circadian dataset. For the

null dataset (Figure 6) we see that the maximum deviation

from the baseline occurs when a single cluster has been added.

The incorporation of additional clusters on the other hand serves

to decrease the deviation in the transcriptional state. Thus, it

appears that the incorporation of additional patterns into an

Figure 2. a) The transcriptional state as a function of the number of clusters selected for the acute corticosteroid dataset. Unlike the null synthetic
dataset, there is a maximum at an intermediate number of clusters thus signifying the incorporation of important information. b) the dynamics of the
transcriptional state over time for the two methods for selection. In this graph, it is clear that the overall characteristics of the dynamics do not
change. However, the dynamics associated with the optimal selection is much greater than that of the greedy selection. c) the three clusters
assoicated with the greedy selection. All of these clusters appear to have a similar deviation away from baseline and a return back to baseline. d) the
optimal selection yields qualitatively similar profiles despite the fact that there is no overlap between the two sets. In this case as in the greedy
selection, there is a deviation away from baseline and a return back to baseline.
doi:10.1371/journal.pone.0005992.g002
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informative set only serves to add ‘‘noise’’ into the system rather

than the incorporation of additional information. Therefore,

despite the fact that the population dynamics between the

circadian dataset and the null dataset appear similar, this does

not discount the fact that significant coordination between the

different clusters exist.

Optimal Selection. One of the difficulties associated with the

optimal selection of motifs lies in the combinatorial nature of the

problem. Thus, even after eliminating the large number of motifs

via their population, the combinatorial problem is not eliminated,

only mitigated. Adding to this issue is the fact that the problem

must be solved parametrically. Currently, we perform an

exhaustive search on all possible combinations of m optimal

motifs from a base population of M. For the burn dataset, there

were only 10 motifs which were over-represented. Thus,

parametrically exploring all possible cluster sizes was possible.

However, for the two corticosteroid datasets this was not the case.

In both of the corticosteroid datasets, we solved the problem

parametrically for m,7. By plotting the progression of the

cumulative transcriptional state for the burn dataset (Figure 7)

we see a simple trend, where a maximum is reached at an

intermediate number of clusters, and then there is a smooth

decline after this point has been reached. For the two

corticosteroid datasets, a similar response is observed, with an

intermediate number of clusters reached before the incorporation

of additional clusters decreases the expense metric. From the

response of the burn dataset as well as the response of the two

corticosteroid datasets, we hypothesize that the maximum number

of informative motifs has indeed been obtained. After the

maximum deviation has been reached, we hypothesize that

there is a smooth reduction in the aggregate transcriptional state

due to the addition of similar gene expression profiles. This is seen

in the greedy selection as well, in which after a certain point, we

see a consistent decline in transcriptional state. In an alternative

strategy, we look at the performance of the greedy selection and

observe where the globally optimal motifs lie. In Figure 8, the

clusters that have been optimally selected have been associated

with the cluster vs. transcriptional state plot from the greedy

selection algorithm. The arrows in Figure 8 indicate the point at

which a cluster which was selected under the optimal selection was

Figure 3. a) The transcriptional state as a function of the number of clusters selected for the chronic corticosteroid dataset. Unlike the null synthetic
dataset, there is a maximum at an intermediate number of clusters thus signifying the incorporation of important information. b) the dynamics of the
transcriptional state over time for the two methods for selection. What is evident is that not does the transcriptional state show a larger deviation, but
the two wave effect is also more pronounced when utilizing the optimal selection. c) the four clusters associated with the greedy selection. There
seems to be two distinct profiles associated with these clusters consistent of a transient regulation and a sustained response that is active after an
initial delay d) the optimal selection yields 3 similar profiles.
doi:10.1371/journal.pone.0005992.g003
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selected via greedy selection. The interesting trend which we see is

that the clusters that are identified via the optimal selection are

usually located around local maxima associated with the greedy

selection. We hypothesize that during the greedy selection strategy,

motifs that are similar in shape decrease the overall value of the

transcriptional state because no new information is being

incorporated, whereas the introduction of a new pattern will

cause a significant increase in the transcriptional state. Therefore,

there appears to be a direct link between the dynamics of the

cluster vs. transcriptional state plot and the location of

representative patterns. Furthermore, it appears that the optimal

selection directly selects for a set of ‘‘representative’’ patterns

within the data, due to their correspondence with the local

maxima.

One issue of concern for us is the reliance upon over-

represented motifs when conducting the optimal selection.

Because we are using an exhaustive enumeration of motifs, it is

critical for us to identify a subset of possibility meaningful motifs.

However, in the case of the circadian dataset, we are unable to

identify over-represented motifs, and would thus have to run it

upon all of motifs in the dataset. This combinatorial problem has

not been addressed in the current algorithm, but can be addressed

by more complex heuristics that can be implemented in the future.

The proposed algorithm represents a different method for

processing high throughput temporal gene expression data. Rather

than assessing the importance of a single gene on a case by case

basis, we instead propose examining the importance of a specific

pattern. Furthermore, the importance of this pattern is evaluated

within the context of its contribution to an inherent underlying

dynamic which is not known a priori. Associated with this

underlying dynamic, are dynamic signals whose activity show

important correlations with the underlying phenomena being

investigated. In the corticosteroid datasets, the dynamic response

under the acute case mimicked the response predicted by the

indirect effect model in which the dynamic showed a time lag

before the maximal activity was reached, and a decline as the drug

Figure 4. a) The transcriptional state as a function of the number of clusters selected for the burn dataset. Unlike the null synthetic dataset, there is a
maximum at an intermediate number of clusters thus signifying the incorporation of important information. b) the dynamics of the transcriptional
state over time for the two methods for selection. What is evident is that not does the transcriptional state show a larger deviation, but the two wave
effect is also more pronounced when utilizing the optimal selection. c) the three clusters associated with the greedy selection. In the greedy selection
there appears to be a two wave effect. d) unlike in the previous datasets, there is a significant difference in the response from the optimal selection
vs. that of the greedy selection. Under the optimal response, there appears to be a two wave response, as well as four distinct activation events at
four different time points which may represent the activity of a cascade of signaling events in response to a significant thermal injury.
doi:10.1371/journal.pone.0005992.g004
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was cleared from the system. In the chronic corticosteroid case, we

saw profiles that corresponded well with the observations that

some corticosteroid responsive phenomena were transient exhib-

iting a significant tolerance mechanism, whereas other corticoste-

roid responsive phenomena such as muscle wasting was sustained.

Finally in the case of the burn dataset, our profiles appeared to

illustrate the impact of a signaling cascade with significant genes

turning on and off in sequence, signaling the short-term

progression of pathways the organisms uses to respond to the

severe injury.

Materials and Methods

Gene Expression Data
We have structured a compendium of transcriptional responses

in order to elucidate the insights of the overall approach. A

Figure 5. A plot indicating the number of clusters with a given size. In this plot, a) The Random dataset exhibits a high correlation with the
theoretical exponential distribution (Graphs are Log-Normal) b) The circadian dataset exhibits a similar response suggesting that there is minimal
perturbation. The last three datasets c) acute d) chronic e) burn all exhibit a significant deviation, especially in the tail region suggesting that the over-
represented motifs occur at a rate greater than would be suggested by chance.
doi:10.1371/journal.pone.0005992.g005

Figure 6. The transcriptional state as a function of the number of clusters selected for the synthetic null dataset. From this response, it
is evident that with the incorporation of additional clusters adds noise into the system. Thus, no real information is present within the system.
doi:10.1371/journal.pone.0005992.g006

Transcriptional Dynamics
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synthetic dataset is created where values are drawn from a N(0,1)

distribution in order to illustrate basic properties of the

calculations. In addition 4 experimental dataset are evaluated

and the raw data can be found in Gene Expression Omnibus

database [18].

The first experimental dataset, accession number GDS1629

[19], is a circadian dataset obtained from a rat superchiasmic

nucleus (SCN), and represents a system in which there should be

significant patterns within the data, even though there is no

significant outside perturbation. This dataset was selected to

determine if it was possible to distinguish the difference between a

real dataset that did not undergo a significant perturbation and

random responses. This dataset consisted of cells isolated from the

SCN tissues obtained from adult Long Evans Rats. These cells

were then synchronized for 48 hours prior to the experiment

through media replacement before being harvested every 6 hours

from 0 to 42 hours for RNA extraction. Therefore, we can

investigate the progression of gene expression of these cells

independent of outside stimuli which may be propagated through

endocrine or neurological signaling.

The second dataset, accession number GDS253 [20], records

liver transcriptional responses in adrenaelectomized rats undergo-

ing a bolus injection of corticosteroids. In this experiment, 44 rats

were injected with a methylprednisolone at a dose of 50 mg/kg. At

17 individual time points [0, 0.25, 0.5, 0.75, 1, 2, 4, 5, 5.5, 6, 7, 8,

12, 18, 30, 48, 72 hrs], the livers were harvested from the rats, and

the gene expression was obtained via the Affymetrix RG-U34A

array which consisted of 8799 probe sets.

In this experiment, a significant, yet reversible, perturbation has

occurred to the system such that there should be a clear deviation

away from the baseline case followed by return to the control

state.This case was selected to validate the fact that the presence of

a significant perturbation is visible along with the non-randomness

of the dataset. This dataset has the added advantage of having a

well-characterized mechanism which allows for the assessment as

to whether the temporal variations in the transcriptional state have

meaning with respect to the underlying biological phenomenon.

Given the number of time points associated with this dataset, this

will be the only dataset which was run with piece-wise averaging.

Thus, this dataset was run with a piecewise averaging of 2, such

that adjacent points are averaged to obtain a single data point.

Because of the fact that 17 time points do not divide evenly into 2,

this dataset was extrapolated to 18 time points with the final time

point occurring at 80 hours.

The next dataset, accession number GDS972 [21], consists of a

similar animal model in which a low level infusion of corticoste-

roids is taking place. In this experiment, methylprednisolone was

administered at a rate of 0.3 mg/kg/hr over 168 hours via an

Azlet osmotic pump. Over the course of time experiment 44

animals were sacrificed at 11 time points [0, 6, 10, 13, 18, 24, 36,

48, 72, 96, 168 hrs] to obtain the dataset. Unlike the previous

experiment, the microarray platform for this dataset is the

RAE230A, which consisted of 15923 probesets.

The final dataset which is evaluated is listed under accession

number GDS599. This dataset represents a serious cutaneous

burn administered to a rat over 30 percent of the skin. After the

administration of the burn, the livers were harvested at 5

individual time points [0, 1, 4, 8, 24 hrs], and the gene expression

data was obtained using the RG-U34A microarray. Unlike the

corticosteroid datasets in which there is a single reversible

perturbation to the system, this final dataset represents the

induction of a complex series of events in response to the severe

injury. Thus, this dataset will be used to investigate the ability of

the algorithm to identify significant and salient changes within the

system in response to a complex phenomenon.

Fine-grained clustering
The preliminary step, i.e., the fine grained clustering operation,

divides the temporal expression data into a large number of

clusters in which the similarity between the different expression

profiles in a cluster is expected to be very high. As such, any

clustering algorithm could in principle accomplish this first task.

However, we have elected to explore the basic principles of the

HOT SAX representation [22] which transforms the time series in

Figure 7. The optimal number of clusters in the three datasets is evaluated parametrically. It appears that after a certain point, the
introduction of additional clusters appears to decrease the transcriptional state.
doi:10.1371/journal.pone.0005992.g007

Transcriptional Dynamics
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to an appropriate sequence of symbols. Thus every signal is

represented as a finite sequence of symbols which is subsequently

hashed to a unique scalar identifier. Time-courses that ‘‘hash’’ to

the same value are assumed to belong to the same cluster.

In order to emphasize the role of the shape of the responses the

data is first z-score normalized such that all of the expression

profiles are of the same magnitude:

bYYi tð Þ~ Yi tð Þ{SYi tð ÞT
s Yi tð Þð Þ , Vi ð1Þ

This converts each of the signals to have a mean of 0 and a

standard deviation of 1. Subsequently the expression value at each

time point is assigned a symbol based on an appropriate

equiprobable partitioning of the normal distribution Figure 9.

A critical property relates to the number of equiprobable domains

the Gaussian is divided into [22]. If necessary, the time series is

also piece-wise averaged in order to reduce the size of the signal, in

which case, the time horizon t = 1…T, is divided into w segments.

Therefore, the original expression signal undergoes two transfor-

mations: first it is z-scored and subsequently transformed in a

sequence of symbols:

Yi tð Þ [ R, t~1, . . . , Tf g? bYYi tð Þ [ N 0,1ð Þ, t~1, . . . ,T
n o

? Ci jð Þ [ ABf g, j~1, . . . ,w~
T

DT

� �

The set AB defines the so-called ‘‘alphabet’’ which is a set of

symbols with cardinality equal to the number of equiprobable

partitions of the Gaussian curve.

After a gene expression profile has been converted into a

sequence of symbols, the sequence is converted into an integer

through the use of an appropriate hashing function. Following the

formalism of [22] we evaluate the hash value based on:

Hi~1z
XW
j~1

ord Ci jð Þ½ �{1½ �:card ABf gW{j ð2Þ

Figure 8. Clusters identified under the optimal selection appeared to be located near peaks that were associated with local maxima in
the greedy selection. This suggests that one may be able to reduce the set to be considered for the optimal solution by looking at these peaks only.
doi:10.1371/journal.pone.0005992.g008
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The ord[N] (ordinal) operation maps the partition in which a given

time point is found into a integer. The ordinal operator maps the

symbol ‘‘a’’ to 1, ‘‘b’’ to 2, etc. Thus each gene expression profile

Yi(t) hashed to unique identified, Hi, and each such identifier

corresponds to a cluster. By definition there are a finite number of

hash values, which would correspond to the maximum possible

number of clusters in the data. From (2) it is evident that the

number of possible values for Hi, and therefore clusters, is related

to the length of the signal and the number of possible symbols

which the gene expression profile has been broken up into. The

use of the equiprobable distribution for the discretization step is

important because signals will be assigned to the different clusters

with equal probability, provided that the signals were randomly

generated via an N(0,1) distribution.

Because of the underlying equiprobable distribution associated

with HOT SAX, randomly generated expression profiles will be

assigned different hash values with equal probability. Because of

the equi-probable assignment of hash values with respect to

randomly generated data, the population of a given cluster can be

modeled via a Poisson process. However, in the case where there

exists approximately the same number of possible hash values as

genes to be hashed, this Poisson distribution can be modeled as an

exponential distribution[23]. Thus, in the case of a null synthetic

dataset comprised of randomly generated expression profiles, the

probability that a given cluster has a population of N can be

approximated via an exponential distribution.

Evaluation of Significant Perturbations. To evaluate

whether a significant perturbation exists within the data, the

hash-based clustering is run on the experimental data and a

distribution of cluster membership is obtained. This is compared

to a synthetic null dataset of the same size in terms of the number

of genes and the number of time points generated from the

random data with the same number of time points and genes as

the experimental dataset. A standard permutation analysis is

performed for estimating the statistical significance of a result [24].

We then determine the probability that a random trial will have a

lower R2 correlation to the exponential distribution than the real

data. From this random trial, the p-value is calculated, as p-

value = Prob(R2 in random,R2 in real) to establish the confidence

that the data is non-random. We expect that if there is a non-

significant stimulation within the experiment the p-value should be

quite high, and if there is a significant simulation within the system

that the p-value should be quite low i.e. statistically significant,

suggesting that indeed the system deviates reliably from the

hypothetical exponential distribution.

The behavior of HOT SAX to randomly generated data

thereby allows us to select the parameter AB in a systematic

manner. In a real dataset, it is hypothesized that significant

coordination will occur, and therefore, the performance of the

hashing operation should show deviations from the theoretical

exponential distribution. Thus, the HOT SAX algorithm should

be run on a given dataset where AB is varied parametrically, and

the AB which corresponds to the lowest correlation to the null

response will be chosen as the optimal AB.

Selection of Characteristic Transcriptional Responses.

The majority of approaches for analyzing time course gene

expression data are based on the fundamental premise that over-

populated motifs are indicative of significant events and thus searches

for them as the main priority [9]. Our leading hypothesis extends this

powerful concept and aims at the selection of a sub-set of

characteristic responses, i.e., a sub-set of hash values and the cluster

(motifs) they correspond to, based on the premise that hidden within

the maze of responses that are recorded is a small(er) family of probe

sets that exhibit clear deviations as the process of monitoring the

Figure 9. The process of converting a temporal gene expression profiles into its symbolic representation. In this figure, a randomly
generated signal is discretized with a piecewise averaging parameter of 2 with 3 equiprobable partitions.
doi:10.1371/journal.pone.0005992.g009
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system progresses in time. The assumption is that only the portion of

the genome that is affected by the specific perturbation ought to

comprise that critical ensemble of intrinsic responses. Thus the key

issues now become: (i) how to assess that a non-trivial change has

taken place, and (ii) how to identify the critical sub-set of responses

that make up that non-trivial change.

In order to address these two issues we introduce a term which we

denote as the ‘‘transcriptional state’’. The transcriptional state is a

metric, which quantifies the deviation from a control. The control

state can be arbitrarily defined, since we are interested in deviations

and not absolute values. We assume that the ‘‘control’’ state

corresponds to time t = 0, i.e, right before the systemic perturbation,

if any. The baseline state is defined as the distribution of expression

values of a set of genes at the control state. To quantify the deviation

from this baseline state, the difference in the distribution at any future

time t and the control state is evaluated. To do so, we make use of the

Kolmogorov-Smirnov (KS) Statistic [25]. The KS statistic represents

a simple method for quantifying the difference between two

distributions and was selected over other methods, such as the

Shaprio-Wilks test [26], due to its ability to handle arbitrary binned

distributions. It must be emphasized that the selection of a specific test

is not binding and any effective measure for comparing two

distributions can be employed. However, what is important is the

ability to compare arbitrary distributions because there is no

guarantee that the distribution of expression values of a set of genes

will conform to a given named distribution.

While it has been shown that if one takes a large enough set of

genes the distribution of values is expected to follow the log-

normal distribution [27], Figure 10. However, the distribution of

expression values corresponding to the genes that exhibit the

largest sensitivity to the experimental perturbation will not. In

order to evaluate the KS metric the Cumulative Distribution

Function (CDF) of expression levels at a given time point is

determined and is compared with the corresponding CDF of the

control state. For a temporal experiment this needs to be repeated

over time. Since the metric is defined over binned distribution, a

number of bins, B, also needs to be specified. For calculating the

CDF, we have assumed that the number of bins B equals the

number of genes selected under a given iteration.

D tð Þ~max CDFb tð Þ{CDFb 0ð Þj j Vt

1ƒbƒB
ð3Þ

The sequence D(t) is defined as the transcriptional state of the

system as it quantifies the level of transcriptional deviation from a

Figure 10. In any given gene expression experiment, the distribution of expression values at a given time point is relatively
consistent due to the large amount of irrelevant gene expression profiles measured. The task is to therefore identify a subset of genes
such that the shift in an organism’s state as it responds to the external stimulus is maximized. This plot depicts the distribution of expression values
for the burn injury data. The plot is a modification of the one presented in [27]
doi:10.1371/journal.pone.0005992.g010
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control state. In order to evaluate a time-independent metric of the

difference between two distributions any norm can be used on D(t).

We opt for the simplest evaluation using the L1-norm. The use of

the L1 norm, quantifies the deviation over all time points during

the duration of the experimental protocol. Therefore, the scalar

quantifying the difference between the two distributions is defined

as:

D~
Xn

t~0

D tð Þ ð4Þ

D allows one to evaluate how by how much the distribution of

expression values deviated, over time, from a control state, which

as previously mentioned is considered to be the state at t = 0.

Having defined a metric quantifying the deviation of the current

state from a control, the selection step of the algorithm identifies a

subset of motifs composed of genes whose transcriptional state is

responsible for the maximum deviation from the control state Two

interesting properties of the transcriptional state are worth

exploring further. The first relates to the changing character of

the transcriptional dynamics, i.e., the deviation from the control,

as more and more clusters are added. Based on the hypothesis that

the totality of the transcriptome hides the informative components

of the response, one should expect (see Figure 10) that the

deviation from the control should be minimal if the entire data set

is used. Therefore, by assessing D after a certain subset of clusters

has been selected, we can measure whether the incorporation of

additional clusters is not adding information through the inclusion

of clusters highly correlated with existing ones, or whether the

additional clusters are making the deviation from the baseline

more evident. In the case of the null dataset, we expect that there

would not be significant coordination between the clusters. Thus,

the expected result is that the maximum D would be at a single

cluster, and that D would be essentially a decreasing function as

more clusters were added. This would mean that there are no

significant anti-correlative patterns within the data, and that as

more patterns are considered, one is not adding new information.

In a dataset exhibiting a coherent reaction in response to a

stimulus, the expectation is that D would reach a maximum at

some intermediate value, as a population of patterns which

represent the underlying dynamics has been isolated. The second

characteristic is related to the dynamic progression, D(t), over time

as it represents the temporal deviations and we hypothesize that it

acts as a surrogate of the intrinsic dynamics of the system. Thus,

D(t) summarizes the response of the system, and can be potentially

useful for deriving a cellular dynamics response model.

However, the identification of an informative subset of motifs

represents a difficult combinatorial problem. Given that the

number of possible motifs is defined as ABT, where T is the

number of piecewise averaged time points, the number of

combinations that need to be evaluated is computationally

intractable. To compensate for the combinatorial nature of the

problem, we propose two different methods for carrying out the

selection of informative motifs. The first method which we propose

is the use of a greedy algorithm [28] in which motifs are added in

the order of their population, and the transcriptional state will be

evaluated each time an additional motif is added. The set of motifs

which yield the greatest value for the transcriptional state will be

selected as the optimal set. The justification of utilizing a greedy

selection algorithm is that genes that are part of more highly

population motifs have been hypothesized to be more important as

compared to genes which are part of more sparely populated

motifs [29].

Figure 11. Population distribution of the different datasets as the alphabet size is altered. The distribution of hash values for the
circadian and randomly generated datasets, appear to be drawn from an exponential distribution, whereas the chronic and circadian datasets are not.
We select the alphabet size that shows the lowest similarity with the exponential distribution as the optimal. The burn dataset is evaluated for only
alphabet sizes 4-5, because with an alphabet size of 3, the number of clusters (243) is too small for the exponential approximation to be used,
whereas in the chronic dataset alphabet size of 5 was not considered because 49 millions clusters needed to be evaluated which is several orders of
magnitude greater than the 15 thousand genes being evaluate.
doi:10.1371/journal.pone.0005992.g011
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The advantage of utilizing a greedy selection lies in the fact that

the combinatorial nature of the problem is ignored at the cost of

finding a sub-optimal though possibly ‘‘good enough’’ solution.

An alternative method for selecting an optimal subset of motifs

is to limit the set of motifs that will be considered. Thus, rather

than considering a superset of ABT different motifs, we will limit

our evaluation to over-populated motifs. Thus, by limiting the

superset to only the over-populated motifs, the number of

combinations that must be evaluated is decreased to a more

tractable number. To perform this reduction, we define an over-

populated motif as a motif whose population is greater than would

be expected if the HOT SAX hashing algorithm were performed

upon a randomly generated dataset which comprises the same

number of probe sets and time points as the dataset being

evaluated. After the initial set of motifs has been filtered, we

generate all possible combination of motifs and evaluate them for

the value of their transcriptional state, and like in the greedy

selection, the set of motifs which yield the maximum transcrip-

tional state will be identified as the informative subset. The

advantage of utilizing this method is that unlike the greedy

algorithm we can be sure that the set of motifs is indeed optimal

rather.’’ However, while this filtering step has eliminated a large

number of combinations that need to be considered, it still requires

the evaluation of a large number of possible combinations and thus

is computationally expensive.

Assessing the Informative Nature of a Transcriptional
Experiment

Because the result of the HOT SAX algorithm itself depends

upon the selection of the alphabet, AB, we further investigated

how well the datasets correspond to the underlying exponential

distribution as the value of AB is altered parametrically. Therefore,

the previous evaluation as to whether a dataset consists of a

significant perturbation was re-run by varying the AB parameter

from 3 to 5 which are commonly used alphabet sizes. In

Figure 11, we depict the implications of varying the alphabet

size. Under all cases, the corticosteroid and the burn datasets

exhibit a much greater deviation from the underlying exponential

distribution than the circadian and random datasets, as expressed

by the R2 value of the corresponding fit to an exponential.

Furthermore, it was observed that by setting the AB parameter to

3, one is able to maximize the deviation away from the exponential

distribution for the corticosteroid datasets, whereas an AB

parameter of 4 maximized the deviation away from the

exponential distribution for the circadian dataset and the burn

datasets. Furthermore, the response of the randomized datasets

stayed at an R2 = 0.9 or higher under all alphabet sizes, thus

establishing a cutoff for us to determine explicitly whether the

dataset represents a significant perturbation or not.

From this behavior, we hypothesized that the selection of the

AB parameter should aim to maximize the observed deviation.

Thus to conduct the selection of informative motifs, we have

elected to utilize the results from the parametric evaluation and

select an AB of 3 for the corticosteroid datasets, and an AB of 4 for

the circadian and burn datasets. Despite the fact that the circadian

dataset does not illustrate any defining perturbation, the selection

of AB of 4 allows us to maintain a consistency

For the optimal alphabet size, we evaluate the population

distribution of the individual datasets. In Table 1, we list the

number of theoretically possible motifs as well as the number of

non-zero motifs which we have identified in each dataset. The

cluster size distribution for all five data sets were evaluated and as

previously speculated the synthetic and circadian datasets conform

closely to the expected exponential distribution Figure 5. For

these two datasets, this was the expected result because in neither

case did we assume that a significant underlying perturbation has

occurred to the system. In contrast, the two datasets corresponding

to an administration of corticosteroids exhibit a significant

deviation from this exponential distribution as does the dataset

which corresponds to the administration of a significant burn

injury to a rat animal model. This is due to the significant

perturbation which has been administered to the system either in

the form of a drug administration, or through a significant injury.
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