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Abstract

Background: There is growing interest in the relation between the brain and music. The appealing similarity between
brainwaves and the rhythms of music has motivated many scientists to seek a connection between them. A variety of
transferring rules has been utilized to convert the brainwaves into music; and most of them are mainly based on spectra
feature of EEG.

Methodology/Principal Findings: In this study, audibly recognizable scale-free music was deduced from individual
Electroencephalogram (EEG) waveforms. The translation rules include the direct mapping from the period of an EEG
waveform to the duration of a note, the logarithmic mapping of the change of average power of EEG to music intensity
according to the Fechner’s law, and a scale-free based mapping from the amplitude of EEG to music pitch according to the
power law. To show the actual effect, we applied the deduced sonification rules to EEG segments recorded during rapid-eye
movement sleep (REM) and slow-wave sleep (SWS). The resulting music is vivid and different between the two mental
states; the melody during REM sleep sounds fast and lively, whereas that in SWS sleep is slow and tranquil. 60 volunteers
evaluated 25 music pieces, 10 from REM, 10 from SWS and 5 from white noise (WN), 74.3% experienced a happy emotion
from REM and felt boring and drowsy when listening to SWS, and the average accuracy for all the music pieces identification
is 86.8%(k = 0.800, P,0.001). We also applied the method to the EEG data from eyes closed, eyes open and epileptic EEG,
and the results showed these mental states can be identified by listeners.

Conclusions/Significance: The sonification rules may identify the mental states of the brain, which provide a real-time
strategy for monitoring brain activities and are potentially useful to neurofeedback therapy.
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Introduction

Understanding the most mysterious brain activities is a long-

term goal of science. Many technologies, including high-density

electroencephalogram (EEG), functional magnetic resonance

imaging (fMRI), and magnetoencephalography (MEG), have been

developed in recent years to address this goal. With the exception

of EEG, however, most of these techniques are spatially restricted

and cannot be used in real-time. Furthermore, the obtained

information is almost always presented as complicated visual

images or waveforms. The EEG is a real-time process; if low-

frequency brain waves could be heard after translation by a special

sonification rule, we may be able to directly ‘‘perceive’’ brain

activity and its variations using our auditory system. As the

frequency range of human hearing is large (ranging from 20 Hz to

20,000 Hz) and the average person can hear subtle differences in

frequency, the hearing strategy may provide not only real-time

monitoring of brain activities but also a more sensitive way to

detect the small variations in the amplitude and duration of brain

waves that are ignored by conventional EEG technique.

To hear the hidden brain activities from an invasive scalp EEG

has long been a dream of neuroscientists. The earliest attempt to

hear brainwaves as music was made in 1934 [1]. A ‘‘Music for

Solo Performer’’ was later presented in 1965 [2], and other similar

music pieces followed. In most of these early works, however, only

the amplitude of the alpha waves or other simple and direct

characters from EEG signals were utilized as the driving sources of

the musical sound. In the 1990s, various new music generating

rules were created from digital filtering or coherent analysis of

EEG [3]. According to the utilized EEG features, the techniques

may be classified into two categories. The first category includes

the parameter mapping method [2,4,5], which translates a few

parameters of EEG to the characteristic parameters of music, and

the event triggering approach, which utilizes specific events such as

interictal epileptic discharges as triggers for the beginning of music

tones or other sound events [6]. The second category is the

musical application of Brain Computer Interface (BCI) [7].

The above sonification rules are mainly based on an inherent

assumption that EEG signal arises from an approximately stable

linear system. However, in the most recent twenty years, the

assumption that the human brain is a complex system has been

widely confirmed by scale-free phenomena, such as the power law

or Zipf’s Law. In fact, power law exists at almost all levels of neural

physiology, including that of ion-channels [8], interspike intervals

(ISI) [9], populations of local field potentials (LFPs) [10], scalp

EEGs [11], functional networks of the brain [12], and behaviors of
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human society [13]. Meanwhile, many studies have revealed that

all sounds (music) [14–17] and images [18] that humans find

enjoyable are composed of scale-free structure. Therefore, in the

computer music fields, composers began to write music in terms of

the fractal structures with algorithms. The scale-free algorithm for

generating pitches was first described by Martin Gardner [19] and

has become a standard in algorithmic music [20]. These facts

imply that the human brain may have adapted to the scale-free

natural environment during evolution and run in a scale-free

manner. Such an intrinsic universal trait may have appeared even

before language [21].

If brain waves can be translated into sound by some algorithms,

what could we hear from an EEG? In addition to the various

linear properties of the EEG, the intrinsic scale-free phenomenon

should also be embodied within its sound. In the current study, we

proposed sonification rules between the characters of the EEG and

the musical notes, which include the mapping method from EEG

waveform amplitude to notes pitch on the basis of the scale-free

phenomenon, the change of EEG power energy to notes volume

according to the Fechner’s law, and the period of EEG to the notes

duration. To test our music generating strategy, a few EEG

segments have been converted into music pieces and evaluated by

listeners.

Methods

From EEG amplitude to pitch of musical note
In this study, we established a sonification rule between the

amplitude (Amp) of an EEG waveform and the Pitch of a musical

note (the logarithm of frequency),

Pitch~m lgAmpzn: ð1Þ

The derivation of equation (1) is as follows.

In detrended fluctuation analysis (DFA) of EEG [22], suppose

that y(t) denotes the original EEG time series with the discrete time

t from 1 to T. Divide the interested range of t into B equal

windows of size k, and let �yyb tð Þ denote a straight line obtained

from a least-square fit of y(t) in the bth window, F(k) denotes the

root mean squares of the fluctuation y(t) from �yyb tð Þ with b from 1

to B. Then, the dependence of F(k) on the window size k exhibits a

power-law behavior [22,23].

F kð Þ!ka: ð2Þ

Further, if the data acquisition rate is denoted by r, then the

frequency fEð Þ of the EEG signal corresponding to k is fE~ r
k

[22].

Therefore,

F fEð Þ!
1

fE
a : ð3Þ

Here, a is an exponent index that usually varies between 1 and 2,

and fE usually ranges between 0.1 Hz and 40 Hz. By performing a

logarithmic operation on both sides, we have

lgfE~{
1

a
lgFzg ð4Þ

where g is a constant. According to Fechner’s law [24], the

relationship between music pitch and the frequency fMð Þ of an

instrument is

pitch~c lgfMzd ð5Þ

where c = 40 and d = 236.6 In the MIDI standard, there are 128

pitch steps with semitone intervals among them. In this work, we

choose the usual pitch range [24 108] with the frequency fM in the

range [33 4186] Hz.

Human hearing ranges from a frequency of 20 Hz to 20 kHz;

that is entirely different than the frequency range of EEG. There

may be a specific transform mechanism between high frequency

input information and the internal working frequency in the brain.

For example, the human auditory system developed a function to

find the ‘‘missing fundamental’’ [25], when humans hear only high

frequency harmonics, they can feel the lost foundation frequency

as well. In this way, though the human brain may not be able to

hear EEG directly, it may hear the harmonic sound. Without a

detailed mechanism, we assume that there is a functional

relationship between fM and fE . We use the simplest linear

approximation fM~c:fE With c as the proportional coefficient in

this work. With equations (4)–(5), we have

pitch~{
c

a
lgFzh ð6Þ

where h is a constant. According to the definition of F, it is related

to the change of amplitude. We may thus assume that there is an

approximately proportional relationship between Amp and F.

F&m.Amp ð7Þ

Here, m is a constant greater than 0. In the following

implementation of music, the Amp (peak-to-peak value) is

measured using the zero-cross method [26]. Based on equations

(6)–(7), equation (1) is obtained with n as a constant and

m~{
c

a
ð8Þ

From equations (1) and (8), R~ c
a lgAmp give us the dynamic

range of pitch. In practice, for any known dynamic system with a

power-law exponent index a, we can calculate this value R first

and then reshape it to a proper region of the MIDI (musical

instrument digital interface) pitch range. We assume that each

individual wave matches a note. We usually take the maximal

value of amplitude Amp = 200 mV, and the a values of EEG range

from 0.5 to 1.5 [11]. In this work, unit mV was took directly,

because the only difference for different unit is the constant n in

eq.(1). If we choose a = 1.10 and with c = 40, we have R = 84; thus,

the pitch may vary from 24 to 108 in the range of the 128 pitch

steps in MIDI. Furthermore, the DFA of EEG showed that there

are two scale-free regions with two different scaling exponents a
[22,23]. We may therefore have two different a and m for the

corresponding EEG signals.

Mapping rules for other variables
A musical note consists of four essential characters: pitch,

timbre, duration, and intensity. Equation (1) gives the mapping

rule for pitch. The timbre may be fixed by choosing a particular

musical instrument, such as a piano in this work. The duration of a

note may be defined as the period of an EEG waveform, and the

music intensity (MI) of the note may be assumed to be proportional

to the logarithm of the change rate of the average power (AP)

according to Fechner’s law with the formulation (9).

Scale-Free Music of the Brain
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Figure 1. EEG and music mapping rules. A. The mapping method. B. The mapping rule of pitch. Each EEG wave matches a note. The pitch of the
note is determined by equation (1), and the duration of the note is defined as the period of the wave. In part A, the top graph shows raw EEG data.
The middle graph shows the pitch (height of the columns) and duration (width of the columns) of each note. The intensities of the notes are
indicated by color. The bottom graph shows the musical notes derived from the EEG. Part B plots pitch value as a function of EEG amplitude. The
curves are derived from equation (1) with c = 40, n1 = 96, n2 = 108, a1~1:50, and a2~0:48; from equation (8), m1~{26:67 and m2~{83:33. Because
the pitches here are stepped by half-tones, the curve exhibits inflexions.
doi:10.1371/journal.pone.0005915.g001
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MI~k lgAPzl ð9Þ

Such a definition is based on the psychological fact that stimulus

information may not be efficiently conveyed by a habitual signal

but by a change, such as the P300 component evoked in an

oddball experimental paradigm in event-related potential study

[27]. Figure 1 shows the mapping rules for the three essential

music characters we propose.

Experiments
To demonstrate the performance of the proposed mapping

rules, we applied this method to real EEG data. All the EEG

recoding experiments and the music evaluation tests were

conducted according to the principles expressed in the Declaration

of Helsinki, and were approved by the Institutional Review Board

of University of Electronic Science and Technology of China. All

subjects provided written informed consents for the collection of

samples and subsequent analysis. For sleep EEG data, recorded

during the rapid-eye movement sleep (REM) and slow-wave sleep

(SWS), the subject was a 25-year-old male, physically and mentally

healthy, right-handed. The signals were recorded by a 32 channel

NeuroScan system with a sampling rate of 250 Hz and were band-

pass filtered from 0.5 Hz to 40 Hz. The data is referenced to

infinity [28], and the following analysis was performed on the data

at electrode Cz. The data for music generation is acquired from

the second night of the subject sleeping with the braincap.

Figure 2 shows the scale-free behavior (equation (2)) of the EEG

signals. There are two scale-free regions with two different scaling

exponents. The boundary between the two regions is at the alpha

wave frequency range [22,23]. For the higher frequency, the Amp

is usually small [29]. The two a1 are 1.4319 (REM) and 1.5655

(SWS). We take a~a1~1:50 and show the result in Figure 1A for

the corresponding m1 of 226.67. For the frequency region lower

than the alpha wave, the Amp is usually large [29]. The two a2 are

0.2313 (REM) and 0.7229 (SWS). We take a~a2~0:48 and show

the result in Figure 1B for the corresponding m2 of 283.33.

Evaluation Test
In order to ascertain if the scale-free music of different sleep

states can be identified, and to see what the main feeling is when

people listen to them. 60 healthy students participated in this test

(41males, 19 females), ranging in age from 18 to 25 years (mean

21.05, SD 2.36). None of the volunteers reported any neurological

disorders, psychiatric diseases, or were on medication. All had

normal hearing. 95% of them were without special musical

education, and 5% of them had special musical training less than 2

years.

We designed a test with 25 music pieces consisted of 10 from

REM, 10 from SWS and 5 from white noise (WN, Audio S3) with

the same mapping rule. Each music piece lasted 30 seconds and

they were randomly played to the volunteers.

The test consisted of three steps: first, the volunteers were

instructed to listen to two music pieces A (REM music) and B

(SWS music), and focus on the differences between them. They did

not know where the music was from. After the display, they were

required to mark the differences between A and B of pitch,

volume, tempo and timbre. Second, the volunteers were arranged

to listen to the 25 music pieces in a stochastic order. After each

music piece was played, they were asked to identify whether the

listened piece was similar to A, B or neither. During the

experiment, if someone felt he forgot the feelings of A and B, we

gave him one more chance to re-experience A and B. If the music

piece was from REM, and the listener thought it more like piece A

(REM music), it was defined as ‘‘correct’’, while the listener

thought the piece more like B or neither A nor B, it was defined as

Figure 2. Power-law of sleep EEG with the DFA method. Here k is the window size, and F(k) is the fluctuation from the local trends in windows
with k time points [17]. For REM, a1~1:4319 and a2~0:2313; for SWS, a1~1:5655 and a2~0:7229.
doi:10.1371/journal.pone.0005915.g002
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‘‘incorrect’’, and same way for music B. Third, after the second

step finished, they were required to write down their general

feelings of the three kinds of music.

Results

Music of sleep EEG
The resulting music pieces are shown in Figure 3, 4. The results

demonstrate that REM music (Audio S1) encompasses a wide

variety of note pitches. The fast rhythm and lively melody

(Figure 3) suggest an active state of the brain in REM. On the

contrary, the SWS brainwaves are characterized by a larger

amplitude and longer duration, which results in a piece of music

(Audio S2) dominated by low pitches and a slower rhythm

(Figure 4). It sounds more like a lullaby, which fits nicely with the

fact that the brain in SWS is in a tranquil and relaxed state [30].

Interestingly, the pitch distribution of our brainwave music is

demonstrated to follow the Zipf’s law [16] (Figure 5). This means

that the present method retains the scale-free properties of the

EEG data and that the values of exponent index are all within the

reasonable range of music [16].

Music evaluation
In the first step, the ratios of subjects who found differences

between A and B in pitch, tempo, volume and timbre are 76.7%,

98.3%, 53.3% and 13.3% respectively. These results indicated that

the differences in pitch and tempo are larger than that of volume.

The possible reason may be that the pitch and tempo are related

respectively to the EEG amplitude and period, and they are quite

different between the two sleep stages. In addition, the timbre was

assumed the same for all cases, thus the volunteers could not

discriminate them well.

The average identification accuracy of all the music is 86.8%,

and the kappa statistical parameter k that estimates the overall

Figure 3. Musical notes obtained from REM sleep state. Top trace: original brainwaves. Middle trace: the corresponding notes translated from
the brainwaves. The vertical columns represent the pitch (height of the columns), duration (width of the columns), and intensity (color of the
columns) of the notes. The same time scale is used in the top and middle graphs. Bottom trace: Musical notation obtained from the EEG segment of
the beginning. The staves are from MIDI sequences with a tempo of 120 beats per minute.
doi:10.1371/journal.pone.0005915.g003
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agreement is significant (k = 0.800, P,0.001). Table 1 shows the

details of the identifications of REM, SWS and WN music.

About the general feelings of A, B and WN, the final written

notes indicated that 78.3% of the listeners thought that A has

higher pitch range, faster tempo than B, and 73.3% of them

considered that A could deduce a happy emotion while B could be

boring and drowsy.

Discussion

Except the above sleep EEG, we also tested the method on EEG

from eyes open or eyes closed of a 25 years old male student, and

interictal EEG of a 30 years old male epileptic patient. The music

pieces can be found in the supporting materials. Exposing the

music to the listeners, the correct ratio for the identification of eyes

closed music (Audio S4) and eyes open music (Audio S5) is 75.6%.

They felt that the music for eyes closed were faster than eyes open,

and the reason may be due to the dominant alpha wave during the

eyes closed condition. For the epileptic data, the EEG usually

contains some specific bursts of large amplitude consisted of low

frequency components, therefore, some notes with long duration

would appear when the epileptic specific activity occurred (Audio

S6), and that make it easy to identify and differentiate it from

others.

Compare to the widely adopted spectra based method [4,6],

there are some distinct differences: 1) In our method, two

psychological or physiological laws are adopted, the power law

for pitch and Fechner’s law for volume, and these two rules are

non-linear, while the rules defined in spectra based method are

usually based on the linear characteristics of EEG; 2) Our method

Figure 4. Musical notes obtained from SWS sleep state. Top trace: original brainwaves. Middle trace: the corresponding notes translated from
the brainwaves. The vertical columns represent the pitch (height of the columns), duration (width of the columns), and intensity (color of the
columns) of the notes. The same time scale is used in the top and middle graphs. Bottom trace: Musical notation obtained from the EEG segment of
the beginning. The staves are from MIDI sequences with a tempo of 120 beats per minute.
doi:10.1371/journal.pone.0005915.g004
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is more convenient to realize on –line because we adopted a

strategy of each wave constituting a single note; 3) About the

frequency information, as we adopted the ‘‘period of a wave’’ for

the ‘‘duration of a note’’, we adopted implicitly the frequency

information, too.

Intuitively, the translation from EEG to note may be realized

through a phenomenally direct mapping method, i.e., the

frequency, period and amplitude (EEG) to the pitch, duration

and volume (music), respectively. Some early works did follow this

strategy [2]. However, as the frequency and period are

reciprocally related, the generated sequence would be far from

music, but an ‘‘audification’’ [6], in which the EEG data is

adopted to control the audio signal directly.

In conclusion, we discovered a set of sonification rules for

translating EEG to music based on the intrinsic nature of the both

modalities. We focus in particular on scale-free phenomena, which

exist widely in nature and include those of neural activity, EEG,

and human behavior. Therefore, the scale-free or equivalent

power-law phenomenon may be an essential mechanism of the

brain. In addition, this study also addresses an old question [31]:

why do people like music? A possible answer is that the brain and

music both follow the same dynamic principle, the power-law,

which may provide the most efficient method for humans to

interact with the environment. To substantiate these speculations,

much more efforts are needed for us to look into the details of the

dynamics of EEG, and the neural substance of music. Further-

more, our sonification rule may provide a vivid audio window for

monitoring the brain activities and may also be useful for auditory-

based neurofeedback therapy in the future.

Supporting Information

Audio S1 60s excerpt of the music from the Rapid Eyes

Movement sleep.

Found at: doi:10.1371/journal.pone.0005915.s001 (10.58 MB

WAV)

Audio S2 60s excerpt of the music from the Slow Wave Sleep.

Found at: doi:10.1371/journal.pone.0005915.s002 (10.58 MB

WAV)

Audio S3 20s excerpt of the music from the White Noise.

Found at: doi:10.1371/journal.pone.0005915.s003 (3.62 MB

DOC)

Audio S4 20s excerpt of the music from Eyes closed.

Found at: doi:10.1371/journal.pone.0005915.s004 (3.62 MB

WAV)

Audio S5 20s excerpt of the music from Eyes open.

Found at: doi:10.1371/journal.pone.0005915.s005 (3.53 MB

WAV)

Figure 5. Zipf’s law of music. The pitch distributions of REM and SWS musical pieces. The rank and value of the pitch occurrence number are
plotted on the horizontal and vertical axes, respectively. The two different symbols represent the corresponding music pieces. The trend lines are
based on the marks of each kind. For REM, b1~{0:2516 and b2~{2:1109; for SWS, b1~{0:2290 and = 21.2478.
doi:10.1371/journal.pone.0005915.g005

Table 1. Matrix of the identifications results of 25 music
pieces listened by 60 volunteers.

A B Other Accuracy

A (REM) 518 6 76 86.3%

B (SWS) 20 492 88 82.0%

Other (WN) 6 2 292 97.3%

The total tests of A, C and WN are 600, 600 and 300, respectively. The totally
average accuracy is 86.8%.
doi:10.1371/journal.pone.0005915.t001
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Audio S6 20s excerpt of the music from epileptic EEG.

Found at: doi:10.1371/journal.pone.0005915.s006 (3.62 MB

WAV)
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