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Abstract

Experimental protein-protein interaction (PPI) networks are increasingly being exploited in diverse ways for biological
discovery. Accordingly, it is vital to discern their underlying natures by identifying and classifying the various types of
deterministic (specific) and probabilistic (nonspecific) interactions detected. To this end, we have analyzed PPI networks
determined using a range of high-throughput experimental techniques with the aim of systematically quantifying any
biases that arise from the varying cellular abundances of the proteins. We confirm that PPI networks determined using
affinity purification methods for yeast and Eschericia coli incorporate a correlation between protein degree, or number of
interactions, and cellular abundance. The observed correlations are small but statistically significant and occur in both
unprocessed (raw) and processed (high-confidence) data sets. In contrast, the yeast two-hybrid system yields networks that
contain no such relationship. While previously commented based on mRNA abundance, our more extensive analysis based
on protein abundance confirms a systematic difference between PPI networks determined from the two technologies. We
additionally demonstrate that the centrality-lethality rule, which implies that higher-degree proteins are more likely to be
essential, may be misleading, as protein abundance measurements identify essential proteins to be more prevalent than
nonessential proteins. In fact, we generally find that when there is a degree/abundance correlation, the degree distributions
of nonessential and essential proteins are also disparate. Conversely, when there is no degree/abundance correlation, the
degree distributions of nonessential and essential proteins are not different. However, we show that essentiality manifests
itself as a biological property in all of the yeast PPI networks investigated here via enrichments of interactions between
essential proteins. These findings provide valuable insights into the underlying natures of the various high-throughput
technologies utilized to detect PPIs and should lead to more effective strategies for the inference and analysis of high-
quality PPI data sets.
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Introduction

The accurate modeling of cellular processes requires knowledge

of the underlying components together with practical descriptions

of the interactions between them [1]. Proteins make up much of

the cellular machinery; however, they may act individually, as

parts of a dynamic pathway, or as elements of multi-component

complexes that behave as individual functional entities [2]. The

elucidation of protein roles is enhanced by discovery of their

interactions with other proteins in the cell. Recent advances in

experimental high-throughput (HT) technologies, most notably in

the forms of the yeast two-hybrid (Y2H) [3] and tandem-affinity-

purification (TAP) [4] platforms, have enabled large-scale protein-

protein interaction (PPI) screens and subsequent constructions of

corresponding PPI networks. A number of HT data sets, from

these and other experimental platforms, are available for the yeast

Saccharomyces cerevisiae [5–9] and for a small number of other

species, including Escherichia coli [10,11], Drosophila melanogaster

[12,13], and Caenorhabditis elegans [14].

Due to their potential significance in delineating biological

organization, the topologies of PPI networks have been explored

using a variety of graph-theoretical techniques [15–17]; however,

recent investigations have found many of them to resemble

probabilistic, or random, frameworks [18,19]. PPI networks are

also routinely exploited for the discovery of biological traits, where

correlations among topological properties and biological attributes

are probed for. Examples of inferred relationships include those

between degree (number of interactions) and essentiality [20–23],

and connectivity and evolutionary rate [24–26]. Other studies aim

to identify biological entities, such as functional modules [27–29]

and pathways [30,31], in the networks. More recently, PPI

network information has been used to augment gene expression

measurements to identify condition-specific response complexes

[32,33]. PPI networks also have prospective roles in drug discovery

[34].

It is clear that PPI networks have the potential to considerably

supplement many areas of biological research. However, it is well

known that data sets from different studies have very small
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numbers of coincident interactions [6,35]. These small overlaps

have led to some skepticism and suggestions of bias regarding their

authenticities [36,37]. The aforementioned observations and

reservations were primarily based on analyses of three experimen-

tal studies of yeast proteins, two using Y2H screens [7,9] and

another using a HT mass spectrometric protein complex

identification (HMS-PCI) technique [6], which is based on an

affinity purification procedure. More recently, two large indepen-

dent yeast PPI data sets determined using nearly identical TAP

methodologies have become available [5,8]. While the number of

mutually detected TAP interactions is modest, the overlaps of the

TAP-observed interactions with the Y2H and HMS-PCI data sets

are very small. A very small interaction overlap also exists between

two TAP data sets of E. coli [10,11].

For PPI networks to be effectively utilized, their authenticities

must be established. Platform-dependent high-quality interaction

maps for yeast have recently been deduced for TAP [38] and Y2H

[39] methodologies. However, a major step toward extracting and

verifying credible interactions from raw experimental data

requires comprehension of the distinct systematic biases present

in the various experimental platforms. Previous investigations for

yeast have suggested that protein abundance is an important factor

for detecting interactions in affinity purification studies but not in

Y2H screens [35,40]. Von Mering et al. [35] showed that in PPI

data sets deduced from two affinity purification studies (TAP [41]

and HMS-PCI [6]), proteins having more interactions were more

likely to have larger corresponding messenger RNA (mRNA)

abundances while no such bias was detected in a PPI data set

deduced from Y2H screens. Björklund et al. [40] showed that PPIs

detected by two more-recent TAP studies [5,8] were enriched with

highly-abundant (.6000 molecules/cell) proteins, while a Y2H

data set contained no significant enrichment. Although each study

confirmed an abundance effect in affinity purification experiments

for yeast, they did not perform comprehensive studies investigating

the total extent of any abundance influence. Simply considering

the impact of only highly-abundant proteins is insufficient to

ascertain the scope of any abundance effects. Most proteins in a

cell do not have very high abundances; therefore, it is useful to

probe whether relative levels of promiscuity, possibly stemming

from the varying abundances of the proteins, are perceivable in a

variety of affinity purification data sets, including those that are

inferred high-quality.

The influence of protein abundance upon the method of

interaction detection is reinvestigated here. We analyzed PPI data

sets encompassing three different platforms by incorporating

cellular protein as well as mRNA abundance levels measured using

three diverse technologies: western blot (WB) [42], flow cytometry

(FC) [43], and gene expression (GE) [44]. Together with yeast PPI

data sets examined in a previous study [35], we also investigated

more recent TAP data sets for yeast [5,8] and E. coli [10,11].

Correlations between protein degree, or number of detected

interactions, and cellular protein and mRNA abundances were

determined with no averaging or binning of data. Additionally, to

gauge the potential for artificial correlations arising from irregular

abundance distributions we computed distributions for proteins by

degree. We find that all TAP and HMS-PCI PPI data sets for yeast

and E. coli contain a statistically significant correlation between

protein degree and cellular abundance, while the Y2H data sets

show no such relationship. The findings confirm that affinity

purification methods are influenced by probabilistic interactions

due to differences in protein concentrations. While it is known that

the nature of affinity purification methods induce retrieval of

nonspecific contaminants, or promiscuous prey proteins, we find

that their promiscuity is related to their high abundance. While

these results may not be unexpected, here we quantify the levels of

the abundance effects and show their persistence throughout the

data sets. More interestingly, analysis of high-confidence (HC)

interaction data sets inferred in the affinity purification studies

show that they, too, have a statistically significant correlation

between degree and abundance. As mentioned earlier, the Y2H

data sets, including HC, show no correlation between degree and

abundance. Therefore, we substantiate here a systematic differ-

ence between PPI networks determined from Y2H and affinity

purification methods.

In light of the discovered associations between degree and

abundance, we reinvestigated the centrality-lethality rule [20–23],

which implies that higher-degree proteins are more likely to be

essential. We find, through strict statistical analyses of degree

distributions of essential and nonessential proteins, that the raw

and HC Y2H data sets show no correlation between degree and

essentiality, while the HMS-PCI and TAP PPI networks, with one

exception, contain substantial correlations. However, it is also

found that essential proteins are generally more abundant than

nonessential proteins and, therefore, these latter correlations may

be artificially induced. In fact, we generally find that degree/

abundance and degree/essentiality correlations occur in tandem

where either both are present or both are absent. As such, the

centrality-lethality rule may be misleading. In an effort to identify

nonrandom signatures in the interaction data sets we determined,

via comparisons with strict randomized simulations, the propensity

for essential proteins to selectively interact with each other. We

find that all yeast PPI datasets contain significant enrichments of

essential-essential interactions. While the propensity for essential

proteins to be involved in essential complex biological modules has

been realized previously in HC networks [23], we demonstrate the

more general case that essential proteins prefer to interact with

each other.

These findings provide valuable insights into the underlying

natures of and the differences between the various HT

technologies utilized to detect PPIs. This knowledge should lead

to more effective strategies for the inference and analysis of high-

quality PPI data sets.

Materials and Methods

We analyzed protein interaction networks for yeast and E. coli

determined from Y2H [7,9], HMS-PCI [6], and TAP [5,8,10,11]

platforms. These studies provide lists of all experimentally

observed interactions. These unprocessed data sets are referred to

here as raw. In all cases, raw binary interactions (non-self and

undirected) and subsequent PPI networks were assembled by

tabulation of bait-prey pairs. Some of these studies additionally

attempt to identify substantive interactions using a range of

methodologies, including experimental reproducibility, removal of

suspect promiscuous proteins, and assignment of confidence scores

using computational techniques. These latter data sets are referred

to here as high confidence. We have investigated raw PPI networks

and any corresponding HC data sets that were concurrently

inferred.

Yeast Data
Raw Y2H data sets from two investigations, labeled Ito [7] and

Uetz [9], were downloaded from the IntAct database [45] (http://

www.ebi.ac.uk/intact/site/index.jsf). Ito et al. [7] additionally

provide a core, or HC, data set which contains interactions that

were experimentally detected at least three times and this was

downloaded from (http://itolab.cb.k.u-tokyo.ac.jp/Y2H).

Abundance in Protein Networks
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Purification data from one HMS-PCI study, labeled Ho [6], was

acquired from the original publication. Ho et al. [6] also infer a

HC data set by removal of suspect promiscuous prey proteins and

this was downloaded from IntAct.

Purification data from two TAP investigations [5,8] were

acquired from their original publications. The raw data set of

Gavin et al. [5], labeled Gavin, used matrix-assisted laser

desorption/ionization-time-of-flight mass spectroscopy (MALDI-

TOF MS) to identify co-purifying proteins. A corresponding HC

data set was inferred in their study by first determining ‘socio-

affinity’ scores for each pair of proteins followed by an iterative

clustering procedure that was refined using a curated set of protein

complexes [46]. Two raw data sets were taken from the study of

Krogan et al. [8]. The first, labeled Krogan-TOF, used MALDI-

TOF MS to identify co-purifying proteins, while the second,

labeled Krogan-LCMS, used liquid chromatography tandem mass

spectrometry (LCMS) for protein identifications. Two types of HC

data sets from the study by Krogan et al. [8] were downloaded

from (http://tap.med.utoronto.ca/downloads.php). Both of their

HC data sets were inferred by first removing 44 nonspecific

contaminants and nearly all cytoplasmic ribosomal subunits from

the raw data. The first HC data set, labeled Krogan-INT, contains

the remaining interactions that were identified by both detection

methods. The second, labeled Krogan-CORE, was derived using

machine-learning algorithms trained on curated protein complex-

es in the MIPS reference database [47].

Yeast cellular protein and mRNA abundances during normal

aerobic growth were taken from three investigations, where each

used a different measurement methodology: WB [42], FC [43],

and GE analysis [44]. Essential yeast proteins were obtained

from the Saccharomyces Genome Deletion Project (http://

www-sequence.stanford.edu/group/yeast_deletion_project/Essential_

ORFs.txt) and the Munich Information Center for Protein

Sequences (MIPS) (ftp://ftpmips.gsf.de/yeast/catalogues/gene_

disruption). Only proteins annotated as essential in both datasets

were considered to be essential here.

Escherichia coli Data
Raw TAP-determined PPI networks from two investigations,

labeled Butland [10] and Arifuzzaman [11], were acquired from their

original publications. Gene expression measurements during

normal aerobic growth were taken from three studies [48–50].

Computational Analyses
Correlations between protein degree and abundance were

evaluated by determining Pearson and Spearman rank correlation

coefficients for log(degree) vs. log2(abundance). In every case the

two coefficients were very similar, with Spearman’s correlation

coefficient generally being slightly smaller in magnitude. Corre-

lation analyses were performed for pairs of individual data sets

(PPI network vs. abundance measurement set) with no averaging

of data, i.e., a protein was included as a separate data entity if both

its degree and abundance were known. To illustrate the general

trends in the correlations, or lack of, we generated plots of

log(degree) vs. ,log2(abundance)., where the latter quantity was

determined by averaging log2(abundance) values, for a particular

abundance measurement set, of proteins having the same degree.

To gauge the possibility of artificial correlations arising from

irregular abundance distributions of proteins in the PPI data sets,

we computed abundance distributions for proteins grouped by

degree. These are illustrated via color maps (Figures 1, 2, 3).

Correlations between essentiality and degree were evaluated by

calculating P-values for two-sample Kolmogorov-Smirnov (KS)

test for differences between degree distributions of essential and

nonessential proteins. Comparable P-values were determined to

test for correlations between protein abundance and essentiality.

The enrichment of essential-essential protein interactions in a

network was evaluated by computing a P-value, via calculation of

a Z-score and assuming a normal distribution, for the difference

between the actual number and the average obtained from

randomly selecting proteins to be essential. However, when

randomly selecting proteins to be considered essential, we ensured

that the total number and the degree distribution of the chosen

essential proteins matched those of the actual essential proteins.

This ensures that artificial differences arising from changes in

degree distributions of essential proteins are not observed whilst

simultaneously conserving the network structure. Results were

deduced from 1000 simulations.

Results

Influence of Protein Abundance upon Degree in Raw PPI
Data Sets

Experimental PPI data sets are derived from techniques that

attempt to detect the presence of protein associations in a cellular

environment. Therefore, an investigation into any influences the

cellular concentration of each protein has on the detected

interactions should be based on protein abundance measurements.

Recent determinations of yeast cellular protein abundances during

normal growth were achieved by tagging open reading frames

(ORFs), thereby allowing expressions from their natural chromo-

somal locations, and measuring absolute levels by WB [42] and FC

[43] techniques. We utilized protein abundance measurement

data sets from both of these studies. Although it is the proteins that

are overwhelmingly responsible for the various cellular functions,

expression levels of their precursors, mRNA molecules, provide

considerable insights into the internal states of a cell. In fact,

measurement of mRNA expression levels by microarray experi-

ments [51–53] is far simpler and more widespread than

measurement of protein abundances. Accordingly, there have

been an enormous number of GE studies that have determined

yeast mRNA abundances during normal growth. The findings

reported here utilized the GE measurements of Holstege et al.

[44]; however, it should be stressed that comparable results were

obtained when using GE measurements from three more-recent

studies [54–56]. The previously noted trend between degree and

abundance [35] was based on the data of Holstege et al. [44]. As

noted above, six raw yeast PPI data sets were investigated here

encompassing three diverse HT technologies: TAP (three data

sets), HMS-PCI (one data set), and Y2H (two data sets). We have

also investigated two raw TAP data sets for E. coli and used GE

measurements from three studies [48–50].

Table 1 shows the correlations between yeast protein degree

and abundance, for each of the WB, FC, and GE measurements.

We find that all three raw TAP PPI data sets contain statistically

significant correlations between protein degree and abundance.

The Pearson correlation coefficients for test of linear relationship

between log values, lying between 0.23 and 0.33, are similar but

not large and all corresponding Spearman rank correlation

coefficients are very close in value. However, all P-values are less

than 0.0001, suggesting that the relationships are significant, i.e.,

they do not represent random events. We stress that these

correlations are obtained without any averaging of data, i.e., each

protein’s degree and abundance is included as a single data entity.

Merging the Gavin and Krogan-TOF data sets produces a PPI

network that contains very similar degree/abundance correlations

to the individual data sets. Figure 1A, showing all data points,

illustrates the degree/abundance relationship in the raw TAP

Abundance in Protein Networks
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Gavin PPI network using the WB abundance measurements [42],

and Figure 1B shows the general trend where log2(abundance)

values were averaged over proteins having the same degree. The

Pearson correlation coefficient for this latter averaged data is 0.52

and the corresponding P-value is less than 0.0001. Similar plots are

obtained for the other raw yeast TAP PPI data sets and also when

using the FC (protein) and GE (mRNA) abundance measurements.

The results for the E. coli TAP data sets are almost identical to

those of the yeast TAP sets (Table 2), with Pearson and Spearman

correlation coefficients lying between 0.11 and 0.46 and all

associated P-values less than 0.0001. Figures 2A and 2B show the

non-averaged and averaged data, respectively, for the Butland PPI

network using the GE measurements of Covert et al. It is clear that

there is a definite propensity, although slight, for proteins of

increasing degree to have higher abundances.

The observed correlations could be artificial if the abundance

distributions of the proteins at each degree are skewed. However,

this notion can be discounted as we are finding statistically

significant correlations for non-averaged data. Nonetheless, we

investigate the abundance distributions by degree to further

establish the authenticity of the degree/abundance relationship in

the raw TAP PPI networks. For proteins appearing in both the raw

Gavin PPI and WB abundance measurement data sets, we show

the total abundance distribution (binned in integer values of

log2(abundance)) in Figure 1C and for each degree (as a color map)

in Figure 1D. The total abundance distribution is seen to be very

close to normal and the distributions for each degree are also

reasonably symmetric about their averages. Note that Figure 1D

reflects the general trend of the averaged data in Figure 1B. These

observations are echoed for the E. coli TAP Butland PPI network

Figure 1. Relationship between protein degree and abundance in the raw yeast TAP Gavin PPI network [5] using the western blot
abundance measurements of Ghaemmaghami et al. [42]. (A) All data points, i.e., each protein’s degree and abundance is plotted; (B) averaged
data where log2(abundance) values were averaged over proteins having the same degree; (C) total normalized abundance distribution, binned in
integer values of log2(abundance), for proteins appearing in both PPI and abundance measurement data sets; (D) normalized abundance
distributions for each degree where frequencies are shown by color: most yellow signifies smallest nonzero value and most blue represents values
larger than 0.25. Best-fit line to data in (A) also shown in (D).
doi:10.1371/journal.pone.0005815.g001
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and the GE measurement data set of Covert et al. (Figure 2C and

D), where the degree/abundance relationship appears more

pronounced. Therefore, it is possible that the TAP method is

detecting interactions that are influenced by the cellular

concentrations of the proteins. While this finding may not be

surprising, as the TAP method expresses tagged bait and potential

prey ORFs from their natural chromosomal locations, it does

imply that raw TAP-determined PPI networks incorporate a

probabilistic, or random, element. The higher the cellular

abundance of a protein, the more often it is likely to be detected

in purifications and, therefore, the more interactions it will be

construed to be involved in. Although the correlation coefficients

given here are not large, it is known that mRNA and protein

abundance measurements contain many sources of variation due

to technical and biological factors.

The HMS-PCI technique to isolate and identify co-purifying

proteins [6] is very similar to that used in the TAP studies [5,8], as

it uses an affinity purification method to isolate complexes.

However, rather than express tagged ORFs from their native

environments, as in the TAP studies, Ho et al. express tagged

ORFs from plasmids containing GAL1 promoters. It is unclear

how this latter non-native delivery system affects the cellular

abundances of tagged baits but one might expect the prey proteins

to have concentrations similar to those of normal growth

conditions. Not surprisingly, perhaps, we also find statistically

significant correlations between degree and abundance for the Ho

PPI data set. Correlation coefficients are again modest, lying

between 0.17 and 0.28 (Table 1), but all P-values are less than

0.0001, suggesting a statistically significant relationship between

degree and abundance for the Ho data set. Therefore, it would

seem that general affinity purification methods are detecting

interactions that are somewhat mediated by the proteins’ cellular

abundances.

Without counter-example PPI data sets that show no

correlation between degree and abundance, one might expect

the findings here to be biologically relevant, i.e., on the average,

Figure 2. Relationship between protein degree and abundance in the raw E. coli TAP Butland PPI network [10] using the gene
expression measurements of Covert et al. [48]. (A)–(D), see Figure 1 legend.
doi:10.1371/journal.pone.0005815.g002
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the number of interactions a protein is involved in is related to its

cellular concentration. Such an interpretation would suggest that

a salient probabilistic element exists in the interactome.

However, regardless of the extent of the probabilistic behavior,

it is well established that there exist stable protein complexes

[47]. Therefore, it is of interest that we find all of the raw Y2H

PPI data sets, whether individual Ito, Uetz, or combined, to have

no correlation between degree and abundance (Table 1). All

correlations coefficients are very small, lying between 20.07 and

0.04, and all P-values, for Pearson correlation coefficients, are

greater than 0.02, although for the individual Ito and Uetz data

sets they range from 0.06 to 0.92. When using the GE and WB

abundance measurements, correlation coefficients have absolute

values of less than 0.05 and P-values are greater than 0.22. P-

values are smallest for the FC abundance measurements and the

reasons why are not immediately clear. Figures 3A and 3B show

the non-averaged and averaged data, respectively, for the Ito PPI

network using the WB protein abundance measurements. It is

clear from both plots that no relationship exists between degree

and abundance.

In order to further clarify the differences between PPI networks

determined from the Y2H and the affinity purification methods we

analyzed abundance distributions by degree for proteins appearing

in both the raw Ito PPI and WB abundance measurement data

sets. Figures 3C and 3D show the total abundance distribution and

the distributions for each degree, respectively. The total abun-

dance distribution is essentially normal and notably very similar to

that of the TAP Gavin PPI data set (Figure 1C). Additionally,

Figure 3D shows that the distributions for each degree are

symmetric about their averages and also clearly illustrates the lack

of a degree/abundance correlation. Therefore, when compared

against the results for the raw TAP and HMS-PCI data sets, we

must conclude that the raw Y2H PPI data sets contain no degree/

abundance relationship. Furthermore, we must also affirm that the

Figure 3. Relationship between protein degree and abundance in the raw yeast Y2H Ito PPI network [7] using the western blot
abundance measurements of Ghaemmaghami et al. [42]. (A)–(D), see Figure 1 legend.
doi:10.1371/journal.pone.0005815.g003
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degree/abundance correlations observed in the TAP and HMS-

PCI PPI networks are not the result of skewed abundance

distributions, whether total or for individual degrees. It is clear that

the Y2H methodology is distinct from the affinity purification

methods in that protein expression levels do not influence the

observed interactions for the former technique.

The findings above are consistent considering that in a Y2H

screen both bait and prey proteins are expressed from similar

plasmids. A protein expressed from a plasmid is likely to have a

different cellular concentration than if it were expressed from its

native chromosomal location. Additionally, different proteins

expressed from the same plasmid are presumed to have similar

expression levels. However, if the latter were not true, then it is

possible that the Y2H screen could be influenced by some other

abundance factor related to post-transcriptional modification.

Investigation of this speculation is not straightforward but may be

possible if the translational efficiencies of the proteins can be

estimated.

Influence of Protein Abundance upon Degree in HC PPI
Data Sets

Some of the yeast PPI studies utilized in this work also inferred

HC interaction data sets from their raw data. These HC PPI

data sets are meant to contain interactions that are most

reproducible or resolute. The methods used to infer HC

interactions were varied (see Materials and Methods). Therefore,

it is of interest to discover whether these sets contain any

relationship between degree and abundance. We find that all the

yeast HC PPI networks deduced from raw affinity purification

data (TAP and HMS-PCI) contain statistically significant

correlations (Table 3). All correlation coefficients are modest,

lying between 0.13 and 0.39, and are similar to those observed

for the raw TAP and HMS-PCI data sets. However, all P-values

are less than 0.0001, again suggesting nontrivial relationships

exist between degree and abundance. These results are

surprising for the Krogan-CORE, Krogan-INT, and HC Ho

data sets, as their inferring methodologies included, as a first

step, the removal of promiscuous proteins. Krogan et al.

removed 44 nonspecific contaminants and nearly all cytoplasmic

ribosomal subunits from the raw data as a preliminary step,

while the HC Ho PPI data set is a subset of the raw data in

which nonspecifically binding proteins have been subtracted. In

spite of these removals, and any further inferring procedures,

their HC data sets still contain a degree/abundance relationship,

albeit weak. Therefore, the influence of protein cellular

abundance is not limited to a small proportion of highly-

abundant and promiscuous proteins. Rather, the effect seems

subtly ingrained throughout the data. The TAP HC data set of

Gavin et al. was inferred by first determining ‘socio-affinity’

scores for each pair of proteins, which quantified the propensity

of them to occur together in purifications. However, degree/

abundance correlation coefficients lie between 0.31 and 0.39. In

fact, the HC Gavin data set has larger correlation coefficients

than the corresponding values for the raw PPI network. These

findings for the HC TAP and HMS-PCI data sets might suggest

that the degree/abundance relationship is, as discussed earlier,

Table 1. Pearson correlation coefficients (r) and corresponding P-values for tests of linear association between log(degree) and
log2(abundance) in raw yeast PPI data sets.

PPI data set Western blot (Ghaemmaghami et al.) Flow cytometry (Newman et al.) Gene expression (Holstege et al.)

NP
a r Pb NP

a r Pb NP
a r Pb

TAP

Gavin 2146 0.29 (0.28) , 1585 0.29 (0.26) , 2496 0.33 (0.30) ,

Krogan-TOF 2291 0.24 (0.21) , 1523 0.25 (0.20) , 2701 0.23 (0.21) ,

Krogan-LCMS 3543 0.26 (0.21) , 2314 0.28 (0.22) , 4707 0.26 (0.20) ,

Gavin+Krogan-TOFc 2845 0.33 (0.31) , 1925 0.32 (0.27) , 3410 0.32 (0.30) ,

HMS-PCI

Ho 1326 0.26 (0.23) , 938 0.28 (0.25) , 1630 0.18 (0.17) ,

Y2H

Ito 2107 0.01 (0.04) 0.5820 1357 20.05 (20.04) 0.0646 2910 ,0 (0.01) 0.9212

Uetz 929 20.01 (0.01) 0.8470 599 20.07 (20.06) 0.0686 1221 20.04 (20.03) 0.2214

Ito+Uetzd 2403 20.01 (0.01) 0.6066 1560 20.06 (20.04) 0.0277 3311 20.01 (20.01) 0.5689

Spearman rank correlation coefficients are provided in parentheses.
aNumber of proteins in PPI data set having abundance measurements.
bThe symbol ‘‘,’’ signifies P,0.0001 for both Pearson and Spearman correlation coefficients.
cCombined Gavin and Krogan-TOF interaction data sets.
dCombined Ito and Uetz interaction data sets.
doi:10.1371/journal.pone.0005815.t001

Table 2. Pearson and Spearman rank (in parentheses)
correlation coefficients (r) for tests of linear association
between log(degree) and log2(mRNA expression) in raw E. coli
TAP PPI data sets.

PPI data set Covert et al. Kang et al. Salmon et al.

NP
a r NP

a r NP
a r

Butland 1277 0.46 (0.45) 1278 0.45 (0.42) 856 0.24 (0.21)

Arifuzzaman 2918 0.21 (0.19) 2919 0.21 (0.20) 1764 0.13 (0.11)

Butland+
Arifuzzmanb

3158 0.30 (0.28) 3159 0.30 (0.27) 1904 0.17 (0.13)

All P,0.0001 for both Pearson and Spearman correlation coefficients.
aNumber of proteins in PPI data set having abundance measurements.
bCombined Butland and Arifuzzaman interaction data sets.
doi:10.1371/journal.pone.0005815.t002
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biologically significant. Alternatively, the observed correlations

for the HC data sets could be the result of inferring procedures

that are not completely effectual.

The Y2H HC data set of Ito et al. is a subset of the raw PPI

network and includes only those interactions that were experi-

mentally detected at least three times. We find that this interaction

set shows no correlation between degree and abundance (Table 3).

This is not surprising as the raw data set also contains no

relationship. The correlation coefficients are small, ranging from

20.06 to 0.03, and all P-values for Pearson correlation coefficients

are larger than 0.23.

The results for the HC PPI data sets are identical to those of the

raw data sets. Those derived from affinity purification experiments

show weak, but statistically significant correlations between degree

and abundance, while all Y2H PPI data sets show no relationship

between degree and abundance. These findings further exemplify

the difference between interactions detected by Y2H screens and

affinity purification procedures.

Relation between Essentiality and Topology in Raw PPI
Data Sets

The correlation between degree and essentiality, in that proteins

having more interactions are more likely to be essential, has been

noted previously [20–23] and is generally an accepted precept

known as the centrality-lethality rule. Recent analysis of curated,

inferred, and HC yeast networks show that essential proteins are

more likely to be involved in essential complex biological modules

and, therefore, their degrees are on the average higher [23].

However, the findings presented here, that PPI networks

determined using affinity purification procedures (TAP and

HMS-PCI) have statistically significant correlations between

degree and abundance while Y2H PPI networks do not, warrants

another look at the degree/essentiality property.

Table 4 gives average degrees of essential and nonessential

proteins in the raw yeast PPI networks. We find that essential

proteins have higher average degrees than nonessential proteins in

all of the raw PPI networks. However, it is known that degree

distributions of PPI networks are not normal; rather, they resemble

power-law scaling [22,57]. Therefore, in order to determine the

significance of the difference between degrees of essential and

nonessential proteins we use the two-sample KS test to compare

their degree distributions. We find that degree distributions of

essential proteins in the TAP and HMS-PCI data sets are

significantly different to those of nonessential proteins, with all PKS-

values being less than 0.0001 (Table 4). These differences are

illustrated in Figures 4A and 4B, which show degree distributions

of essential and nonessential proteins in the raw Gavin and

Krogan-TOF PPI data sets, respectively.

In stark contrast, we find that degree distributions of essential

and nonessential proteins in the raw Y2H networks are not

significantly different, with PKS-values of 0.9915 and 0.1542 for the

raw Ito and Uetz data sets, respectively. Degree distributions of

essential and nonessential proteins in the Ito and Uetz PPI

networks are shown in Figures 4C and 4D, respectively, and it is

clear that for both data sets the curves are very similar. Therefore,

we conclude that the raw Y2H data sets show no correlation

between degree and essentiality. In fact, the raw Ito data set has a

P-value very near to one. It has been previously reported that the

Ito data set has a weak correlation between degree and essentiality

[20]; however, we find no difference between degree distributions

of essential and nonessential proteins for this data set.

The degree/essentiality relationships discussed above for the raw

PPI data sets are curious in that if there is a (weak) degree/

abundance correlation, there is also a degree/essentiality relation-

ship. These tandem correlations are observed in all of the raw

interaction data sets determined by affinity purification methods

(TAP and HMS-PCI). The converse is also true, in that, if there is no

degree/abundance relationship, there is also no degree/essentiality

correlation (Table 4). These tandem non-correlations are observed

in the Y2H interaction data sets. Insights into why these correlations

are associated can be obtained by looking for a relationship between

essentiality and abundance. In fact, we find that essential proteins are

more abundant than nonessential proteins in all of the yeast

abundance measurements utilized here. P-values, assuming normal

distributions, for tests of difference between average log2(abundance)

of essential and nonessential proteins for the WB [42], FC [43], and

GE [44] measurements are 10219, 1027, and 10237 respectively. P-

values for two-sample KS tests are very similar, 10218, 1028, and

10231 for WB, FC, and GE measurements, respectively. Therefore,

the correlation between degree and essentiality in the raw TAP and

HMS-PCI networks may be artificial due to essential proteins

generally being more abundant. This would explain why there is no

Table 3. Pearson correlation coefficients (r) and corresponding P-values for tests of linear association between log(degree) and
log2(abundance) in high-confidence yeast PPI data sets.

PPI data set Western blot (Ghaemmaghami et al.) Flow cytometry (Newman et al.)
Gene expression (Holstege et
al.)

NP
a r Pb NP

a r Pb NP
a r Pb

Gavin [TAP] 1286 0.31 (0.30) , 1012 0.38 (0.37) , 1470 0.39
(0.37)

,

Krogan-CORE [TAP] 2208 0.20 (0.18) , 1461 0.16 (0.14) , 2578 0.22
(0.21)

,

Krogan-INT [TAP] 1081 0.15 (0.13) , 778 0.16 (0.15) , 1186 0.20
(0.19)

,

Ho [HMS-PCI] 1240 0.26 (0.26) , 874 0.26 (0.26) , 1535 0.21
(0.21)

,

Ito [Y2H] 596 20.02 (20.01) 0.6514 380 20.06 (20.06) 0.2393 727 0.02
(0.03)

0.6726

Spearman rank correlation coefficients are provided in parentheses.
aNumber of proteins in PPI data set having abundance measurements.
bThe symbol ‘‘,’’ signifies P,0.0001 for both Pearson and Spearman correlation coefficients.
doi:10.1371/journal.pone.0005815.t003

Abundance in Protein Networks

PLoS ONE | www.plosone.org 8 June 2009 | Volume 4 | Issue 6 | e5815



correlation between degree and essentiality in the Y2H data sets as

they also contain no correlations between degree and abundance.

Therefore, the common notion that essential proteins generally have

higher degrees than nonessential proteins may be misleading.

In an effort to identify deterministic, or nonrandom, signatures in

the raw yeast PPI networks, we quantified the enrichment of

essential-essential interactions in the data sets by comparing the

observed numbers with those from strict randomized simulations.

For a given PPI network, proteins to be considered as essential were

selected at random with the constraint that the degree distribution of

the selected proteins matched those of the actual essential proteins.

This ensures that the results are not perturbed by varying degree

distributions of the ‘essential’ proteins whilst simultaneously

conserving the network structures. Data were deduced from 1000

realizations and the results are given in Table 5. We consistently find

that the numbers of actual essential-essential interactions are larger

than those from the randomized simulations and that standard

deviations are relatively small. Accordingly, all P-values, being less

than 0.0001, indicated significant nonrandom enrichments. There-

fore, biological signatures seem evident in all raw yeast PPI data sets,

including Y2H despite that these networks show no correlation

between degree and essentiality.

Relation between Essentiality and Topology in HC Data
Sets

Table 4 also shows the average degrees of essential and

nonessential proteins in the HC yeast PPI networks together with

P-values from two-sample KS tests. The Y2H HC Ito data set, with a

P-value of essentially one, has no correlation between degree and

essentiality. This result is almost identical to that of the raw Ito PPI

network, indicating that the Y2H method does not bias essential

proteins to have more interacting partners. The HC Krogan data

sets, like their raw counterparts, show significant correlations (all P-

values are less than 0.0001) between degree and essentiality. This

result is unsurprising as these data sets also show a relationship

between degree and abundance. Similar findings are obtained for

the HC Ho data set (HMS-PCI). Up to this point, the findings for

HC data sets lend support to the notion that any identified

correlation between degree and essentiality in a PPI network may be

artificially induced, as essential proteins are generally more abundant

than nonessential. In stark contrast, however, the HC Gavin data set,

with a P-value of 0.52, shows no correlation between degree and

essentiality although it does contain a degree/abundance associa-

tion. Of the PPI networks investigated in this work, the HC Gavin

data set is the only one that contains a degree/abundance correlation

but not a degree/essentiality relationship. The reasons for this are

not immediately clear but are presumably related to the steps in the

HC interaction inferring procedure.

We find that all of the HC yeast PPI networks show enriched

interactions between essential proteins (Table 5). All P-values are

less than 0.0001, indicating that the observed numbers of essential-

essential interactions are significantly larger than from the strict

randomized simulations. Our test for enrichment is very strict in

that we freeze the network structure and degree distributions of

essential (actual and randomly chosen) proteins and, therefore, it is

difficult to form any extensive topological insights. However, our

tests indicate, without question, that all raw and HC yeast PPI

networks show a propensity for essential proteins to prefer to

interact with each other. We deduce that a biological signature in

a PPI network does not appear in the commonly acknowledged

form of a degree/essentiality correlation; rather it manifests itself

by enhancing interactions between essential proteins. While a

recent study concludes that in HC PPI networks essential proteins

are more likely to be involved in essential complex biological

modules [23], here we find the more general case that essential

proteins prefer to interact with each other.

Discussion

It is shown that raw and HC TAP and HMS-PCI PPI networks

contain statistically significant correlations between protein degree

and abundance. The previously noted trend between protein

Table 4. Tests of difference beween degree distributions of essential and nonessential proteins in raw and high-confidence yeast
PPI data sets.

PPI data set Essentiala Nonessentialb PKS
c

Correlation between degree/
abundance

Raw

Gavin [TAP] 20.79 11.02 , yes

Krogan-TOF [TAP] 18.02 10.63 , yes

Krogan-LCMS [TAP] 28.49 14.36 , yes

Ho [HMS-PCI] 12.24 8.18 , yes

Ito [Y2H] 3.04 2.60 0.9915 no

Uetz [Y2H] 2.59 1.96 0.1542 no

High-confidence

Gavin [TAP] 5.88 5.90 0.5160 yes

Krogan-CORE [TAP] 7.82 4.20 , yes

Krogan-INT [TAP] 5.21 2.95 , yes

Ho [HMS-PCI] 6.04 3.89 , yes

Ito [Y2H] 2.13 1.84 0.9994 no

aAverage degree of essential proteins.
bAverage degree of nonessential proteins.
cP-value for two-sample Kolmogorov-Smirnov test for difference between degree distributions of essential and nonessential proteins. The symbol ‘‘,’’ signifies
P,0.0001.

doi:10.1371/journal.pone.0005815.t004
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degree and mRNA abundance [35] is confirmed here using

protein abundances and more extensive analyses. The results are

consistent for yeast (three TAP and one HMS-PCI) and E. coli (two

TAP) data sets. For yeast, the correlations are similar for three

diverse protein and mRNA abundance measurement technologies:

western blot, flow cytometry, and gene expression. For E. coli, the

results are consistent when using gene expression measurements

during normal aerobic growth from three studies. Although

correlation coefficients are modest, the observations are highly

significant. Furthermore, protein abundance and gene expression

measurements are known to be variable. Yet, the identified

correlations between degree and abundance are consistently

observed and indicate an inherent and nontrivial property of the

data.

The TAP method extracts tagged bait proteins, expressed

from their native genome locations, and determines which other

proteins, or preys, have co-purified, or complexed, with them.

The HMS-PCI method is similar except that tagged bait proteins

are expressed from plasmids. In both techniques the prey

proteins are expressed under natural conditions and from their

native environments. As such, the degree/abundance relation-

ship in TAP and HMS-PCI PPI data sets may not be wholly

unexpected. If all protein pairs have very similar binding

affinities, then probability theory dictates that the number of

detected interactions for the proteins will correlate roughly with

their concentrations, or abundances. Nonrandom influences in

the forms of differing expression times and cellular locations will

remove some of the probabilistic elements. While it is known that

Figure 4. Degree distributions of essential (red dashed) and nonessential (black) proteins in raw yeast PPI networks. (A) Gavin (TAP)
[5], (B) Krogan-TOF (TAP) [8], (C) Ito (Y2H) [7], (D) Uetz (Y2H) [9].
doi:10.1371/journal.pone.0005815.g004
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the TAP method induces retrieval of nonspecific contaminants,

or promiscuous prey proteins, we find that their promiscuity may

be an artificial property induced by their high abundances.

Statistically significant correlations between degree and abun-

dance are also observed in inferred HC TAP and HMS-PCI data

sets. While some of the inferring procedures involved steps to

eliminate contaminant and nonspecifically binding proteins, the

resulting HC interaction data sets still contain degree/abun-

dance relationships. Therefore, the influence of protein cellular

abundance is subtly ingrained throughout the data and not

limited to a small proportion of highly abundant and

promiscuous proteins.

In direct contrast to the TAP and HMS-PCI data sets, the raw

and HC yeast Y2H PPI networks show no correlation between

degree and abundance. These results identify a systematic

difference between PPI networks determined from the Y2H and

affinity purification platforms. In hindsight, this is consistent with

the experimental design. The Y2H approach expresses a pair of

bait and prey proteins, to be tested for an interaction, from

engineered plasmids. Therefore, their expression levels are likely to

be different than in their natural environments. That is not to say

that the Y2H method is not influenced by protein abundance in

some way. It is generally accepted that proteins expressed from the

same plasmid have similar abundances. While their expressions

may be similar, their translational efficiencies may not be and, if

so, it is possible that Y2H screens are affected by plasmid-induced

abundances. However, investigation of this premise is not

straightforward. Nonetheless, we find here that Y2H PPI data

sets are not in any way mediated by protein cellular abundance.

The lack of degree/abundance correlations in Y2H PPI data

sets can be related to the findings of Zhang et al. [58], who show

that interactions in the Y2H data of Ito et al. [7] are more likely to

be biologically functional (i.e., independently reported in two or

more publications using non-Y2H techniques) if the participating

proteins have relatively high in vivo abundances [58]. Taken

together, the results imply that while proteins having high

abundances may be detected by the Y2H approach to have few

interactions, those interactions are more likely to be specific.

Conversely, while proteins having low abundances may have

many Y2H-detected interactions, they are more likely to be non-

specific. Since in vivo abundances of many proteins are often less

than when tagged in Y2H experiments, the detected interactions

may not necessarily occur in the natural environment. However,

associations detected between proteins having high in vivo

abundances, while not guaranteed to be relatively many, are

more likely to be specific and naturally occurring. Therefore, while

in vivo abundances do not influence the total number of Y2H-

detected interactions for each protein, they intrinsically impact the

numbers that are specific.

In light of the observed (weak) correlations between degree and

abundance for the TAP and HMS-PCI PPI networks, we

reinvestigated the centrality-lethality rule, which implies that

proteins having more interactions are more likely to be essential.

From analysis of three diverse yeast protein and mRNA

abundance measurement data sets we find that essential proteins

are more prevalent than nonessential proteins. We also observed

that generally degree/abundance relationships occur in tandem

with degree/essentiality correlations. Additionally, whenever there

is no degree/abundance association, there is also no degree/

essentiality correlation. Therefore, the degree/essentiality correla-

tions in the TAP and HMS-PCI data sets seem artificial. The lack

of any degree/essentiality correlation in the Y2H data sets

supports this notion. The results imply caution in accepting the

generally acknowledged centrality-lethality rule.

Biological, or nonrandom, signatures were identified in all of the

PPI networks in the form of enrichments of interactions between

essential proteins. This propensity for essential proteins to interact

with each other was deduced by comparisons with strict

randomized simulations. Therefore, we deduce that essentiality

does not manifest itself as a biological property in the commonly

acknowledged form of a degree/essentiality correlation; rather, it

is actualized by the enhancement of interactions between essential

proteins.

As well as demonstrating systematic differences in PPI

networks determined using the Y2H and affinity purification

methodologies, we discern the nature of the probabilistic element

in the latter approaches. These findings should provide insights

into the design of more effective strategies to deduce the specific

and invariable interactions from raw TAP and HMS-PCI data

sets. Such unbiased, or untrained, procedures are vital if we are

to infer HC PPI networks for organisms other than yeast and

exploit them to discern genuine biological traits and features.

One avenue of discovery that is receiving recent attention is the

development of analyses that combine gene expression and PPI

data sets. For given conditions, whether environmental or

physiological, changes in mRNA levels relative to a reference

state are mapped onto the PPI networks in order to identify

response-type modules or sub-networks. In this respect, it is vital

to comprehend the underlying nature of the PPI data set. Highly

abundant proteins are likely to have larger fluctuations in their

expression levels and, therefore, if one is utilizing a network

deduced from an affinity purification procedure, care must be

taken when interpreting the results.
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Table 5. Enrichment of interactions between essential
proteins in raw and high-confidence yeast PPI data sets.

PPI data set Actual Randoma sb

Raw

Gavin [TAP] 4692 4310 32.6

Krogan-TOF [TAP] 3416 3203 30.9

Krogan-LCMS [TAP] 6566 6235 52.7

Ho [HMS-PCI] 1470 1391 20.2

Ito [Y2H] 315 248 12.4

Uetz [Y2H] 163 119 7.8

High-confidence

Gavin [TAP] 892 829 14.1

Krogan-CORE [TAP] 1742 1397 24.0

Krogan-INT [TAP] 906 765 13.4

Ho [HMS-PCI] 716 652 14.9

Ito [Y2H] 97 68 6.2

All P,0.0001.
aAverage number of interactions observed between essential proteins for 1000
simulations in which essential proteins were selected randomly from all
proteins occurring in a network. In each simulation, the total number of
selected proteins and their degree distribution were constrained to be
identical to those of the actual essential proteins.

bStandard deviation for simulations described above.
doi:10.1371/journal.pone.0005815.t005
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