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Abstract

Background: Antibiotic exposure rapidly selects for more resistant bacterial strains, and both a drug’s chemical structure
and a bacterium’s cellular network affect the types of mutations acquired.

Methodology/Principal Findings: To better characterize the genetic determinants of antibiotic susceptibility, we exposed a
transposon-mutagenized library of Escherichia coli to each of 17 antibiotics that encompass a wide range of drug classes
and mechanisms of action. Propagating the library for multiple generations with drug concentrations that moderately
inhibited the growth of the isogenic parental strain caused the abundance of strains with even minor fitness advantages or
disadvantages to change measurably and reproducibly. Using a microarray-based genetic footprinting strategy, we then
determined the quantitative contribution of each gene to E. coli’s intrinsic antibiotic susceptibility. We found both loci
whose removal increased general antibiotic tolerance as well as pathways whose down-regulation increased tolerance to
specific drugs and drug classes. The beneficial mutations identified span multiple pathways, and we identified pairs of
mutations that individually provide only minor decreases in antibiotic susceptibility but that combine to provide higher
tolerance.

Conclusions/Significance: Our results illustrate that a wide-range of mutations can modulate the activity of many cellular
resistance processes and demonstrate that E. coli has a large mutational target size for increasing antibiotic tolerance.
Furthermore, the work suggests that clinical levels of antibiotic resistance might develop through the sequential
accumulation of chromosomal mutations of small individual effect.
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Introduction

Antibiotic tolerance, the decreased efficacy of antimicrobial

agents in eliminating infections, is a serious and worsening global

problem in human health [1,2]. During the long history of

chemical warfare between microbes, the genomes of many

bacteria have evolved to encode multiple counter-measures [3].

Moreover, a level of antibiotic tolerance that allows some bacteria

to survive an initial exposure gives the population the opportunity

to accumulate mutations, leading to higher levels of tolerance and

potentially to full clinical resistance [4]. Much of the literature on

antibiotic resistance focuses on tolerance to the high antibiotic

levels typically used in a clinical setting (see [5] for an exception).

Even in clinical practice, however, bacteria commonly experi-

ence sub-inhibitory drug concentrations, which may be capable of

reducing the growth rate but are lower than the minimum

inhibitory concentration (MIC). The cyclical dosing regimen for

most antibiotics, for example, may cause the drug’s plasma

concentration to approach the MIC for short intervals during

treatment. Furthermore, micro-niches within the host, such as

epidermis, lungs, and joints, may attain significantly lower drug

concentrations than the plasma [6]. Finally, patient non-

compliance with the prescribed frequency and duration of

antibiotic use can allow plasma levels to fall below the MIC. In

such circumstances, selection for more tolerant variants is strong.

Outside clinical settings, environments containing antibiotics,

especially at sub-inhibitory concentrations, abound. Soil contains

numerous antibiotic-producing species [7], which generate

compounds with roles in killing competitors as well as in inter-

and intra-species signaling [8]. Antibiotics also enter the soil

through the use of manure from livestock whose feed was

supplemented with antibiotics [9], and wastewater can contain

multiple drugs at concentrations in the range of ng/L, even after

treatment [10]. The rise in environmental antibiotic levels

resulting from the widespread use of antibiotics has selected for

resistant strains in both soil [11] and aqueous [12] environments.

Diverse mechanisms including drug target modification,

enzymatic drug inactivation, and intracellular drug concentration

reduction can lead to antibiotic resistance [13,14,15]. A variety of

sources, such as lateral gene transfer and chromosomal mutations,

can provide the underlying genetic changes, and clinically resistant

strains often contain multiple alterations. The plasmids, transpo-

sons, and mobile chromosome cassettes that contribute to

antibiotic resistance, including methicillin resistance, in Staphylo-

coccus aureus are examples of well-studied extrinsic elements that

confer antibiotic resistance [16]. Similarly, E. coli strains can
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receive contributions to quinolone resistance from gyrA and parC

mutations as well as a reduction in outer membrane porins and an

increase in drug efflux pump activity [17]. Cases where multiple

mutations work collectively to give resistance, while of clear

importance, are not well understood, in part because the range of

mutations that can increase a particular bacterium’s antibiotic

tolerance is rarely known.

The effect of mutation in altering genetic programs and

modulating susceptibility, however, is starting to receive attention.

Multiple groups have assayed the drug susceptibility of bacteria

containing families of simple genetic perturbations such as single

gene deletions or transposon insertions [18,19,20,21,22]. These

studies found that large numbers of genes influence drug

susceptibility, including many whose dominant function is not

resistance. Moreover, while some genes, such as those that code

for drug efflux pumps, contribute to resistance to a wide range of

compounds, many others are drug or drug class specific.

Most previous work focused on identifying genes whose removal

changes the MIC by some predetermined threshold, usually 2-fold.

The increasing number of examples of multiple genetic perturba-

tions combining to confer high levels of resistance [23,24],

however, suggests that mutations of even mild individual benefit

are of potential clinical relevance. As such, we decided to take a

complementary approach to identifying mutations that alter

antibiotic susceptibility.

Rather than testing MIC directly, we searched a library of

transposon-mutagenized cells [25] for those with a competitive

advantage at drug concentrations that moderately reduced the

parental strain’s growth rate. Competitive growth of the mutants

for multiple generations caused the abundance of strains with even

minor fitness advantages or disadvantages to change measurably

and reproducibly. Applying microarray-based genetic footprinting

[25] to the resulting population allowed us to identify and quantify

the genetic determinants contributing to both antibiotic sensitivity

and tolerance.

The experimental conditions proved to be particularly condu-

cive to finding mutants fitter than the wildtype in the presence of

antibiotics, enabling us to find many genes whose inactivation

increases antibiotic tolerance. Analysis of individual mutants

revealed a non-perfect correlation between a strain’s fitness

advantage in the conditions of the selection and its MIC in similar

conditions. Explanations for and implications of the variations are

discussed.

Results and Discussion

Selection of Transposon Insertion Mutants under Sub-
inhibitory Antibiotic Exposure

To characterize the contribution of all genetic loci to antibiotic

tolerance, we exposed a collection of mutants, each with a single

transposon insertion, to sub-inhibitory drug concentrations

(Figure 1). We chose 17 antibiotics that possess a range of

mechanisms of action (Table 1). These drugs inhibit various

cellular functions including the synthesis of proteins, nucleic acids,

folic acid, and cell wall [26,27]. As intermediate antibiotic

concentrations are typically the most selective for resistance [28],

during the selections, we used antibiotic concentrations that

impaired but did not completely inhibit the growth of the wild-

type strain (Table 1). Using a sensitive microarray-based strategy

[25], we then quantified the change in prevalence of different

transposon insertion mutants in parallel.

The final distribution was compared to both the original,

unselected library and to the library selected in the same media

without antibiotics (See Materials and Methods). Comparison to

populations grown in M9 media without antibiotics allowed media

and antibiotic effects to be distinguished. As some external stresses

such as low-level antibiotic exposure can ameliorate the deleteri-

ous nature of some mutations [29], the abundance of slow growing

mutants may increase in cultures with antibiotics compared to

cultures without antibiotics. Comparison to the unselected library

allowed the identification of insertion locations whose prevalence

had increased or decreased during the experiment and reduced

the chances of classifying slow-growing mutants as less susceptible.

Dataset S1 lists the loci whose disruption caused a significant

fitness change in each of the drugs tested. Heatmaps displaying the

data for loci whose disruptions were significant in individual drugs

and classes of drugs are in Figures S4–S11.

Validation of Global Fitness Profiling
Comparison to the literature indicates that we found many

genes whose removal is known to increase susceptibility (See

Tables S1–S4). However, attempts to set significance thresholds

that captured all such genes resulted in an unacceptable number of

false positives. As shown later in this work, some mutations confer

such a high degree of fitness in particular antibiotics that strains

possessing these mutations rapidly take over the population. The

existence of such highly fit mutants makes it difficult to distinguish

neutral transposon insertion locations from some with a slightly

deleterious effect because mutants with either are quickly lost from

the population. Consequently, when selecting genes for additional

study, an emphasis was placed on those whose removal increases

antibiotic tolerance.

To quantify the strength of the identified loci, we subjected the

wild-type parental strain to direct competition with mutant strains

in conditions that mimicked those of the selection (See Materials

and Methods and Text S1). The mutants tested behaved as

expected from the en mass library selections (Figure 2).

We also determined the MICs for a representative set of

individual mutants lacking genes judged to have a significant role

in antibiotic susceptibility. The relative efficiency of our MIC

measurement method (see Text S1) allowed us to analyze a larger

set of strains than would have been possible using only the more

labor-intensive direct competitions. As the initial selection process

did not require a change in MIC, the MICs provide complemen-

tary information about each mutation’s effect, and we did not

expect all beneficial (or deleterious) disruptions to cause an

increase (or decrease) in MIC. The most common result was a

change in MIC of 1.5 fold (the smallest change detectable with our

technique) in the expected direction—an increase (or decrease) for

a locus whose disruption was beneficial (or deleterious). We

observed increases up to ,5-fold and decreases down to ,7-fold

(Tables S5–S7).

Genes Exert Class-Specific Effects on Antibiotic
Susceptibility

Excluding the 30 genes identified as having general roles in

antibiotic susceptibility (see below), only antibiotics of the same

class have a substantial number of beneficial or deleterious

transposon insertion locations in common (Figure 3). Some

functional classes of antibiotics, particularly the b-lactams and

the aminoglycosides, have strong class-specific signatures, while

other classes, such as the quinolones, have few loci in common.

The number of loci impacting growth at the sub-inhibitory drug

concentrations tested varied greatly from the low hundreds for the

aminoglycosides down to zero for fusidic acid and erythromycin,

inhibitors of the 50S subunit of the ribosome to which E. coli is

intrinsically resistant [30]. The mutational target size observed

likely depends on both the antibiotic concentration assayed and

Antibiotic Fitness Landscape
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the structure of E. coli’s cellular network. For example, redundant

pathways may mask the contribution of some genes to antibiotic

tolerance.

The observation that disruptions caused increases in fitness

during drug exposure is characteristic of antagonistic pleiotropy

[31], which reflects an evolutionary tradeoff for increased drug

tolerance at the consequence of other traits. A large number of

disruptions fell into this category (336), suggesting that the

bacterium contains a large mutational target size for increasing

drug tolerance. To elucidate the pathways and mechanisms

contributing to susceptibility and tolerance, we analyzed the

identified loci for three drug classes – the aminoglycosides

(Figure 4), the b-lactams (Figure 5), and the folic acid biosynthesis

inhibitors (Figure 6) – in more detail. In each case, the data

indicate the major pathways involved and the many ways that

mutations can modulate those pathways.

Mutations Beneficial in the Presence of Aminoglycosides
Excluding loci with a general effect on antibiotic tolerance,

disruptions of 73 loci were beneficial in all four aminoglycosides

tested while disruptions of 14 loci were deleterious (Figure 4A).

Using an aerobic environment – a condition where many

antibiotics, especially aminoglycosides, are particularly effective

[32] – likely increased the number and types of beneficial

mutations identified. The set of beneficial disruption loci is

enriched for genes with products involved in quinone binding

(p = 1.7610215), ubiquinone biosynthesis (p = 1.161025), glycoly-

sis (p = 1.561027), L-serine biosynthesis (p = 1.261023), and

cytochrome-c oxidase activity (p = 1.261023). Additionally, the

set is enriched for genes down-regulated in response to oxygen

depravation (p = 3.5610216). Forty-eight of the beneficial muta-

tions likely reduce the number of harmful hydroxyl radicals

created by the Fenton reaction, part of a death-inducing chain

reaction triggered by bactericidal antibiotics that includes NADH

depletion, superoxide generation, and iron-sulfur center destabi-

lization [33] (Figure 4B). Kohanski et al. [34] found that a set of E.

coli strains with similar mutations had increased growth in the

presence of gentamycin. Similarly, Schurek et al. [22] found that

mutants of Pseudomonas aeruginosa with disruptions in homologous

genes had increased tobramycin resistance

To understand the magnitude of the tolerance changes, we

competed a nuoG::kan strain with the wild-type strain. While the

nuoG::kan strain was at a slight disadvantage in the media without

drugs, in the presence of amikacin, the mutant rapidly took over

the culture (Figure 2). In contrast, the nuoG::kan strain and other

mutants that perturbed the pathway leading to death from Fenton

reaction-derived hydroxyl radicals had at most modest (less than 3-

fold) increases in MICs and frequently failed to exhibit any

Figure 1. Overview of experimental protocol. (A) An aliquot of a library containing ,56105 mutants each with a single transposon insertion
[25] was taken from frozen stock, grown overnight in LB, pelleted, washed, and resuspended at 2% inoculum in fresh M9-media containing an
antibiotic at the chosen concentration (Table 1). Each day, an aliquot was frozen, and 2% of the culture was transferred to fresh media to continue the
selection. Genetic footprinting was performed on frozen samples to amplify the region of genomic DNA adjacent to the transposon in each of the
mutants [25]. DNA was subsequently labeled and hybridized with a reference of labeled genomic DNA to spotted microarrays [25]. (B) Dose response
curves were used to select drug concentrations. For each antibiotic, fresh media containing various drug concentrations was inoculated with
overnight culture of the wild-type strain. Growth was monitored using OD600 readings. Shown are the curves for amikacin; curves for all other
antibiotics are in Figure S1. Typically, we selected moderately inhibitory drug concentrations that reduced the growth after 14 hours by 30–50%. (C)
Separation of DNA on an agarose gel provided a qualitative depiction of the population diversity after each day of selection. Shown are the amplified
Tn-adjacent DNA from all seven days of one of the ampicillin selections. Selections performed without antibiotic showed no discernable banding
pattern (Figure S2). Gel images for all selections with antibiotics are in Figure S3.
doi:10.1371/journal.pone.0005629.g001

Antibiotic Fitness Landscape

PLoS ONE | www.plosone.org 3 May 2009 | Volume 4 | Issue 5 | e5629



Table 1. Information related to each antibiotic used in this study.

Name Code
Dose
(mg/ ml) Day # Samples Class Cellular Target

Bactericidal or
Bacteriostatic

Ampicillin AMP 3 2 3 b-lactam Cell wall biosynthesis Bactericidal

Amikacin AMK 1 4 2 Aminoglycoside Protein synthesis, 30S Bactericidal

Bleomycin BLM 1 2 2 Peptide Nucleic acid Bacteriostatic

Cefoxitin FOX 1 3 2 b-lactam Cell wall biosynthesis Bactericidal

Doxycycline hyclate DOX 0.5 2/3* 3 Tetracycline Protein synthesis, 30S Bacteriostatic

Erythromycin ERY 2 3 2 Macrolide Protein synthesis, 50S Bacteriostatic

Fusidic acid FUS 180 4 2 Protein synthesis, 50S Bacteriostatic

Gentamycin GEN 0.1 2 2 Aminoglycoside Protein synthesis, 30S Bactericidal

Lomefloxacin LOM 0.05 2/3* 3 Quinolone DNA gyrase Bactericidal

Nalidixic acid NAL 4 2 2 Quinolone DNA gyrase Bactericidal

Nitrofurantoin NIT 4 3 2 Nitroheterocyclic Multiple Targets Bactericidal

Piperacillin PIP 1 4 2 b-lactam Cell wall biosynthesis Bactericidal

Streptomycin STR 3 2 3 Aminoglycoside Protein synthesis, 30 S Bactericidal

Sulfamonomethoxine SLF 0.5 2/3* 2 Sulfonamide Folic acid biosynthesis Bacteriostatic

Tetracycline TET 0.25 2 2 Tetracycline Protein synthesis, 30S Bacteriostatic

Tobramycin TOB 0.25 2 2 Aminoglycoside Protein synthesis, 30S Bactericidal

Trimethoprim TRM 0.5 4 2 DHFR Inhibitor Folic acid biosynthesis Bacteriostatic

*Two samples from day 2 and one from day 3 were hybridized and analyzed.
doi:10.1371/journal.pone.0005629.t001

Figure 2. Selection rates during direct competitions. Selection rates (generations/day) were calculated as (log2(A(t1)/A(t0))2log2(B(t1)/B(t0)))/
(t12t0) [87]. A(t0) and B(t0) are, respectively, the mutant and the wild-type population sizes at t0, the beginning of the competition, and A(t1) and B(t1)
are the mutant and the wild-type population sizes at t1, the end of the competition. Shown are the average and standard deviation of three
repetitions. The selection rate for the trpA::kan mutant in amikacin was calculated after two days of enrichment to correspond with the samples
hybridized. The trpA::kan strain’s reliance on tryptophan from lysed wild-type cells prevents the mutant from taking over the culture, and during
additional transfers, the wild-type strain showed a competitive advantage. Selection rates for other strains were insensitive to the competition
duration.
doi:10.1371/journal.pone.0005629.g002

Antibiotic Fitness Landscape

PLoS ONE | www.plosone.org 4 May 2009 | Volume 4 | Issue 5 | e5629



increase in MIC (Table S5). Since oxidative respiration processes

are more active in the shaken cultures used for the competitions

than in static MIC-measurement plates, the fitness effect of

removing genes that contribute to the Fenton pathway likely

depends strongly on the oxygen level.

Disruptions expected to interfere with the death pathway

mediated by the Fenton reaction were widely beneficial only in

selections with aminoglycosides, even though all bactericidal

antibiotics are thought to trigger the pathway [33]. Furthermore,

since the selections were performed at antibiotic concentrations

that reduced, but did not completely inhibit, the wild-type strain’s

growth, observing genetic interactions with a putative death

process was initially puzzling.

An explanation for the apparent paradox came from the

observation that during the enrichments in amikacin and

streptomycin, disruptions in tryptophan biosynthesis genes that

should have been lethal in the growth media, which lacked

tryptophan, were strongly beneficial. We confirmed that a trpA::kan

mutant does not grow in the media, with or without antibiotics,

and that when trpA::kan and wild-type strains compete without

antibiotics, the wild-type strain rapidly takes over (Figure 2). When

trpA::kan and wild-type strains compete in the presence of

amikacin, however, the trpA::kan strain remains an appreciable

part of the population (Figure 2). Presumably, a portion of the

wild-type cells are dying, lysing, and releasing enough tryptophan

to support the trpA::kan mutant. Thus, in the aminoglycoside

enrichments, although the overall population was growing,

individual cells were dying. The existence of similar concentration

regimes for other bactericidal drugs remains an interesting area for

future inquiry.

Several beneficial disruptions that likely reduce NADH

accumulation and lower the metabolic flux through the Fenton

reaction may also provide secondary benefits. First, disruption of

electron transport reduces the uptake of aminoglycosides [35].

Second, mutations that keep cAMP-CRP (cyclic AMP bound to

the CRP transcription factor) levels low reduce the transcription of

Figure 3. Overlap between genes influencing fitness in partially inhibitory concentrations of different antibiotics. Squares on the
main diagonals indicate the number of genes whose disruption caused a significant fitness effect (See Materials and Methods). Genes causing general
changes in antibiotic susceptibility (Figure 7) were excluded. The lower left (upper right) triangle reports on genes whose disruption was beneficial
(deleterious) to E. coli in the presence of the indicated antibiotic. Off-diagonal squares indicate how many genes caused significant fitness changes in
both antibiotics when disrupted. The shading shows the likelihood of an overlap of the indicated size or larger occurring by chance and was
calculated using the hypergeometric distribution. P-values were corrected for multiple testing. Erythromycin and fusidic acid are not shown as the
only genes whose disruption affected fitness caused general changes in susceptibility.
doi:10.1371/journal.pone.0005629.g003
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the cAMP-CRP regulon, which has been suggested to include

transporters with affinity for aminoglycosides [36]. Disruptions of

both cyaA, which encodes adenylate cyclase, and crp were

beneficial during the aminoglycoside selections, and a cyaA::kan

mutant has a higher MIC than the wildtype in three of the four

aminoglycosides tested (Table S5). (crp does not appear in Figure 4

due to lack of data in gentamycin and tobramycin; cyaA is not in

Figure 4 because its deletion was generally advantageous.)

Transposon insertions in ptsH, ptsI, and crr, which are expected

to lower cAMP levels [37], were also advantageous. Additionally,

synthesis of the large cAMP-CRP regulon, which is expected to

occur when the glucose in the media is exhausted [38], may not be

the optimal allocation of cellular resources during antibiotic

challenge. Salmonella strains lacking either cyaA or crp are more

resistant to a wide range of antibiotics [39], suggesting that similar

phenomena may occur with other organisms and antibiotics.

Other beneficial disruptions seem to alter the timing and

magnitude of the stringent response, a program E. coli uses to

redirect energy from rRNA and tRNA transcription to the

creation of amino acid biosynthesis enzymes in response to amino

acid starvation [40]. To accomplish the transition, Lon protease

bound to polyphosphate degrades ribosomal proteins, freeing

amino acids that can be incorporated into the needed enzymes

[41], and guanosine tetraphosphate (ppGpp) and guanosine

pentaphosphate (pppGpp) bind RNA polymerase, altering pro-

moter selectivity [42]. Transposon insertions near gpp or spoT,

genes whose products affect the levels and ratio of ppGpp and

pppGpp [43], are beneficial in aminoglycosides (Figure 4 and

Table S5). Similarly, insertions near ppk, which encodes polypho-

sphate kinase [44], or lon are beneficial in tetracyclines (Table S6).

The advantageous character of cpxA and cpxP disruptions points

to a role for the Cpx system, which helps E. coli respond to

extracytoplasmic stress [45], in aminoglycoside susceptibility. At

the core of the Cpx system are the CpxA histidine kinase, its

cognate response regulator, CpxR, and CpxP, a periplasmic

repressor of CpxA [45]. Recent work indicates that the presence of

the wild-type Cpx system increases the number of hydroxyl

radicals, the final output of the Fenton reaction death pathway,

possibly through crosstalk with the Arc system [34]. Somewhat

surprisingly, however, in the absence of CpxA, the cellular pool of

Figure 4. Disruption of electron transport and oxidative respiration reduces susceptibility to aminoglycosides. (A) The heatmaps, in
which hierarchical clustering was used to order both the genes and the drugs [84], show loci whose disruption changed susceptibility to all four
aminoglycosides tested (See Materials and Methods). Table S1 lists the genes with annotations. (B) Of the 73 transposon insertions regions identified
as beneficial in all four aminoglycosides, the 48 shown are expected to reduce Fenton reaction-based oxidative damage. Following exposure to lethal
concentrations of bactericidal antibiotics, the oxidative electron transport chain depletes the NADH pool, generating high levels of superoxide, which
removes iron from iron-sulfur clusters [33]. The free iron subsequently generates hydroxyl radicals through the Fenton reaction [33]. Removal of key
catabolic enzymes should shrink the NADH pool and reduce the flux through the electron transport chain. The media used lacks cysteine, the sulfur
donor for iron-sulfur center synthesis [88], so disruption of cysteine biosynthesis should reduce the availability of sulfur for iron-sulfur centers. The
iron-sulfur center synthesis genes shown are not specific for NADH dehydrogenase I, and their disruption should reduce the number of iron-sulfur
clusters throughout the cell. Q: ubiquinone; FMN: flavin mononucleotide; FAD: flavin adenine dinucleotide
doi:10.1371/journal.pone.0005629.g004
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CpxR is partially phosphorylated, and the Cpx pathway is active,

not off [46]. Furthermore, some mutations that constitutively

activate the Cpx system cause pleiotrophic effects including

amikacin [47] and kanamycin resistance [48], possibly through

the increased expression of drug efflux pumps [49]. Different levels

of Cpx-Arc crosstalk between the various mutant and wild-type

strains may account for these observations.

Mutations Affecting Susceptibility to b-lactams
Excluding loci with a general effect on antibiotic tolerance,

disruption of 33 loci was beneficial in all three b-lactams tested,

while disruption of 12 loci was deleterious (Figure 5A). Many of

the beneficial disruptions turn on the Rcs signaling pathway

(Figure 5B), which Laubacher and Ades [50] previously found to

contribute to b-lactam tolerance. Laubacher and Ades also

showed that the tolerance is not dependent on the Rcs system’s

role in increasing capsule synthesis [50]; they did not, however,

evaluate the importance of the system’s function in suppressing

flagella-based motility [51]. Since many other disruptions

beneficial in b-lactams are in genes whose products participate

in flagella assembly, we hypothesize that suppression of flagella

synthesis is responsible for the beneficial effect of Rcs system

activation.

To confirm that the lack of flagella confers an advantage in b-

lactams, we focused on a fliN::kan mutant in the presence of

ampicillin. In direct competition with the parental strain, the

mutant has a small advantage in media without drug, likely due to

the high energetic cost of motility [52] (Figure 2). With ampicillin,

however, the advantage is much larger (Figure 2), possibly because

energy is a more valuable commodity in antibiotic-stressed cells.

Alternatively, since assembling a flagellum requires peptidoglycan

Figure 5. Reduced flagella synthesis is advantageous in b-lactams. (A) The heatmaps shows loci whose disruption changed susceptibility to
all three b-lactams tested (See Materials and Methods). Hierarchical clustering was used to order both genes and drugs [84]. Table S2 lists the genes
with annotations. (B) Both transposon insertions that disrupt genes that encode flagella components as well as insertions that indirectly reduce
flagella synthesis by activating the Rcs system are beneficial. The core components of the Rcs system are RcsC, a hybrid sensor kinase, RcsD, a
histidine phosphotransferase, and RcsB, a DNA-binding response regulator [89]. Other components are RcsF, a lipoprotein that activates RcsC [90,91],
and RcsA, a transcription factor that forms a heterodimer with RcsB [92]. Together, RcsA and RcsB repress transcription of flhDC, the master regulator
of flagella synthesis [51]. RcsA is a target of the Lon protease [93], and insertions in lon, which stabilize RcsA, are beneficial. RcsC and RcsD both
transfer phosphate to as well as remove phosphate from RcsB, resulting in higher activation of the Rcs system in rcsC or rcsD mutants than in
wildtype [90,94]. Insertions in mdoG and mdoH, which encode proteins that synthesize osmoregulated periplasmic glucans (OPGs), reduce motility by
activating the Rcs system [25]. The beneficial effects of mdoG, modH, and rcsC disruptions are not limited to b-lactams (Figure 7).
doi:10.1371/journal.pone.0005629.g005

Figure 6. Genetic and chemical perturbations of the folate
biosynthesis pathway. Sulfamonomethoxine inhibits FolP, a dihy-
dropteroate synthase [95]; trimethoprim inhibits FolA, the cell’s main
dihydrofolate reductase (DHFR) [56]. FolM, which also acts as a DHFR, is
not inhibited by trimethoprim [58]. Mutants lacking folM or folX are less
sensitive to both to trimethoprim and sulfamonomethoxine.
doi:10.1371/journal.pone.0005629.g006
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hydrolysis [53] and b-lactams inhibit peptidoglycan transpeptida-

tion, the combination of stresses may interact synergistically.

Interestingly, the MIC of the filN::kan mutant as well as that of

several other strains with increased fitness in ampicillin is within

measurement error of that of the wild-type strain (data not shown),

highlighting the ability of the selection method employed to

identify mutations of small effect.

Disruptions expected to work synergistically with b-lactams to

disrupt peptidoglycan integrity are particularly harmful

(Figure 5A). For example, loss of either mltB or slt, which encode

membrane-bound lytic murein transglycosylases [54], is deleteri-

ous. Disruptions of ampG, which encodes a transporter involved in

recycling murein [55], or of ampC, which encodes a b-lactamase

resistance protein [55], are also detrimental.

Disruption of folX or folM is Beneficial in Drugs that
Inhibit Folate Biosynthesis

The only locus whose disruption was beneficial in both

sulfamonomethoxine and trimethoprim, two drugs that inhibit

key steps in folate metabolism (Figure 6), was folM, which encodes

one of E. coli’s two dihydrofolate reductases (DHFRs). E. coli’s

other DHFR, FolA, is inhibited by trimethoprim [56], and folA is

essential in minimal media unless thyA is also knocked out and the

media is supplemented with thymidine [57]. In contrast, folM

deletion strains have no major growth defects, and trimethoprim

does not inhibit FolM [58]. A folM::kan mutant has a 5-fold higher

MIC in sulfamonomethoxine than the wild-type strain, but no

detectable change in MIC in trimethoprim (Table S2). To assess

the strain’s fitness more sensitively, we subjected the folM::kan

strain to direct competition with the wild-type strain and found

that the folM::kan mutation is neutral without drug and beneficial

in the presence of trimethoprim (Figure 2). That the effects in

sulfamonomethoxine are stronger than those in trimethoprim is

consistent with the original transposon enrichment experiments,

which needed two and four days to find loci affecting susceptibility

to sulfamonomethoxine and trimethoprim, respectively. The

beneficial nature of folM deletions in sulfamonomethoxine and

trimethoprim is surprising, as deleting folM would naively be

expected to reduce the available amount of DHFR, making a bad

situation worse. We hypothesize that E. coli may respond to a lack

of FolM by increasing FolA levels, ameliorating the effects of

sulfamonomethoxine and trimethoprim.

Another gene connected to folate biosynthesis whose disruption

was beneficial during the trimethoprim enrichment is folX.

Although the folX data slightly missed the significance thresholds

for the sulfamonomethoxine enrichment, deleting folX gave a ,2-

fold increase in MIC in sulfamonomethoxine (Table S2). Like

folM, a folX deletion did not change the MIC in trimethoprim, but

the mutant strain did have a competitive advantage over the wild-

type strain in trimethoprim (Figure 2). FolX catalyzes the

conversion of 7,8-dihydroneopterin triphosphate to dihydromo-

napterin-triphosphate [59], which redirects 7,8-dihydroneopterin

triphosphate away from the synthesis of tetrahydrofolate (Figure 6).

Thus, folX mutations likely allow metabolic compensation [60] by

increasing the flux of metabolites through the folate biosynthesis

pathway. In fact, increased flux from enhanced p-aminobenzoate

production is a common mechanism of sulfamonomethoxine

resistance [61].

Loci Conferring a General Increase or Decrease in
Antibiotic Susceptibility

Transposon insertions in or near 30 genes provided a significant

change in fitness in at least three antibiotics with distinct targets

(Figure 7). While some drugs of the same class, such as the

aminoglycosides have similar fitness profiles, a mutant’s behavior

in the presence of a drug cannot generally be determined based

solely on knowledge of the drug’s mechanism of action. This is

especially true for drugs of the same class, such as tetracycline and

doxycycline, which have distinct chemical properties that restrict

them to different routes of entry into the cell. In particular, the

comparatively hydrophilic tetracycline passes through OmpF

porins while the more hydrophobic doxycycline diffuses through

the outer membrane [62].

E. coli generates multiple barriers to protect itself from different

classes of harmful, foreign compounds, and we found, as expected,

Figure 7. Genes altering susceptibility to three or more classes
of antibiotics. Yellow (blue) indicates that transposon insertions in or
near a gene were beneficial (deleterious). Black indicates no significant
effect; gray indicates missing data. Antibiotics with the same target are
written in the same color. Sulfamonomethoxine and trimethoprim
inhibit different enzymes in the folic acid biosynthesis pathway; placing
them in separate classes did not alter the results. Z-scores were
calculated as described in Materials and Methods.
doi:10.1371/journal.pone.0005629.g007
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that many of the loci responsible for general alterations in

susceptibility encode enzymes that synthesize cell envelope

components. In particular, perturbations to the negatively-charged

lipopolysaccharides (LPS) and enterobacteria common antigen

(ECA) that protect the outer membrane [63,64] were widely

deleterious. Defective LPS is known to increase sensitivity to

hydrophobic antibiotics and polycationic compounds such as

aminoglycosides [63]. ECA, on the other hand, is thought to

provide protection against organic acids [65], but its role in

antibiotic tolerance had not been well explored; Tamae et al. [20]

did, however, report that loss of rffA increases susceptibility to

gentamycin. Strains with defective ECA (i.e., wzxE::kan) and LPS

(i.e., rfaG::kan) generally had lower MICs than wild-type in the

same antibiotics in which they were depleted during the selections

(Table S7). Direct competitions with a wild-type strain confirmed

that a DwzxE mutation is neutral in media without drug and

deleterious in both nalidixic acid and amikacin (Figure 2).

Rarely was the disruption of a locus beneficial in the presence of

some drugs and deleterious in others. Notable exceptions are yrbB

and yrbE, whose products belong to a system that prevents

mislocalized phospholipids from accumulating in the outer

membrane’s outer leaflet [66]. We confirmed that a yrbE::kan strain

has a higher MIC than the wildtype in bleomycin, has similar

tolerance to the wildtype in tetracycline, and is more susceptible

than the wildtype to nalidixic acid, lomefloxacin, and doxycycline

(Table S7). Loss of the Yrb system likely has little effect in

tetracycline because tetracycline enters the cell using porins rather

than passing directly through the outer membrane [62]. Defects in

the Yrb system likely reduce the negative charge on the outer

membrane, which would decrease the permeability to positively

charged bleomycin and increase the permeability towards the more

neutral and negatively charged nalidixic acid, lomefloxacin, and

doxycycline. The mechanism may be similar to how expression of

the PmrA regulon, which makes the LPS less negative, increases E.

coli’s tolerance to the positively charged polymyxin B but also

increases susceptibility to anionic detergents [67].

To increase antibiotic tolerance, bacteria often reduce the

intracellular drug concentration by increasing the expression of

efflux pumps that use either ATP or membrane potential to expel

toxic agents [68]. Not surprisingly, disruption of genes that control

the levels of the AcrB/AcrA/TolC system, E. coli’s main drug

efflux pump [69], alters tolerance to multiple antibiotics.

Disruption of the acrB gene is widely deleterious (Figure 7).

Disruptions of phoP or rob, which encode transcriptional activators

of the acrAB operon [70,71], are also deleterious, while disruption

of acrR, which encodes a transcriptional repressor of the acrAB

operon [72], is beneficial. Disruption of no other drug pump was

generally deleterious.

Disruption of E. coli’s Trk potassium transport system was

beneficial in a wide range of antibiotics. The low-affinity

transporter contains TrkA, TrkE (SapD), and either TrkH or

TrkG proteins [73,74], and the Tn-enrichment experiment

indicated that disruptions in sapD, trkA, and trkH are beneficial

in piperacillin, doxycycline, tetracycline, and nalidixic acid

(Figure 7). Work with a sapD::kan mutant indicated that removal

of the system increases the MIC by about 1.5-fold in doxycycline,

tetracycline, and nalidixic acid (Table S7). In direct competitions

between a DsapD mutant and the parental strain, the DsapD

mutation was slightly deleterious in the absence of drug, beneficial

in the presence of nalidixic acid, and neutral with tetracycline

(Figure 2). The connection between potassium transport and

antibiotic tolerance merits further study.

Notably, disruptions of two genes of unknown function, yecR

and yfgC, are deleterious (Figure 7). Tamae et al. [20] found that

removal of yfgC decreases the MIC in vancomycin, rifampicin, and

ampicillin. We confirmed the result for ampicillin, and we found

that the MIC is also lower than wild-type in fusidic acid,

doxycycline, and trimethoprim (Table S7). yfgC has homology to

peptidases, and PSORTb [75] predicts that the protein is in the

inner membrane. yecR is regulated by FlhDC [76] and has

homology to lipoproteins. Strong homologs to yecR are found only

in other Enterobacter species; homologs for yfgC are slightly more

widespread, appearing in multiple gamma-proteobacteria.

Resistance through Accumulation of Mutations of Small
Effect

To explore the potential for E. coli to acquire higher levels of

antibiotic tolerance through the sequential accumulation of the

identified chromosomal mutations, we constructed several double

mutants. For each of two drugs, from among the genes that gave

measurable MIC increases when removed singly, we chose pairs

that were putatively in different pathways. As expected, the double

mutants exhibited higher MICs than the parental strain and both

of the two single mutant derivatives. In particular, ybjC::kan and

ompR::kan mutants have MICs 2.25-fold greater than the wild-type

strain in nitrofurantoin, while a DompR ybjC::kan double mutant has

a MIC 5-fold greater than the wild-type strain. The ybjC::kan

allele’s beneficial effects likely come from reduced expression of

the downstream nfsA gene, which encodes an oxygen-insensitive

nitroreductase that converts nitrofurantoin into toxic intermediates

[77]. Similarly, MICs of sapD::kan and lon::kan mutants in

tetracycline are 1.5-fold higher than the wild-type strain, and the

MIC of a DsapD lon::kan mutant is 2.25-fold greater than the wild-

type parent.

A wide variety of mutations, including single base pair changes,

can cause the null phenotypes attained in this work through

transposon insertions and gene replacements. Furthermore, for

most antibiotics, the set of beneficial disruptions spans multiple

pathways. Thus, E. coli’s current genome is likely mutationally close

to one conferring significantly higher antibiotic tolerance. A clinical

S. aureus strain was observed acquiring 35 chromosomal mutations

on the way to vancomycin resistance [78], and in the laboratory,

multiple weak chromosomal mutations have been combined to give

higher resistance in both P. aeruginosa [24] and Helicobacter pylori [23],

suggesting that the phenomenon is quite general.

Concluding Remarks
In this work, we competitively grew transposon insertion

mutants of E. coli in batch cultures with drug concentrations that

had a moderate impact on the parental strain’s growth rate.

Propagating the mutant collection for a sufficiently long duration

allowed us to identify both beneficial and deleterious mutations of

a wide range of strengths. Our analyses reveal that E. coli has a

large mutational target size for altering its antibiotic tolerance.

As the disruption of the genes identified in this study pushes cells

from the growth regime of moderate inhibition towards one of the

extremes of no inhibition or full inhibition, the products of the loci

and the pathways in which they reside are promising starting

points for the development of adjuvant therapies. For example, if a

gene’s deletion causes hypersensitivity to an antibiotic, that

antibiotic and a drug targeting the corresponding gene product

may act synergistically. Similarly, when disrupting a pathway

increases bacterial fitness in the presence of a particular antibiotic,

stimulating the pathway might enhance the antibiotic’s efficacy.

The development of such adjuvant therapies has the potential to

expand the usefulness of the limited set of antibiotics currently

available.
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With whole-genome sequencing becoming increasingly afford-

able, this work should provide a wealth of data for interpreting

mutations present in drug resistant, pathogenic strains. As

approximately half of the genes identified as altering fitness in

the presence of antibiotics increase tolerance when disrupted, it

will be important to learn how frequently and in what

combinations the adaptive building blocks revealed here appear

in clinical and environmental settings. The bulk of the loci

identified occur in multiple species, and future work will be needed

to discover how specific the beneficial and deleterious nature of

each perturbation is to the wiring of E. coli’s cellular network. Our

observations should provide a scaffold for understanding the

contribution of chromosomal mutations to antibiotic resistance as

well as an aid in the development of novel therapeutics.

Materials and Methods

Bacterial Strains and Growth Conditions
All experiments were performed using E. coli MG1655 [79].

Transposon insertion mutants were generated in a MG1655 DlacZ

strain as described in a previous study [25]. All experiments were

conducted in M9 salts [80] supplemented with 0.4% glucose, 0.1%

casamino acids, 1 mM MgSO4, 0.1 mM CaCl2, and 1.5 mM

thiamine. LB media contained 0.1% Bacto Tryptone, 0.05% yeast

extract, and 0.05% NaCl. All antibiotics were purchased from

Sigma. Unless otherwise noted, cultures were shaken at 37uC.

Transposon Library Enrichments, DNA manipulation, and
Hybridization

Genetic footprinting and subsequent hybridization to DNA

spotted arrays were performed as described in Girgis et al. [25]. As

a starting point, we hybridized DNA from the day in which minor

banding patterns began to emerge (Figure 1C) and then adjusted

the chosen day as necessary. On early days during a selection, a

mutant’s fitness did not have a measurable effect on its prevalence,

while on very late days, only a few types of mutants remained, and

the relative fitness of the mutants that completely dropped out

could not be discerned. In a few cases (Table 1), data from

adjacent days of roughly equal suitability were included in the

analysis. Other hybridizations from days not ultimately chosen

exhibited either extreme selection or little to no selection and were

excluded. The distinct behavior of the library in each antibiotic

necessitated the choice of different days for different antibiotics

(Table 1). To reduce the chance of spontaneous mutations

overtaking the cultures, to remove the need for additional sets of

controls for comparison, and to focus on transposon insertions

causing larger effects, no samples from days 5–7 were chosen.

Samples from at least two independent replicate selections were

hybridized for each antibiotic. As controls, six samples from

independent selections in the absence of any drug were hybridized.

Determining Significant Changes
Ratios (transposon signal/genomic DNA signal) from the

antibiotic enrichments were compared to both the ratios from

the original unselected library and to ratios from enrichments of

the transposon library performed in identical media without

antibiotics. Two z-scores were calculated for each ratio, r, where

z = (x2m)/s, x = log2(r), and m and s are the mean and standard

deviation, respectively, of the log2 ratios for the gene from

reference hybridizations. One z-score used five reference hybrid-

izations of the unselected library (from Girgis et al. [25]) and the

other used six reference hybridizations of the library selected in the

same media without antibiotics. All six no-antibiotic samples came

from independent selections; three selections lasted two days, and

three lasted four days.

To identify the most reproducible fitness effects, we considered all

of the z-scores for each gene for a given antibiotic. (Antibiotics with

two and three hybridizations had four and six z-scores, respectively.)

When all of the z-scores had the same sign, we assigned the gene the

z-score in the set that was closest to zero (representing the smallest

effect). When a gene had z-scores of different signs, the gene was

assigned a score of 0, indicating no consistent fitness effect.

Supplementary information contains normalized ratios (Dataset

S2), z-scores relative to the unselected library (Dataset S3), z-scores

relative to the enrichments performed in the media without

antibiotics (Dataset S4), combined z-scores (Dataset S5), and the

combined z-scores considered significant (Dataset S1).

The significance threshold was set so that two false positives are

expected per antibiotic. False positives were estimated by treating

randomly chosen reference samples as data and repeating the

analysis procedure. (See Text S1.)

Determining Genes Common to Aminoglycosides and b-
lactams

In identifying loci important to fitness in specific antibiotic

classes, care was taken to prevent the exclusion of genes that barely

missed the significance cutoff for a subset of the drugs. As such, a

locus was considered to be beneficial or deleterious in aminogly-

cosides if i) the prevalence of mutants where the locus was

disrupted changed significantly during the enrichments for at least

two of the four drugs and ii) the z-scores for the locus for all four

drugs had the same sign. For example, disruption of a locus was

classified as beneficial in aminoglycosides if the gene had positive

z-scores in all four drugs, and the z-scores reached the significance

level for at least two drugs. b-lactams were treated similarly except

that the disruption of a locus was required to cause a significant

fitness change during the enrichments for at least one of three

drugs. Loci with a general effect on antibiotic tolerance were

excluded from the sets.

Strain Construction
Rather than choosing one of the many mutants in the library with

a transposon inserted in a particular gene, we corroborated

behavior observed during the selections using strains where the

gene of interest had either been replaced with a kanamycin (kan)

resistance cassette or removed to create an in-frame deletion. To

construct the strains, P1vir transduction [81] was used to move the

necessary alleles from the Keio collection [82] to MG1655 [79]. To

create unmarked, in-frame deletions, the kan cassette was removed

using FLP recombinase [83]. In rare cases, both the original

transposon insertions as well as the kanamycin resistance cassette

can produce polar effects, resulting in mutants with phenotypes

distinct from the null phenotype of the disrupted or replaced gene.

Software Used
Data was clustered with Cluster [84] and visualized using

Treeview [84]. Data manipulations were performed using Perl and

Matlab. iPAGE (Hani Goodarzi, unpublished data) was used to

examine sets of genes for enrichments in GO category,

transcription factor regulon, and stress response membership.

Annotations came from EcoCyc [85] and genome-tools [86].

Supporting Information

Text S1 Additional Materials and Methods

Found at: doi:10.1371/journal.pone.0005629.s001 (0.07 MB

PDF)
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Figure S1 Dose Response Curves Used to Select Drug

Concentrations. For each antibiotic, fresh media containing

various drug concentrations was inoculated with overnight culture

of the wild-type strain. Cultures were shaken at 37uC, and growth

was monitored using OD600 readings. Blue indicates the

concentrations chosen for the enrichments.

Found at: doi:10.1371/journal.pone.0005629.s002 (0.18 MB

PDF)

Figure S2 Gel images from enrichments done in the study

media in the absence of antibiotics. Shown are the amplified Tn-

adjacent DNA from all seven days for each of the seven

repetitions. DNA was amplified as described in Girgis et al. [1]

and separated on a 2% agarose gel. Yellow rectangles indicate

samples hybridized. From the bottom, marker sizes are 100, 200,

300, 400, 500, 650, 850, and 1000 bases.

Found at: doi:10.1371/journal.pone.0005629.s003 (1.48 MB

PDF)

Figure S3 Gel images from Tn-insertion library enrichments

done in the presence of antibiotics. Shown are the amplified Tn-

adjacent DNA from all seven days for each of the three repetitions

done for each antibiotic. DNA was amplified as described in Girgis

et al. [1] and separated on a 2% agarose gel. Yellow rectangles

indicate samples hybridized. From the bottom, marker sizes are

100, 200, 300, 400, 500, 650, 850, and 1000 bases.

Found at: doi:10.1371/journal.pone.0005629.s004 (2.10 MB

PDF)

Figure S4 Loci whose disruption was significant in at least one

quinolone. Yellow (blue) indicates that transposon insertions in or

near a gene were beneficial (deleterious). Black indicates no

significant effect. Z-scores were calculated as described in

Materials and Methods.

Found at: doi:10.1371/journal.pone.0005629.s005 (0.21 MB

PDF)

Figure S5 Loci whose disruption was significant in at least one

tetracycline. Yellow (blue) indicates that transposon insertions in or

near a gene were beneficial (deleterious). Black indicates no

significant effect; gray indicates missing data. Z-scores were

calculated as described in Materials and Methods.

Found at: doi:10.1371/journal.pone.0005629.s006 (0.24 MB

PDF)

Figure S6 Loci whose disruption was significant in at least one

folic acid biosynthesis inhibitor. Yellow (blue) indicates that

transposon insertions in or near a gene were beneficial

(deleterious). Black indicates no significant effect; gray indicates

missing data. Z-scores were calculated as described in Materials

and Methods.

Found at: doi:10.1371/journal.pone.0005629.s007 (0.13 MB

PDF)

Figure S7 Loci whose disruption was significant in at least one

inhibitor of the 50S subunit of the ribosome. Yellow (blue)

indicates that transposon insertions in or near a gene were

beneficial (deleterious). Black indicates no significant effect. Z-

scores were calculated as described in Materials and Methods.

Found at: doi:10.1371/journal.pone.0005629.s008 (0.08 MB

PDF)

Figure S8 Loci whose disruption was significant in bleomycin.

Yellow (blue) indicates that transposon insertions in or near a gene

were beneficial (deleterious). Z-scores were calculated as described

in Materials and Methods.

Found at: doi:10.1371/journal.pone.0005629.s009 (0.13 MB

PDF)

Figure S9 Loci whose disruption was significant in at least one

b-lactam. Yellow (blue) indicates that transposon insertions in or

near a gene were beneficial (deleterious). Black indicates no

significant effect. Z-scores were calculated as described in

Materials and Methods. Note that this set of loci is distinct from

the set of loci whose disruption caused significant changes in all the

beta-lactams tested (Table S2).

Found at: doi:10.1371/journal.pone.0005629.s010 (0.10 MB

PDF)

Figure S10 Loci whose disruption was significant in nitrofuran-

toin. Yellow (blue) indicates that transposon insertions in or near a

gene were beneficial (deleterious). Z-scores were calculated as

described in Methods.

Found at: doi:10.1371/journal.pone.0005629.s011 (0.09 MB

PDF)

Figure S11 Loci whose disruption was significant in at least one

aminoglycoside. Due to the large size of the set, genes whose

disruption was only significant in tobramycin are not shown. Data

for tobramycin is available in Dataset S1. Yellow (blue) indicates

that transposon insertions in or near a gene were beneficial

(deleterious). Black indicates no significant effect; gray indicates

missing data.

Found at: doi:10.1371/journal.pone.0005629.s012 (0.24 MB

PDF)

Table S1 Loci that changed susceptibility to all aminoglycosides

tested.

Found at: doi:10.1371/journal.pone.0005629.s013 (0.08 MB

PDF)

Table S2 Loci that changed susceptibility to all beta-lactams

tested.

Found at: doi:10.1371/journal.pone.0005629.s014 (0.07 MB

PDF)

Table S3 Genes identified in this work as having a general role

in antibiotic susceptibility.

Found at: doi:10.1371/journal.pone.0005629.s015 (0.07 MB

PDF)

Table S4 Additional genes identified in both this study and

previous work.

Found at: doi:10.1371/journal.pone.0005629.s016 (0.07 MB

PDF)

Table S5 MIC changes in aminoglycosides.

Found at: doi:10.1371/journal.pone.0005629.s017 (0.06 MB

PDF)

Table S6 Additional class-specific MIC changes (non-aminogly-

cosides).

Found at: doi:10.1371/journal.pone.0005629.s018 (0.07 MB

PDF)

Table S7 MIC changes for mutants with altered susceptibility to

multiple drug classes.

Found at: doi:10.1371/journal.pone.0005629.s019 (0.07 MB

PDF)

Dataset S1 Z-scores for loci with a significant effect on antibiotic

susceptibility.

Found at: doi:10.1371/journal.pone.0005629.s020 (0.90 MB

XLS)

Dataset S2 Normalized ratios (transposon signal/genomic DNA

signal)

Found at: doi:10.1371/journal.pone.0005629.s021 (4.23 MB

XLS)
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Dataset S3 Z-scores for individual hybridization computed

relative to five hybridizations of the original, unselected library.

Found at: doi:10.1371/journal.pone.0005629.s022 (3.58 MB

XLS)

Dataset S4 Z-scores for individual hybridizations computed

relative to six hybridization of the library cultured in the same

media (M9 with glucose and casamino acids) without antibiotics.

Found at: doi:10.1371/journal.pone.0005629.s023 (3.58 MB

XLS)

Dataset S5 Combined z-scores for all loci.

Found at: doi:10.1371/journal.pone.0005629.s024 (1.24 MB

XLS)
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