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Abstract

Background: Regulatory T cells (Tregs) are essential in the control of tolerance. Evidence implicates Tregs in human
autoimmune conditions. Here we investigated their role in systemic sclerosis (SSc).

Methods/Principal Findings: Patients were subdivided as having limited cutaneous SSc (lcSSc, n = 20) or diffuse cutaneous
SSc (dcSSc, n = 48). Further subdivision was made between early dcSSc (n = 24) and late dcSSc (n = 24) based upon the
duration of disease. 26 controls were studied for comparison. CD3+ cells were isolated using FACS and subsequently
studied for the expression of CD4, CD8, CD25, FoxP3, CD127, CD62L, GITR, CD69 using flow cytometry. T cell suppression
assays were performed using sorted CD4CD25highCD127- and CD4CD25lowCD127high and CD3+ cells. Suppressive function
was correlated with CD69 surface expression and TGFb secretion/expression. The frequency of CD4+CD25+ and
CD25highFoxP3highCD127neg T cells was highly increased in all SSc subgroups. Although the expression of CD25 and GITR
was comparable between groups, expression of CD62L and CD69 was dramatically lower in SSc patients, which correlated
with a diminished suppressive function. Co-incubation of Tregs from healthy donors with plasma from SSc patients fully
abrogated suppressive activity. Activation of Tregs from healthy donors or SSc patients with PHA significantly up regulated
CD69 expression that could be inhibited by SSc plasma.

Conclusions/Significance: These results indicate that soluble factors in SSc plasma inhibit Treg function specifically that is
associated with altered Treg CD69 and TGFb expression. These data suggest that a defective Treg function may underlie the
immune dysfunction in systemic sclerosis.
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Introduction

Over the past decade, there have been tremendous advances in

our understanding of the basic processes that control immune

tolerance. It is now generally accepted that auto-reactive T cells

are present in healthy individuals, but that there mere presence

does not necessitate the development of autoimmune disease. The

identification of CD4+CD25+ regulatory T cells (Tregs) as a

crucial component of self-tolerance has opened a major area of

investigation and numerous studies have demonstrated the potent

influence of Tregs in suppressing autoimmune disease, transplan-

tation and graft-versus-host disease [1,2,3,4,5,6,7]. Studies in

rodents have provided the first evidence for the existence of a

naturally occurring population of CD4+CD25+ professional

regulatory/suppressor T cells, which upon in vitro TCR-mediated

stimulation, suppress proliferation of effector T cells [3,8]. In the

periphery of young mice not prone to autoimmune disease, Tregs

constitute a stable 10% of CD4+ T cells. In contrast, mice

genetically prone to autoimmune disease such as diabetes have

markedly diminished circulating Tregs [9,10].

Tregs have unique and robust immunosuppressive activity. The

cells require specific TCR-mediated activation to develop

regulatory capacity, but their effector function appears to be

nonspecific, regulating local inflammatory responses through a

combination of cell-cell contact and suppressive cytokine produc-

tion [11,12]. In addition to naturally occurring Tregs, several

therapeutic interventions promote Treg development and function

[13]. These so-called ‘‘adaptive’’ Treg populations share many

features attributed to natural occurring Tregs, but can differ in

critical cell surface markers [14].

In humans, the important role of Tregs in various autoimmune

diseases has been underscored by numerous seminal studies. For
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instance, Tregs derived from patients with rheumatoid arthritis

(RA) are defective in their ability to suppress cytokine production

and to convey a suppressive phenotype to CD4+ effector T cells,

which was at least partly restored upon treatment of TNFa
neutralizing therapies [15]. Moreover, the interaction of Tregs

with activated monocytes from patients with RA even led to a

diminished suppressive activity possibly underlying their dimin-

ished capacity in vivo [16]. Likewise, it was demonstrated by several

groups that the number and suppressive capacity of Tregs is

altered in patients with systemic lupus erythematosus [17,18,19].

Systemic sclerosis (SSc) is a complex autoimmune disease

characterized by an excessive deposition of matrix molecules,

leading to fibrosis of multiple organs including the skin, lungs,

heart and gastrointestinal tract, and often leading to severe

morbidity and premature death. Although the role of immune

dysfunction in the pathogenesis of SSc is currently not well

understood, alterations in cellular immunity are typified by

aberrant T cell biology both in the skin as well as circulation of

SSc patients. For example, CD4+ T cells are increased in the

circulation of SSc patients [20,21], whereas NKT cells and c/d T

cells are decreased [22]. In addition, lesional skin from SSc

patients displays various features consistent with T cell activation

[21,23,24]. Finally, circulating T cells from SSc patients show

altered secretion of various inflammatory mediators compared to

T cells from healthy controls [25,26].

T cell priming by professional antigen presenting cells is tuned

by an orchestra of inflammatory mediators, of which TGFb, IL-

23, IL-6, IL-22 and IL-1a are considered the most influential. For

instance, in the absence of other pro-inflammatory mediators,

TGFb production by dendritic cells induces FoxP3, a Treg marker

[27,28]. In contrast, TGFb in combination with IL-1a, IL-6 or IL-

23 drives the expression of RORcT, a proliferation factor specific

for the recently identified Th17 subset [29,30,31,32]. Intriguingly,

IL-23, IL-1a and IL-17 have been found increased in the

circulation of SSc patients compared to healthy controls

[33,34,35,36]. Although TGFb is not increased in SSc plasma,

multiple studies have strongly implicated this cytokine as a major

stimulus of fibrosis in involved organs. Together, these observa-

tions suggest that altered Treg function might play a key role in

SSc pathogenesis. To address this issue, we set out to investigate

changes in the number and/or function of Tregs in the peripheral

blood of patients with SSc, taking into account the different disease

phenotypes. In this paper, we show that Tregs are more frequent

in SSc patients but are defective in their capacity to suppress

proliferation of CD4+ effector T cells. We go on to demonstrate

that this diminished suppressive effect of Tregs in SSc is associated

with markedly lower expression of the activation marker CD69.

Finally, we show that the diminished suppressive capacity and

absent upregulation of CD69 upon activation is dependent upon

soluble factors present in the plasma of SSc patients. Together

these data suggest that diminished T regulatory capacity is present

in SSc and that the regulatory deficiency is due to circulating

factors rather than an inherent defect of Tregs.

Methods

Ethical review board statement
All samples were obtained with written informed consent after

approval of the Institutional Review Board at the Boston

University School of Medicine, Lund Univeristy medical Hospital

and the Radboud University Nijmegen Medical Center.

Study population. Sixty-eight patients presenting to the

Arthritis Center, Boston Medical Center were included in the

study. This study was approved by the Boston University Medical

Center Institutional Review Board. All of the patients met the

American College of Rheumatology preliminary criteria for the

classification of SSc [37]. Patients were subdivided as having

limited cutaneous SSc (lcSSc, n = 20) or diffuse cutaneous SSc

(dcSSc, n = 48) on the basis of the extent of their skin involvement

[38]. A further subdivision was made between early dcSSc (n = 24)

and late dcSSc (n = 24) based upon the duration of disease,

defining early dcSSc as patients having a disease duration ,2

years and late dcSSc as patients having a disease duration longer

than 3 years. As a comparator group 26 healthy controls were

studied. Patients were allowed to use low-dose prednisolone (,10

mg daily) at inclusion of the study. Patients receiving higher doses

were excluded.

Monoclonal antibodies. For immunostaining and analysis

by fluorescence-activated cell sorting (FACS), we used

phycoerythrin (PE), allophycocyanin (APC) and fluorescein

isothiocynate (FITC) conjugated mouse monoclonal antibodies

(mAb) against human CD4, CD8, CD25, CD69, GITR (Miltenyi

Biotec Inc., CA, USA), CD127 (eBioscience, CA, USA), CD62

(BD Bioscience, NJ, USA). Intracellular staining of CD4+CD25+
cells for FoxP3 was performed using the intracellular fixation and

staining procedures according to the manufacturer’s protocols.

Corresponding mouse/rat isotype controls were included in the

analyses.

Isolation of PBMCs, CD3+ cells and

flowcytometry. PBMCs were isolated from heparinized

venous blood by using density-gradient centrifugation over

Ficoll-Paque (Amersham Bioscience). Next, CD3+ cells were

isolated from PBMCs using CD3 microbeads according to

manufacturer’s protocol (Miltenyi Biotec). To this aim, 10 x 104

CD3+ cells were re-suspended in 100 ml buffer (PBS + 1% BSA)

on ice. After isolation, cells were directly transferred into RPMI

1640 media supplemented with 2nM L-glutamine, 100 U/mL/ml

penicillin/streptomycin (Life technologies), and 10% FBS

(BioWhitacker) in 96-well U-bottom plates (Nunc). For

flowcytometric analysis, CD3+ were kept on ice and washed

extensively with citrated PBS containing 1% FCS. Than, after

using the protocol for fixation, intra-cellular staining was achieved

using 10 ml of FITC, APC or PE- conjugated antibody that was

added and incubated on ice for 20 min. 300 ml FACS buffer was

than added and T cells were pelleted, resuspended in 200 ml

buffer, and stained for the intracellular marker FoxP3/TGFb were

appropriate as conducted by the recommended procedure

obtained from the manufacturer (Miltenyi Biotec Inc., CA,

USA). Thereafter, cells were washed in buffer, fixed with 2%

formaldehyde, washed again in buffer and stored at 4uC. The cells

were analyzed using a LSRII FACScan flow cytometer (BD

Biosciences) and data were processed using FlowJo software. In all

experiments, the purity of CD3+, CD25highCD127low and

CD25lowCD127high cells was .97%.

Sorting of CD25high and CD127low cells for T cell

suppression assays. For the T cell suppression assay,

CD25highCD127low cells were immediately incubated with

CD25-PE and CD127-FITC (eBioscience, CA, USA) antibodies

for 20 minutes on ice after CD3 MACS bead isolation. Thereafter,

were sorted based upon the expression of CD25 and CD127.

CD25highCD127low cells, CD25lowCD127high cells and unsorted

CD3+ T cells were transferred into RPMI 1640 media

supplemented with 2nM L-glutamine, 100 U/mL/ml penicillin/

streptomycin (Life technologies), and 10% FCS (BioWhitacker) in

96-well U-bottom plates (Nunc) until further use (overnight

incubation). To assess the suppressive capacity of Treg

(CD25highCD127low) and non-Treg (CD25lowCD127high) cells on

unsorted CD3+ cells, unsorted T cells were brought to a

Dysfunction of Tregs in SSc
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concentration of 2.106 cells/ml and subsequently stimulated with

phytohaemaglutinin (Sigma-Aldrich Corp, MO, USA). Both Tregs

and non-Tregs from healthy controls and SSc patients were added

to autologous unsorted CD3+ cells at fixed ratios 1:20 for 5

consecutive days. After 4 d of culture, [3H]Tdr was added for the

remaining 24 hrs of cultures. The cells were harvested onto glass

fiber filters and [3H]thymidine incorporation was assessed on a

beta scintillation counter.

Assessment of T cell suppressive effect and CD69

inducing capacity of SSc plasma. The effect of SSc plasma

on the suppressive capacity of healthy Treg was investigated by co-

incubation with 10% or 25% plasma from edSSc patients during

whole experiment. For these experiments plasma was taken from

the SSc patients and healthy controls at the same time point as the

T cell experiments were performed. The plasma was stored at -

80uC until further use. Plasma from 4 different edSSc patients was

used in various independent experiments. To assess the CD69

inducing capacity of SSc plasma CD3+ cells and CD25highCD127-

cells were used from healthy controls and SSc patients. For this

aim, both cell populations were cultured in RPMI 1640 media

supplemented with 2nM L-glutamine, 100 U/mL/ml penicillin/

streptomycin (Life technologies), and 10% FBS (BioWhitacker) in

a 96 wells plate for 12 hours. Subsequently, CD3+ cells and

CD25highCD127- cells were stimulated with either

phytohaemaglutinin (PHA) only, PHA in combination with 10%

plasma from an early dcSSc or plasma alone. After 12 hours of

stimulation cells were analyzed on expression of CD69 by

flowcytometry as previously described.

Measurement of soluble and intracellular

TGFb. Intracellular TGFb expression in CD25highCD127- cells

was investigated using a monoclonal antibody for TGFb (BD

Bioscience, NJ, USA) and the intracellular staining protocol as

used for the FoxP3 staining. After the staining protocol, cells were

fixed with 2% formaldehyde, stored at 4uC and analyzed on a flow

cytometer the next day. TGFb was assayed using mink lung

epithelial cells stably transfected with a plasminogen activator

inhibitor-1 promoter/luciferase reporter plasmid (provided by D.

Rifkin) as described previously by Abe et al [39].

Statistical analysis. Values are shown throughout the paper

as mean6sem. Proportions of lymphocyte subpopulations were

compared using the Student’s t test for normally or not normally

distributed populations where appropriate. Relationships between

different values were examined using Pearson’s correlation

coefficient and Spearman’s rank correlation tests. All statistical

analyses were performed using Graphpad Prism (GraphPad Prism

4.0 by Graph Pad software Inc.)

Results

CD4+CD25+FoxP3+CD127- cells are markedly increased in
the circulation of SSc patients irrespective of disease
phenotype

Human peripheral blood contains a heterogeneous subset of

CD4+CD25+ T cells that comprises T regulatory cells (Tregs) and

a substantial number of activated effector T cells. To date, the

expression of FoxP3 and CD127 remain the best and most specific

markers of Tregs [40,41]. Since we postulated that the number

and/or phenotype of Tregs in SSc is altered compared to controls,

but may also differ among different clinical SSc subtypes, we here

studied the number and phenotype of Tregs from patients with

limited cutaneous SSc (n = 20), late diffuse cutaneous SSc (n = 24)

and early diffuse SSc (n = 24) in comparison with those from

healthy controls (n = 26). The clinical characteristics of all patients

included in this study are presented in Table 1. Despite similar

absolute numbers of CD3+ cells, flowcytometric analysis with the

markers CD4, CD25, FoxP3 and CD127, demonstrated that both

CD4+CD25+ (12.461.0 vs. 27.562.8, P,0.0001) and

CD25+FoxP3+CD127- (2.960.5 vs. 17.361.9, P,0.0001) cells,

(further designated as Tregs) are markedly increased in the

circulation of SSc patients compared to controls (Figure 1a, b).
Further stratification to SSc disease phenotype revealed a

significantly higher number of CD4+CD25+ (P = 0.01) and

CD25+FoxP3+CD127- (P = 0.01) in SSc patients with edSSc

compared to ldSSc (Figure 1b), but no other significant

differences between SSc phenotypes were detected. Notably, two

patients with ldSSc and two with edSSc received cyclophospha-

mide pulse therapy for their disease. Whereas both ldSSc

responded clinically well only one patient with edSSc did. In

these three patients the percentage CD25+FoxP3+CD127- cells

was much lower (6.062.1) compared with the other patients that

were not treated. The edSSc patient that received cyclophospha-

mide pulse therapy but did not show a clinical response showed a

frequency of 22.8% CD25+FoxP3+CD127- cells. All the patients

had received cyclophosphamide longer than 3 months ago.

Further analysis focusing on CD25+bright (top 10%) and

CD25+very bright (top 2%) cells revealed a similar expression of

the markers FoxP3 and CD127 among all individuals, both on the

levels of percentage positive cells (Figure 1c, d), as well on the

mean fluorescence intensity (MFI, data not shown). Taken

together, these data suggest that SSc patients have a markedly

increased frequency of T regulatory cells, which is not related to

an altered expression of markers characterizing Treg phenotype.

Aberrant expression of phenotypic markers CD62L and
CD69 on CD25+FoxP3bright and CD25+FoxP3+verybright

from SSc patients
Although we observed a markedly increased frequency of

CD25+FoxP3+CD127- cells phenotypically representing Tregs in

SSc, these patients continue to have active disease suggesting

altered T cell suppressive activity. To address this, we next

investigated the expression of markers potentially reflecting T

cell activation including GITR, CD62L and CD69. Although

the function of glucocorticoid-induced tumor necrosis factor

receptor related protein (GITR) remains to be fully elucidated, it

is generally accepted that GITR expression is increased upon

TCR engagement, reflecting T cell activation [42]. As expected,

GITR expression on CD25+Foxp3+, CD25+FoxP3+bright and

CD25+FoxP3+verybright from healthy donors gradiently increased

using flowcytometry (Figure 2a). In addition, the expression of

GITR on CD25+FoxP3+, CD25+FoxP3+bright and

CD25+FoxP3+verybright was comparable between healthy controls

and SSc patients and among the investigated SSc phenotypes. In

contrast, the expression of CD62L and CD69 was markedly

lower in SSc patients compared to healthy controls (Figure 2b,
c). CD62L is a L-selectin that is upregulated upon Treg

activation and highly critical for Tregs to enter the lymph node

and to carry out their local suppressive function [43,44]. CD69

expression is pivotal for Treg function, potentially via upregula-

tion of TGFb production upon cross-linking [45,46]. CD69 on

CD25high (37.065 vs. 17.665 vs. 5.362) and CD25veryhigh

(35.168 vs. 17.865.7 vs. 2.460.9) T cells significantly decreased

in a step-like manner, comparing healthy controls to patients

with lSSc, ldSSc and edSSc phenotypes. Intriguingly, and in line

with that observed in other autoimmune diseases, the expression

of CD69 on CD4+ effector T cells was significantly increased in

all SSc patients compared to controls and followed an inverse

correlation with the CD69 expression on CD25high or FoxP3high

cells suggesting, that the regulation of CD69 expression is

Dysfunction of Tregs in SSc
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specifically altered on the Treg population in SSc [47,48,49]

(Figure 2d). In the search for potential SSc characteristics that

might correlate with CD69 on Tregs in SSc, we found a

significant association between the disease duration in lSSc

patients whereas no association was present in patients either

with ldSSc or edSSc (Figure 2e).

Figure 1. Increased presence of CD4+CD25+ and CD25highFoxP3highCD127- cells in the circulation of patients with systemic sclerosis
(SSc). Flow cytometry analysis of and CD4+CD25+ and CD25highFoxP3highCD127- cells was performed in healthy controls (n = 26) and patients (n = 68)
with different phenotypes of SSc. Peripheral blood mononuclear cells (PBMC’s) were stained with anti-CD4, anti-CD25, anti-CD127 and anti-FoxP3,
and analyzed by flow cytometry. (a) One representative individual from each group is shown. (b) Percentage of CD4+CD25+ and CD25+FoxP3+ cells
are presented for each group, consisting of healthy controls (n = 26), lSSc (n = 20), ldSSc (n = 24) and edSSc (n = 24) patients. (c) Based upon CD25
expression, the top 10% (CD25bright) and top 2% (CD25verybright) were gated and FoxP3 expression analyzed as the percentage positive cells. (d) Based
upon FoxP3 expression, the top 10% (FoxP3bright) and top 2% (FoxP3verybright) were gated and CD127 expression analyzed as the percentage positive
cells. Data is presented as mean6sem.
doi:10.1371/journal.pone.0005981.g001
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Diminished suppressive capacity of CD25+FoxP3+CD127-

regulatory T cells from SSc patients is correlated with
CD69 expression and TGFb levels

Taken together, our observations imply that although SSc

patients have a significantly increased number of

CD25+FoxP3+CD127- cells in the circulation, these cells

phenotypically have markers suggesting impaired suppressive

activity. To test the regulatory activity of these cells, we studied

the capacity of CD25highCD127low cells from healthy controls

(n = 8), lSSc (n = 6), ldSSc (n = 9) and edSSc (n = 8) patients to

suppress the proliferation of CD4+ effector cells. As expected,

Tregs from healthy controls efficiently suppressed the prolifer-

ation of CD4+ effector cells by 87.3%64.9, whereas non-

regulatory T cells (CD25lowCD127high) did not (8.5%62.8). In

contrast, Tregs obtained from SSc patients all had a markedly

diminished suppressive capacity compared to those from healthy

donors (Figure 3a) with T regs from lSSc, edSSc and ldSSc

suppressing CD4+ effector cell proliferation by, respectively,

28.2%66.0 (P = 0.0001), 56.0%68.5 (P = 0.006) and 18.3%65.2

(P,0.0001). Since CD69 expression by Tregs has been

associated with the production of TGFb [46], one of key

molecules implicated in suppressor activity, we investigated the

possible relationship between CD69 expression and the dimin-

ished suppressive effect observed in SSc. Interestingly, the

suppressive capacity correlated significantly with CD69 expres-

sion in all groups (Figure 3b).

We next investigated the expression levels of TGFb in the Tregs

from SSc patients compared to healthy controls and their

CD45Ra+ cells. In line with the CD69, which was specifically

lower on regulatory T cells in SSc, also TGFb expression was

significantly decreased by regulatory T cells obtained from SSc

patients compared to those from healthy controls (Figure 3c).
TGFb expression on Tregs from ldSSc and edSSc patients was

significantly lower compared to that from patients with lSSc

(P = 0.008), whereas no difference was observed between ldSSc

and edSSc. Measurement of soluble TGFb in the supernatant

revealed no measurable TGFb, suggesting that TGFb confers its

effect as membrane-bound (data not shown).

A fraction smaller than 10kD in SSc plasma inhibits the
suppressive capacity of regulatory T cells and abrogates
the upregulation of CD69 specifically on regulatory T
cells

As inflammatory cytokines play an important role in the

pathogenesis of SSc and regulatory T cell function, we next

investigated whether the diminished suppressive effect of Tregs

from SSc could be carried over by soluble factors in the circulation

of SSc patients or alternatively could be due to an inherent defect

in Tregs. Unexpectedly, the addition of 10% plasma from edSSc

patients completely abrogated the suppressive capacity of Tregs on

CD4+ effectors cells from healthy controls, an observation that

was highly consistent throughout 5 experiments using plasma

samples from 5 edSSc and 2 ldSSc patients (Figure 4a). The

addition of 25% plasma had a similar effect although somewhat

less potent as 10% plasma, a phenomenon that was probably

caused by the TGFb present in patients plasma, that partly

restored the suppressive capacity of Tregs. In contrast, the

addition of plasma obtained from healthy controls did not have

a significant effect on the suppressive capacity of Tregs.

Based on our observations that CD69 expression correlates with

the diminished suppressive capacity in SSc, we hypothesized that

the plasma of SSc patients had a direct effect on the regulation of

CD69 expression. To test this, we stimulated freshly isolated

CD3+ cells and CD25highCD127low T cells from healthy controls

with the potent T cell activator PHA. PHA markedly induced

CD69 expression both on CD3+ and CD25highCD127low T cells

(Figure 4b). However, plasma from edSSc patients also

significantly increased CD69 expression on CD3+ cells

(P = 0.0007) and had an additive effect in combination with

PHA (P = 0.02). In contrast with the effect of plasma on CD3+
cells, the addition of edSSc plasma to CD25highCD127low T cells

did not increase CD69 expression. More intriguingly, the addition

Table 1. Patients clinical characteristics.

Limited cutaneous SSc Late diffuse cutaneous SSc Early diffuse cutaneous SSc

Number 20 24 24

N females (%) 12 (92) 11 (79) 12 (80)

Age at onset 43.8613.4 38.6612.3 48.169.2

Disease duration 9.569.8 8.366.2 1.260.8

ANA positivity 100% 60% 93%

mRSS at inclusion not assessed 17.668.6* 23.468.7*

Pulmonary hypertension 30% 13% 8%

Lung fibrosis 20% 52% 34%

Current Therapies

MMF 0% 36% 27%

Cyclophosphamide 0% 14% 13%

Prednisolone 23% 29% 47%

Hydroxychloroquine 15% 7% 0%

Anti-IL-3 0% 0% 7%

Methotrexate 0% 0% 0%

Tacrolimus 7% 0% 0%

*P value 0.03.
doi:10.1371/journal.pone.0005981.t001
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Figure 2. Phenotypical characterization of T regs reveals diminished expression of CD62L and CD69 in SSc patients. Panel (a) of this
figure depicts the expression of the T cell activation marker GITR on CD25+, CD25bright and CD25verybright cells from healthy controls (white bars,
n = 24) and SSc patients having limited cutaneous SSc (light gray bars, n = 18), late diffuse SSc (dark gray bars, n = 22) and early diffuse SSc (black bars,
n = 22) patients. In panel (b) the expression of CD62L on Tregs is investigated. CD25+ and CD25bright cells from SSc and healthy controls express
similar levels of CD62L, whereas CD25verybright from SSc patient subsets exhibit lower levels of CD62L compared to those from healthy controls. Panel
(c) reflects the expression of CD69 on Tregs from healthy donors and SSc patients. CD25+, CD25bright and CD25verybright cells from SSc patients express
significant lower levels of CD69 than those from healthy donors. CD69 expression on CD25bright and CD25verybright cells from edSSc patients was
significantly lower then that from ldSSc patients, and ldSSc expressed CD69 significantly lower than those from lSSc. In panel (d) the expression on
CD3+ cells is shown for all investigated groups. In contrast with that observed on Tregs from SSc patients, CD69 expression on CD4+ cells was
significantly higher in all SSc patient groups. Panel (e) reflects the potential association between CD69 expression on Tregs and disease duration.
CD69 expression on T regs from patients with lSSc correlated with disease duration, whereas this was not the case either with ldSSc nor edSSc. In all
figures the white bars represent healthy controls, whereas lSSc, ldSSc and edSSc patients are represented by light gray, dark gray and black bars,
respectively.
doi:10.1371/journal.pone.0005981.g002
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Figure 3. Impaired suppressive function by Tregs from SSc patients correlates with surface expression of CD69 and intracellular
expression of TGFb. Unsorted CD3+ (MACS bead isolated) were stimulated with PHA (5 mg/ml) and consecutively incubated with CD25highCD127-

or CD25lowCD127high cells for 5 days. Thereafter, CD3+ cells were incubated with 3H-thymidine for 24 more hours after which 3H-thymidine
incorporation was measured. Panel (a) reflects the suppressive capacity of Tregs from healthy donors and SSc patients. Proliferation of CD3+ effector
cells was effectively inhibited by T regulatory cells from healthy controls, whereas a clearly diminished suppressive activity was observed in the
experiments with Tregs from SSc patients. Suppressive effect of Treg (CD25highCD127-) and non-Tregs (CD25lowCD127high) is presented in black and
white bars, respectively. Results are the mean and SEM of 6 separate experiments using cells from healthy donors (n = 9), lSSc (n = 7), ldSSc (n = 9) and
edSSc (n = 7). Panel (b) represents the correlation of CD69 expression and Treg suppressive capacity in Tregs from the various groups under
investigation. The percentage of CD69 positive regulatory T cells (CD25highCD127-) correlates well with the percentage of inhibition of CD3+ cells in
healthy controls (triangles), lSSc (diamonds), ldSSc (circles) and edSSc (squares). Panel (c) reflects the expression of intracellular TGFb in Tregs from
healthy controls and SSc patients as measured using intracellular flow cytometry. CD25highCD127- cells from all SSc patients express lower TGFb levels
compared to controls. Left panel reflects an representative individual from each group whereas the right panel displays the mean of each group
comprising 6 individuals (per group) coming forth from 4 independent experiments.
doi:10.1371/journal.pone.0005981.g003
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Figure 4. Plasma from SSc patients abrogates T cell suppression and up regulates CD69. (a) During the co-cultures of unsorted CD3+ cells
with either Tregs (CD25highCD127-) or non-Tregs (CD25lowCD127high) 10 or 25% plasma from an edSSc patient or healthy control was added to the
culture. The graph represents data from 3 independent experiments using 3 healthy control cells, and plasma derived from two edSSc patients and
two control individuals. (b) The effect of SSc plasma was evaluated by adding 10% to CD3+ cells for 24 hrs stimulated with PHA or unstimulated. As a
control, CD69 expression was measured on CD3+ cells stimulated with PHA only. CD4 and CD25high/FoxP3high cells were gated based on the
expression of these markers using flow cytometry. (c) CD69 expression and induction upon PHA mediated stimulation of CD4+ and CD25high/
FoxP3high obtained from healthy donors, lSSc, ldSSc and edSSc patients was investigated using flow cytometry. One representative patient from each
group is shown.
doi:10.1371/journal.pone.0005981.g004
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of SSc plasma to CD25highCD127low T cells stimulated with PHA

completely abrogated the effect of PHA. Since we observed a

lower CD69 expression on regulatory T cells freshly isolated from

SSc patients, we studied whether these cells still possess the ability

to increase CD69 expression upon activation. Co-incubation of

regulatory T cells either from patients with lSSc, ldSSc or edSSc

led to an clear increase of CD69 expression that could be inhibited

by plasma from edSSc patients (Figure 4c). In all experiments

presented here, plasma from healthy controls was taken into

account but did sort any inhibitory effects as that observed from

SSc patients.

Discussion

SSc is an autoimmune disease that reflects several features

suggesting dysregulated T cell activation [24,50,51]. The data

presented here suggest that dysfunctional Tregs may play an

important role in SSc. We show that although the number of

Tregs is markedly increased in all clinical SSc phenotypes, these

Tregs have a diminished capacity to control CD4 effector T cells.

Further we show that their defective function correlates with lower

expression of CD69 and TGFb.

Tregs have not been previously characterized in patients with

SSc; however, they are critical in maintaining self tolerance and

preventing autoimmunity. In several other autoimmune disease

Tregs have been implicated in pathogenesis. For example, lupus

prone mice, depleted of CD4+CD25+ cells by thymectomy, have

enhanced expansion of autoreactive T cells and accelerated

autoantibody production [52]. Conversely, restoration of the

CD4+CD25+ cell population from syngeneic normal mice

effectively abrogates the development of autoimmune disease, as

has treatment with in vitro expanded Tregs [52,53,54]. Similar

evidence originates from experimental arthritis, diabetes and

multiple sclerosis models, further highlighting the crucial role of

the Tregs in controlling the delicate balance between tolerance

and autoimmunity. More recently, several studies performed in

patients with systemic lupus erythematosus (SLE) and rheumatoid

arthritis (RA) revealed an aberrant frequency and/or function of

Tregs thus indicating their crucial role in human diseases

[18,19,55,56,57]. However, none of these studies reported the

markedly increased frequency of CD4+CD25+ and CD25+/

FoxP3+CD127- cells found in our study. In contrast, although

some inconsistencies exist, most of these studies found a decreased

frequency of circulating Tregs. There appear to be some

discrepancies in the literature based on the sole use of CD4 and

CD25 as markers for Tregs. However, co-expression of CD4 and

CD25 can be induced upon multiple inflammatory events and

does not necessarily guarantee suppressive capacity. Therefore, the

limited use of these markers could merely reflect activation and

thus lead to a false assessment of elevated Treg numbers. More

recently, it has been shown that the combination of FoxP3 and

CD127 expression is highly specific for discriminating Tregs from

activated T cells. FoxP3 expression correlated inversely with

CD127 expression, and CD4+CD25highFoxP3highCD127low cells

were found to have the most potent suppressive activity [40,58]. In

the current study the combination of all these markers was used to

characterize and isolate regulatory T cells, confirming our

observations of a markedly increased frequency of circulating

Tregs in SSc patients.

TGFb is known to potently induce expression of the

proliferation factor FoxP3, characterizing Tregs. As TGFb is

generally accepted as the key regulator of SSc pathogenesis, the

increased frequency of Tregs in SSc was not surprising. TGFb is

crucial in the induction of FoxP3 expression and induction of

suppressive activity by conversion of CD4+CD25- T cells [59].

Therefore, increased TGFb found in SSc might drive the

increased frequency of CD25highFoxP3highCD127-. Indeed, our

observation of increased FoxP3, despite comparable levels of

CD25 and GITR expression in SSc patients, suggests that Tregs

from SSc patients are activated to some extent. The observation

that CD62L, a marker that is highly expressed on naturally

occurring (thymically-derived) regulatory T cells, is lower in SSc

patients suggests that these Tregs originate through conversion of

CD4+CD25- T cells. These so-called ‘‘adaptive’’ Tregs share many

features with naturally occurring Tregs, but can differ in critical

cell surface biomarkers and functional attributes [14]. For

instance, Tregs can mediate their suppressive effects through the

production of IL-10 versus TGFb [60,61].

In contrast to CD25 and GITR expression, CD69 expression

on Tregs was significantly lower in SSc patients and correlated

closely with diminished suppressive activity. Further, upregulation

of CD69 by T cell stimulation was completely abrogated by

plasma from SSc patients, suggesting the presence of soluble

factors in SSc plasma that inhibit CD69 and consequently, the

suppressive capacity. Interestingly, the effect of plasma on CD69

expression was highly specific for Tregs, since CD69 regulation on

other T cells was not affected. SSc patients show many features

suggesting that autoimmune and inflammatory factors may

stimulate profibrotic organ damage. For instance, accumulating

evidence implicates inflammatory mediators in the Th17 pathway,

such as IL-6, IL-1a, IL-23 and IL-17 itself, but also those in the

Th2 (IL-10, IL-4), Th1 (IFNc) and other inflammatory pathways,

such as IFN type I and TNFa, in this condition (unpublished

results [33,34,35,36]). It is therefore tempting to speculate that

several mediators could inhibit Treg CD69 expression in SSc

patients. In this light, the observation that the three patients who

had a clinical response to treatment had a Treg frequency, CD69

expression and suppressive capacity that was almost comparable to

that observed in healthy controls is intriguing. Whether these

observations are related to lower levels of inflammatory mediators

in patients with a therapeutic response will require further

investigation.

The potential of Tregs to modulate immune responses has led to

considerable interest in their use for clinical intervention in

autoimmune diseases. Two broad therapeutic applications have

been considered: first, to expand the regulatory T cell compart-

ment ex vivo with the goal of re-infusion and second, to

manipulate the immune system in vivo resulting in an increase

of Tregs. The latter approach has been shown to be highly

applicable by seminal studies by Ehrenstein et al. in which a

monoclonal antibody against TNFa led to a re-occurrence of

CD4+CD25+CD62L- T cells with high suppressive activity

[15,62]. Of interest for the current study the suppressive effects

of Tregs in these latter studies were found to be contact dependent

since the neutralization of TGFb and IL-10 did not block the

effect. This is consistent with our observation that intracellular

expression of TGFb on Tregs corresponded well with their

suppressive capacity, whereas no TGFb was found in the culture

supernatants. In our studies we demonstrate that a soluble factors

in the plasma of SSc patients is responsible for the dramatic effects

observed on suppressive activity, CD69 and TGFb expression. In

addition, we did not find evidence for an inherent defect in lower

Treg CD69 expression in SSc patients, since activation of these

cells led to increased expression.

The factors driving TGFb production are not well resolved. The

role of CD69 in the production of TGFb by T cells was shown in

several studies. For instance, it was demonstrated that CD69-/-

mice display greatly prolonged tumor survival that was related to a
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decreased production of TGFb. CD69 engagement induced

TGFb production by NK and T cells [63]. With respect to

autoimmunity, CD69-/- mice showed a higher incidence and

severity of collagen-induced arthritis, which again were correlated

with reduced levels of TGFb [46]. The observation that CD69

surface expression closely mirrors intra-cellular TGFb expression

both on CD45Ra as on CD25highFoxP3highCD127- cells is in line

with the notion that CD69 is implicated in TGFb production by T

regs.

Altogether, our observations provide a rationale for therapeutic

intervention to restore suppressive activity by T regs in SSc. More

careful studies designed to identify the nature of factors that

moderate the effects in the circulation are warranted.
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