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Abstract

Background: Deleted in liver cancer 1 (DLC1) is a Rho GTPase-activating protein (RhoGAP) frequently deleted and
underexpressed in hepatocellular carcinoma (HCC) as well as in other cancers. Recent independent studies have shown
interaction of DLC1 with members of the tensin focal adhesion protein family in a Src Homology 2 (SH2) domain-dependent
mechanism. DLC1 and tensins interact and co-localize to punctate structures at focal adhesions. However, the mechanisms
underlying the interaction between DLC1 and various tensins remain controversial.

Methodology/Principal Findings: We used a co-immunoprecipitation assay to identify a previously undocumented binding
site at 375–385 of DLC1 that predominantly interacted with the phosphotyrosine binding (PTB) domain of tensin2. DLC1-
tensin2 interaction is completely abolished in a DLC1 mutant lacking this novel PTB binding site (DLC1DPTB). However, as
demonstrated by immunofluorescence and co-immunoprecipitation, neither the focal adhesion localization nor the
interaction with tensin1 and C-terminal tensin-like (cten) were affected. Interestingly, the functional significance of this
novel site was exhibited by the partial reduction of the RhoGAP activity, which, in turn, attenuated the growth-suppressive
activity of DLC1 upon its removal from DLC1.

Conclusions/Significance: This study has provided new evidence that DLC1 also interacts with tensin2 in a PTB domain-
dependent manner. In addition to properly localizing focal adhesions and preserving RhoGAP activity, DLC1 interaction with
tensin2 through this novel focal adhesion binding site contributes to the growth-suppressive activity of DLC1.
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Introduction

The small, monomeric G-protein Rho has been classically

defined as a key biological regulator of the actin cytoskeleton [1–

3]. In turn, dynamic cytoskeleton turnover controls a wide range

of related biological responses, ranging from the definition of cell

shape to the promotion of cell migration, cell adhesion and cell

spreading [4,5]. However, an increasing body of evidence suggests

that Rho is also involved in controlling important biological

functions such as cell proliferation, cell invasion and gene

transcription [6–11]. Rho is implicated in carcinogenesis, as has

been found to be activated in various human cancers [12,13].

Deleted in liver cancer 1 (DLC1) is a tumor suppressor gene located

on chromosome 8p21.3-22 and has been shown to be frequently

unexpressed in a wide range of human cancers, including

hepatocellular carcinoma (HCC) [14–23]. DLC1 encodes a

multiple-domain RhoGAP protein with selective activity toward

RhoA, B and C and less towards CDC42 but not Rac1 [23,24].

Extensive studies have shown that DLC1 utilizes this RhoGAP

activity to suppress cell proliferation [15,18,23,25–29], trigger

apoptosis [25] and to reduce cell migration [26,28], cell invasion

and the resultant cancer metastasis in cell lines as well as mouse

models with different tissue origins [29–31]. In a recent study, the

role of DLC1 as a bona fide tumor suppressor in HCC was

confirmed by a mouse model with a liver-specific, short-hairpin

RNA-mediated DLC1 knockdown [32]. Although the role of

DLC1 in protecting cells from cancer-related properties has

become clear, questions about its biological regulation remain

unanswered.

Transcriptionally, DLC1 expression has been found to be

epigenetically silenced in various human cancers. Hypermethyla-

tion of the gene promoter region suppressed DLC1 gene

transcription and expression in different tissues

[16,17,19,22,24,33–35]. Post-translationally, rat DLC1 has been

shown to be phosphorylated by Akt kinase [36]; however, its

occurrence in human DLC1 and its biological significance are still

in question. On the other hand, a recent study identified DLC1

mutations in prostate and breast cancers at particular tyrosine and

serine residues. These mutations inactivate DLC1 RhoGAP

activity through an unknown mechanism [37]. To date, the best
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characterized regulation of DLC1 at the protein level is its

interaction with tensin proteins [27,28,38]. Tensins are focal

adhesion proteins carrying Src-Homology 2 (SH2) and phospho-

tyrosine binding (PTB) domains at their C-termini [39].

Accumulating evidence suggests that DLC1 interacts with multiple

tensins. In general, DLC1 utilizes an SH2 binding motif involving

the residue Y442 to interact with the SH2 domain of tensin1 and

C-terminal tensin-like (cten). Mutation at Y442 caused DLC1 to

lose its focal adhesion localization and tumor suppressive activity.

This observation implies that tensin binding is a key regulatory

event in the subcellular localization and the tumor suppressive

function of DLC1 [27,28]. However, we have previously

documented interactions between DLC1 and the tensin2 PTB

domain [38]. Thus, the mechanism of interaction between DLC1

and various tensins and its biological implications are still

controversial.

In the present study, we discovered a novel binding mechanism

between DLC1 and tensin2 by identifying an undocumented

binding site in DLC1, other than the SH2 binding motif described

by others, for interaction with the tensin2 PTB domain. This new

site was well conserved in DLC families. We also provide the first

evidence for tensin2 interaction as a common characteristic of

DLC1 and DLC2. Apart from the binding mechanism, we also

demonstrated the functional significance of this novel binding site

in regulating the tumor suppressive activity of DLC1.

Results

The tensin2 PTB domain was required for DLC1
interaction

We demonstrated that the C-terminus tensin2 fragment,

including the SH2 and PTB domains (SH2-PTB in Fig. 1B), was

sufficient to bind DLC1 (Fig. 1A). To evaluate the importance of

individual domains in DLC1 interaction, we prepared several

tensin2 deletion mutants including tensin2 DSH2DPTB, DSH2,

and DPTB and tested their binding affinity towards DLC1

(Fig. 1B). Tensin2 DSH2DPTB consistently showed a complete

loss of DLC1 binding. In contrast to other reports, we found that

removing the SH2 domain in tensin2 only partially reduced DLC1

binding. Interestingly, removing the PTB domain in tensin2 was

sufficient to completely abolish the DLC1 interaction, indicating

that the PTB domain is required for binding (Fig. 1C). It has

been reported that DLC1 Y442 and S440 form a phospho-

independent binding motif for the SH2 domain of tensin1 and

cten [27,28]. We next checked the conservation of these residues

in binding to the tensin2 SH2 domain. Interestingly, we found that

DLC1 Y442F and S440A mutants showed only a partial reduction

in tensin2 binding. To test whether Y442 and S440 mediate the

interaction with the tensin2 SH2 domain, we checked the binding

affinity between DLC1 and tensin2 R1165A, an SH2 domain

mutant with impaired recognition and binding of tyrosine-

phosphorylated targets. We found that mutation at R1165A in

tensin2 resulted in a drop in tensin2-DLC1 binding. Similar

binding affinity toward R1165A was observed among DLC1 wild-

type, Y442F and S440A. This indicated that Y442 and S440 could

only be effective when the SH2 domain of tensin2 was intact

(Fig. 1D). Collectively, these results support the conclusion that

an SH2 domain-mediated mechanism also contributes to DLC1-

tensin2 interactions.

Identification of the tensin2 PTB binding domain in DLC1
We next questioned which region of DLC1 was required for this

PTB domain-dependent tensin2 interaction. We previously had

proposed the center region 375–509 of DLC1 to be the region

necessary for tensin2 interaction [38]. To precisely examine this

proposed binding region, we cloned and expressed various DLC1

mutants with different truncations created within this region

(Fig. 2A). We found that N-termini of DLC1 1–400 and 1–440,

both lacking the reported tensin SH2 binding site (Y442 of DLC1),

were sufficient to interact with tensin2. On the other hand, the

mutually exclusive C-terminus fragment 400-stop with an intact

SH2 binding site was not sufficient to interact with tensin2

(Fig. 2B). A similar result was observed when 450-stop, which did

not contain any predicted tensin binding sites, was used (Fig. 2B).
To provide further evidence that the N-terminus of DLC1

interacted with tensin2 through a PTB domain-dependent

mechanism, we checked the interaction between DLC1 1–400

and the aforementioned tensin2 deletion mutants. We observed

that the interaction between DLC1 1–400 and tensin2 was not

affected, even when the SH2 domain of tensin2 was removed. In

contrast, interaction between the two was again abolished when

the PTB domain of tensin2 was removed, indicating that this

binding was solely PTB domain-dependent (Fig. 2C). To further

pinpoint the PTB binding site in DLC1, we examined the binding

of a panel of DLC1 N-terminus fragments to tensin2. Among these

fragments, we found that DLC1 1–385 was the shortest fragment

that was able to bind tensin2 (Fig. 2D). Collectively, these results

suggest that region DLC1 375–385 functions as a tensin2 PTB

binding site and is required for tensin2 binding.

Conservation of tensin2 PTB binding domain in DLC2
To check the biological conservation of the mapped tensin2

binding regions in other DLC family members, we performed

amino acid alignment between DLC1 and DLC2 [40,41]. We

found that both the SH2 and PTB binding sites are well conserved

in DLC2. Corresponding serine (S457) and tyrosine (Y459)

residues in the SH2 binding domain were found in DLC2. The

PTB binding site in DLC1 375–385 was found to match with

DLC2 400–410, suggesting a potential role of this region in

mediating PTB domain-dependent binding between DLC family

members and tensin2 (Fig. 3A). Based on the conservation of

tensin binding sites in DLC2, we hypothesized that DLC2 might

interact with tensin2. Using co-immunoprecipitation, we demon-

strated that DLC2a and tensin2 do interact, which confirmed our

speculation. As with DLC1, the RhoGAP activity of DLC2 was

not required for tensin2 interaction, as shown by the positive

interaction of the DLC2 RhoGAP mutant, R740E, with tensin2

(Fig. 3B). We questioned whether DLC2 also localized to focal

adhesions in SMMC-7721 cells. We found that expression of

DLC2c induced severe cell shrinkage. To facilitate the observa-

tion, we instead used a functionally inactive mutant, DLC2c
R622E, that harbored a mutation in its RhoGAP domain [41].

We found that DLC2c R622E could co-localize with vinculin

(Fig. 3C), indicating that other DLC proteins may also localize to

focal adhesions.

DLC1DPTB mutant showed specific loss of tensin2
binding but preserved its focal adhesion localization

To study the role of the tensin2 PTB binding domain of DLC1,

we cloned three separate DLC1 mutants that had minimal

alterations to the following structural elements: D375–390

(DPTB#1), D375–385 (DPTB#2) and D380–390 (DPTB#3),

each carrying a specific internal deletion within the PTB domain

(DLC1DPTB) (Fig. 4A). To confirm the role of the PTB domain

in tensin2 binding, we first tested the binding of these mutants with

tensin2. With a co-immunoprecipitation assay, we found that all

DLC1DPTB mutants showed a loss of tensin2 binding (Fig. 4B).
The loss of binding was further confirmed by decreased co-

DLC1-Tensin2 Binding
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Figure 1. Tensin2 SH2 and PTB domains were responsible for DLC1 binding. (A) Expression of tensin2 SH2-PTB fragment (as described in
Materials and Methods and outlined in Fig. 1B) was sufficient for interaction with DLC1. HEK293T cells were transfected with Myc-tagged tensin2
fragment and FLAG-tagged DLC1 constructs as indicated. Cleared cell lysates were incubated with anti-Myc antibody to immunoprecipitate tensin2.
DLC1 in the precipitates was detected by immunoblotting with anti-FLAG antibody. (B) Schematic diagram showing the domain structure of the
Myc-tagged tensin2 and its C-terminal truncated mutants. The mutants either had both SH2 and PTB domains (DSH2DPTB) or had individual domains
being removed (DSH2 and DPTB). The SH2-PTB was the tensin2 C-terminus used in Fig. 1A. (C) Mapping the DLC1 binding site in tensin2. HEK293T

DLC1-Tensin2 Binding
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localization between DLC1DPTB#1 and tensin2 (Fig. 4C). To

address the specificity of the mapped PTB binding motif toward

other tensin proteins, we performed a co-immunoprecipitation

assay using a C-terminus fragment of tensin1, 648-stop. Tensin1

648-stop covers the C-terminus SH2 and PTB domains, which

have been shown to be important in DLC1 binding [28]. We have

confirmed their role in DLC1 interaction with our co-immuno-

precipitation system (Fig. S1). Interestingly, we found that tensin1

648-stop showed comparable binding affinity with DLC1 wild-

type and DLC1DPTB (Fig. 4D). A positive interaction with

DLC1 was also observed when cten was immunoprecipitated in

the co-immunoprecipitation assay (Fig. 4E). These observations

support the specific involvement of this PTB binding motif with

tensin2. To address whether the removal of the PTB domain

would affect the focal adhesion localization of DLC1, we studied

the localization of the DLC1DPTB in SMMC-7721 HCC cells

with immunofluorescence. We found that DLC1DPTB mutants

maintained their focal adhesion localization, as indicated by their

co-localization with the focal-adhesion-associated protein vinculin.

This observation suggested that removal of the PTB binding site in

DLC1 affects its binding with tensin2 but preserves its focal

adhesion localization, possibly via interaction with other tensins

through a PTB-independent binding mechanism (Fig. 4F).

DLC1DPTB showed partial reduction in RhoGAP activity
but was sufficient to suppress actin stress fiber formation

Active RhoA is best known for its role in simulating actin stress

fiber formation. Being a negative regulator of RhoA, DLC1

suppresses actin stress fiber formation in a RhoGAP-dependent

manner [26]. Using actin stress fibers as an indirect biological

readout, we asked whether the RhoGAP activity of DLC1DPTB

mutants would be affected. We found that DLC1DPTB mutant-

transfected cells showed reduced actin stress fiber formation when

compared with the neighboring non-transfected cells. This

observation was similar to those of the focal adhesion localiza-

tion-defective mutants of DLC1, Y442F and S440A, each of which

carries a point mutation in the tensin SH2 binding domain

(Fig. 5A). To directly quantify the RhoA inactivation, we

performed a Rhotekin pull-down assay to determine the Rho-

GTP activity levels in cells expressing different DLC1 mutants.

Although we found that the DLC1DPTB mutant could suppress

Rho-GTP activity, it was interesting that this suppression was less

effective when compared with that of wild-type DLC1 (Fig. 5B).
On the other hand, it is noted that the Y442F and S440A mutants

also showed a reduction in suppressing Rho-GTP activity levels.

Altogether, we found that the DLC1DPTB mutant showed a

partial reduction in intrinsic RhoGAP activity, but that this

activity was sufficient to suppress actin stress fiber formation.

DLC1DPTB showed reduced growth-suppressing activity
The ability of DLC1 to suppress tumor growth has been well

documented. We questioned whether the aforementioned

DLC1DPTB mutants displayed any difference in DLC1-induced

growth suppression. In a HeLa cell colony formation assay, wild-

type DLC1 significantly suppressed colony formation when

compared with the vector control. In contrast, ectopic expression

of DLC1DPTB mutants resulted in a significantly increased

number of colonies when compared with wild-type DLC1

(Fig. 5C). This observation indicates that even when DLC1DPTB

shows proper focal adhesion localization, loss of this tensin2 PTB

binding motif will result in reduced growth suppression, probably

due to the partial reduction in RhoGAP activity. It is likely that

proper tensin2 PTB binding contributes to DLC1-induced growth

suppression.

Discussion

DLC1 has been shown to exert biological functions resembling

those of classical tumor suppressor genes. The diverse tumor-

suppressive effects of DLC1 are strongly dependent on the

presence of a functional RhoGAP domain [26,28]. However,

several studies have shown that RhoGAP activity alone is not

sufficient for its tumor-suppressive function [26–28,42]. Previous

structural analysis from our group provided the first evidence that

these functions of DLC1 could be restored only when the region

between the SAM and RhoGAP domains was included [26]. The

identification of tensin2 as the first binding protein that interacts

with this functionally important region further hinted at the

relationship between tensin2 interaction and DLC1 function [38].

This notion was further supported by the discovery of cten and

tensin1 as binding partners of DLC1 in subsequent studies,

implying that it is biologically important for tensin family proteins

to work co-operatively with DLC1 [27,28].

We previously proposed that DLC1 375–509 is the minimal

binding region of tensin2. This region covers the key residues

Y442 and S440, which were suggested by other studies to

constitute an SH2 binding site for cten and tensin1 [27,28].

However, we could not provide direct evidence that the tensin2

SH2 domain was sufficient for DLC1 binding [38]. In this study

and our previous report, our findings consistently showed that that

tensin2 PTB, rather than SH2, domain directly interacted with

DLC1.

There are a few possible explanations for the discrepant

findings. First, although the SH2 and PTB domains in tensin

proteins have a high sequence homology, differences in their

sequences may result in different binding mechanisms for DLC1

and other tensin family members. Second, different binding assays

were used by different groups to study the mechanism of binding

between tensin and DLC1. For instance, yeast-based binding and

GST pull-down assays were used by Liao et al. and Qian et al.,

respectively, while in vivo co-immunoprecipitation was employed in

our present study. Third, C-terminus fragments of tensin that

contained either one or both of the SH2 and PTB domains were

used in mapping the DLC1 binding site in the studies by Liao et al.

and Qian et al. This experimental design presumed that the N-

terminus region of the tensin protein neither was involved in

binding nor contributed to the normal protein folding of the C-

terminus region.

cells were transfected with Myc-tagged tensin2 and FLAG-tagged DLC1 constructs as indicated. Cleared cell lysates were incubated with anti-Myc
antibody to immunoprecipitate tensin2. DLC1 in the precipitates was detected by immunoblotting with anti-FLAG antibody. Removal of the tensin2
SH2 domain (DSH2) resulted in the partial reduction of DLC1 binding. Complete loss of DLC1 binding was observed upon the removal of the tensin2
PTB domain (DPTB). The band intensity in each lane was measured in the IP and Co-IP panels and the readings were normalized to lane 2. The relative
Co-IP-to-IP ratios were also included. (D) Characterization of the binding between tensin2 and focal adhesion localization-defective DLC1 mutants.
Wild-type tensin2 or SH2 domain mutant, R1165A, was co-transfected with DLC1 wild-type, Y442F and S440A. The cell lysate was subjected to
immunoprecipitation with anti-Myc antibody, followed by immunoblotting with anti-FLAG antibody. Y442F and S440A showed a partial reduction in
tensin2 binding, but the SH2 domain mutant, R1165A, did not.
doi:10.1371/journal.pone.0005572.g001
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Figure 2. Mapping the tensin2 PTB binding site in DLC1. (A) The N-terminus of DLC1 was sufficient for interaction with tensin2. HEK293T cells
were transfected with Myc-tagged tensin2 fragment and FLAG-tagged DLC1 constructs as indicated. Cleared cell lysates were incubated with anti-
Myc antibody to immunoprecipitate tensin2. DLC1 in the precipitates was detected by immunoblotting with anti-FLAG antibody. (B) The C-terminus
of DLC1 was unable to bind tensin2. Myc-tagged tensin2 was co-transfected with two FLAG-tagged DLC1 C-terminus fragments as indicated. These
DLC1 C-terminus fragments could not be co-immunoprecipitated with tensin2. (C) N-terminal fragment 1–400 was involved in tensin2 PTB binding.
FLAG-tagged DLC1 1–400 could be co-immunoprecipitated with tensin2. Removal of the tensin2 SH2 domain did not affect the affinity of binding to
1–400, but an intact PTB domain was necessary for the binding. (D) Fine mapping the PTB binding site in DLC1. Myc-tagged tensin2 was co-
transfected with a panel of FLAG-tagged DLC1 N-terminus fragments. FLAG-tagged fragments in the precipitates were detected by immunoblotting
analysis with anti-FLAG antibody. Fragment 1–385 was the shortest fragment capable of being co-immunoprecipitated with tensin2. The band
intensity in each lane was measured in the IP and Co-IP panels and the readings were normalized to lane 2. The relative Co-IP-to-IP ratios were also
included.
doi:10.1371/journal.pone.0005572.g002

DLC1-Tensin2 Binding

PLoS ONE | www.plosone.org 5 May 2009 | Volume 4 | Issue 5 | e5572



In the present study, we provide the first evidence that specific

removal of the SH2 and PTB domains in tensin2 affects DLC1

binding to different extents (Fig. 1C). To provide evidence that the

PTB domain plays a critical role in DLC1-tensin2 binding, we

mapped the PTB-binding domain at the N-terminus of DLC1

(Fig. 2) and confirmed its role by characterizing the DLC1DPTB

internal deletion mutants (Fig. 4A). We identified an undocu-

mented region 375–385 of DLC1 as the PTB-domain-binding site

and the DLC1-tensin2 interaction was lost when this region was

removed (Fig. 4B). It is well established that the PTB domain

recognizes a NPXY motif, as illustrated in its binding with integrin b
[43]. However, this motif was not found in our mapped region in

DLC1, implying that the mode of PTB-mediated interaction is a

probably atypical. Although DLC1DPTB showed loss of tensin2

binding, it was still able to localize to focal adhesions (Figs. 4C and
4F). In addition, we found that the PTB domain was necessary for

the focal adhesion localization of tensin2 (data not shown). Thus, in

addition to acting as the physical binding site for DLC1, the PTB

domain may also be important for bringing tensin2 in close

proximity to DLC1 at focal adhesions and facilitating their

interaction. Collectively, these results suggest that DLC1 utilizes

region 375–385 in mediating tensin2 binding, while it utilizes Y442

and S440 residues for focal adhesion targeting (Fig. 6).

It is currently unknown whether the proposed tensin PTB

binding domain in DLC1 is involved in binding with other tensins.

This remains to be investigated. There have been reports that

expression of the tensin1 PTB domain is sufficient for interaction

with DLC1. Also, deleting the whole tensin SH2 binding motif

(440–448), instead of introducing a Y442F point mutation in

DLC1, is sufficient for interaction with tensin1 [28]. This indicates

that PTB-dependent binding may be present between DLC1 and

tensin1, but plays a subtle role, unlike the DLC1 and tensin2

interaction. Based on our present findings, we conclude that the

PTB binding mechanism is tensin2-specific (Figs. 4B, 4D and
4E), whereas other tensins utilize an SH2 binding mechanism

[27,28]. Possible compensation by other tensins may explain why

DLC1DPTB can be localized to focal adhesions in the absence of

tensin2 interactions. In addition, we found that DLC1DPTB

showed a partial reduction in RhoGAP activity, which resulted in

a partial reduction in growth suppression (Figs. 5B and 5C).

Figure 3. Conservation of the tensin2 PTB binding site in DLC1/2. (A) Schematic showing the tensin2 SH2 and PTB binding sites in DLC1.
Within the minimal tensin2 binding region 375–509, separate elements are involved in mediating tensin2 binding via PTB or SH2 mechanisms. These
elements are well conserved in the DLC1 paralog, DLC2. Conserved residues were underlined. (B) Interaction between DLC2 and tensin2 in a
RhoGAP-independent manner. HEK293T cells were transfected with Myc-tagged tensin2 and GFP-tagged DLC2 constructs as indicated. Cleared cell
lysates were incubated with anti-Myc antibody to immunoprecipitate tensin2. DLC2 in the precipitates was detected by immunoblotting with anti-
GFP antibody. (C) GFP-DLC2c showed focal adhesion localization in a RhoGA-independent manner. Expression of GFP-DLC2c induced severe cell
shrinkage when expressed in SMMC-7721 cells. Focal adhesion localization of the DLC2c RhoGAP mutant R622E was detected. The endogenous
vinculin was visualized by anti-vinculin antibody. Scale bar = 10 mm.
doi:10.1371/journal.pone.0005572.g003
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A limitation in our present study is the use of ectopically

expressed tensin2. Detection of endogenous tensin2 was not

possible, as the tensin2 antibody was not available in our

laboratory. Interaction between endogenous DLC1 and tensin2

must be examined to reflect their binding in the actual biological

context. On the other hand, we performed preliminary quantita-

tive real time PCR analysis to determine the mRNA expression

levels of DLC1 and tensin2 in human HCC tissues. Our

unpublished data showed that underexpression of both DLC1

and tensin2 was correlated with shorter overall survival when

compared with those who had normal expression of either or both

genes, supporting the possible functional association of DLC1-

tensin2 with hepatocarcinogenesis.

Altogether, we have identified a novel tensin2 PTB binding site in

DLC1 and demonstrated its involvement in tensin2 interactions.

Although the removal of the PTB binding site did not affect the focal

adhesion localization, it partially reduced the RhoGAP activity of

DLC1, which attenuated its growth suppressive function. It would

be interesting to uncover how DLC1 may control the activity of

other focal adhesion molecules. We have also provided early

evidence that the DLC1 paralog, DLC2, may also interact with

tensin2 and localize to focal adhesions (Figs. 3B and 3C). The

conservation of the tensin binding site in DLC2 warrants further

investigation into the localization control of the other DLC family

members. This will clearly help to determine if DLC members are

biologically redundant or if they have different compartmentaliza-

tion for performing separate biological functions.

Materials and Methods

Plasmids
DNA expression constructs using pCS2+MT, pEGFP-C1 (BD

Biosciences Clontech, Palo Alto, CA) and FLAG-pcDNA3.1(+)

vectors were prepared by standard molecular cloning techniques

and PCR amplification of the described fragments. Eukaryotic

expression vectors for Myc-tagged proteins were derived from

pCS2+MT and prepared as follows: DLC1 1–1091 (WT, wild-

type), K714E (RhoGAP mutant), Y442F, S440A, D375–390

(DPTB#1), Tensin2 1–1409 (WT, wild-type), 1–1021

(DSH2DPTB), D1022–1272 (DSH2), 1–1272 (DPTB), 1135–1409

(SH2-PTB), R1165A, tensin1 1–1186, 648-stop and cten. cten

cDNA was amplified by PCR using pEGFP-C1-cten as the

template (a gift kindly provided by Professor Yosef Yarden from

the Weizmann Institute of Science, in Israel). The GFP-tagged

expression vector, pEGFP-C1, carrying DLC1 WT, DPTB1 and

D375–385 (DPTB#2), was constructed. GFP-tagged DLC2a,

DLC2aR740E, DLC2c, DLC2c R622E were prepared as

previously described [41]. FLAG-tagged eukaryotic expression

vectors were derived from FLAG-pcDNA3.1(+) and prepared as

follows: DLC1 FL, DPTB#1, DPTB#2, D380–390 (DPTB#3), 1–

370, 1–380, 1–385, 1–390, 1–400,1–440, 400-stop, 450-stop. All

of the DNA expression constructs were confirmed by DNA

sequencing.

Cell culture and transfection
Human embryonic kidney cells, HEK293T, and a human

cervical carcinoma cell line, HeLa, were obtained from American

Type Culture Collection (Manassas, VA), whereas the human

HCC cell line SMMC-7721 was obtained from the Shanghai

Institute of Cell Biology. HEK293T and SMMC-7721 were

cultured in DMEM high-glucose medium supplemented with 10%

(v/v) fetal bovine serum, penicillin, and streptomycin at 37uC in a

humidified incubator with 5% CO2 in air. HeLa cells were

cultured in DMEM low-glucose medium supplemented with 10%

(v/v) fetal bovine serum, penicillin and streptomycin under the

same conditions. Transfection with the indicated plasmid was

done with Lipofectamine 2000 reagent, according to the

manufacturer’s instructions (Invitrogen, Carlsbad, CA).

Cell lysis, co-immunoprecipitation and western blotting
Transfected HEK293T cells were lysed with NET-N buffer

(25 mM Tris-HCl, pH 8.0, 50 mM NaCl, 0.2 mM EDTA, 0.1%

NP40) and a cocktail of protease inhibitors (Roche, Mannheim,

Germany) on ice for 20 minutes. The cell lysate was cleared by

centrifugation at 16,000 g for 15 minutes at 4uC. Seven- to eight-

hundred micrograms of cell lysate were incubated with 2 mg of

anti-Myc antibody (Santa Cruz Biotechnology, Santa Cruz, CA)

with gentle rotation at 4uC overnight. The antibody complex was

collected by incubation with protein-A sepharose (Amersham/GE

Healthcare Bio-Sciences, Piscataway, NJ) for 5 hours at 4uC. The

protein-A sepharose was then washed 5 times with NET-N buffer

and the boiled immunoprecipitates were subjected to SDS-PAGE

analysis. The Myc-tagged and FLAG-tagged proteins were

immunoblotted with anti-Myc (Santa Cruz Biotechnology) and

anti-FLAG (Sigma, St. Louis, MO) antibodies, respectively. The

endogenous tubulin was detected by anti-tubulin antibody (Sigma)

as a loading control. The band intensity in the western blot was

measured by AlphaEase FC Software (Alpha Innotech Corpora-

tion, San Leandro, CA).

Immunofluorescence microscopy
For the subcellular localization studies, SMMC-7721 cells seeded

on coverslips were transfected with specific DLC1 and/or tensin2

Figure 4. Characterization of the DLC1DPTB mutants. (A) Schematic showing the structure of three FLAG-tagged DLC1DPTB mutants: D375–
390, D375–385 and D380–390 (DPTB#1–3). (B) DLC1DPTB showed reduced tensin2 binding. HEK293T cells were transfected with Myc-tagged
tensin2 and FLAG-tagged DLC1 constructs as indicated. Cleared cell lysates were incubated with anti-Myc antibody to immunoprecipitate tensin2.
DLC1 in the precipitates was detected by immunoblotting analysis with anti-FLAG antibody. Removal of the PTB binding domain in DLC1 resulted in
loss of tensin2 binding. (C) DLC1DPTB showed reduced co-localization with tensin2. SMMC-7721 cells were transiently co-transfected with GFP vector
or GFP-tensin2 and the indicated Myc-tagged DLC1. DLC1 was visualized by using anti-Myc antibody, followed by Texas Red-conjugated secondary
antibody. Scale bar = 10 mm. (D) DLC1DPTB could interact with tensin1. HEK293T cells were transfected with Myc-tagged tensin2 SH2-PTB (as
outlined in Fig. 1B) or Myc-tagged tensin1 C-terminus 648-stop (as outlined in Fig. S1) and FLAG-tagged DLC1 constructs as indicated. Cleared cell
lysates were incubated with anti-Myc antibody to immunoprecipitate tensin2 or tensin1. DLC1 in the precipitates was detected by immunoblotting
analysis with anti-FLAG antibody. Removal of the PTB binding domain in DLC1 did not affect the tensin1 binding. (E) DLC1DPTB could interact with
cten. HEK293T cells were transfected with Myc-tagged tensin2 or Myc-tagged cten and FLAG-tagged DLC1 constructs as indicated. Cleared cell
lysates were incubated with anti-Myc antibody to immunoprecipitate tensin2 or cten. DLC1 in the precipitates was detected by immunoblotting
analysis with anti-FLAG antibody. Removal of the PTB binding domain in DLC1 did not affect the cten binding. (F) DLC1DPTB showed focal adhesion
localization in SMMC-7721 cells. SMMC-7721 cells were transiently co-transfected with GFP-tensin2 and the FLAG-tagged DLC1 as indicated. DLC1
was visualized by using anti-DLC1 antibody, followed by FITC-conjugated secondary antibody. The endogenous vinculin was visualized by anti-
vinculin antibody, followed by Texas Red-conjugated antibody. Scale bar = 10 mm.
doi:10.1371/journal.pone.0005572.g004
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constructs. The transfected cells were fixed with 4% paraformal-

dehyde in PBS for 15 minutes and then permeabilized with 0.2%

Triton-X-100 in PBS for 10 minutes, followed by blocking with 3%

bovine serum albumin in PBS for 20 minutes at room temperature.

The blocked coverslips were then incubated with the primary

antibody, followed by FITC- or Texas Red-conjugated secondary

antibody, for 1 hour each. Myc-tagged protein was stained with

anti-Myc antibody (Santa Cruz Biotechnology). FLAG-tagged

DLC1 was stained with anti-DLC1 antibody. The endogenous

vinculin was stained by anti-vinculin antibody (Sigma). The F-actin

was visualized by tetramethylrhodamine B isothiocyanate (TRITC)-

labeled phalloidin (Sigma) one hour after serum induction. The

processed coverslips were mounted in Vectashield anti-fade

mounting medium (Vector Laboratories, Burlingame, CA). Images

were captured by a Leica Q550CW fluorescence microscope (Leica,

Wetzler, Germany).

Figure 5. Tensin2 PTB binding was not necessary for DLC1 to suppress the formation of actin stress fibers but was required to
suppress colony formation. (A) SMMC-7721 HCC cells were transfected with the indicated Myc-tagged DLC1 constructs and the actin stress fibers
were stained with TRITC-conjugated phalloidin 1 hour after the serum induction. The asterisk (*) marks the DLC1-transfected cells. DLC1 Y442F,
S440A, DPTB#1 and #2 could suppress actin stress fiber formation as efficiently as DLC1 WT. Scale bar = 10 mm. (B) HEK293T cells were transfected
with the indicated FLAG-tagged DLC1 plasmid for 24 hours. After transfection, the cells were serum-starved for 24 hours and stimulated with 5 mM
Lysophosphatidic acid for 30 minutes. Cell lysate was then collected and subjected to GST-RBD pull-down for RhoA-GTP. The pull-down samples
were subjected to SDS-PAGE analysis and immunodetected with anti-RhoA antibodies. The band intensity of the active RhoA in each lane was
measured and the readings were normalized to the vector-transfected cells. The DLC1, tubulin and RhoA in total cell lysate were immunodetected
with anti-FLAG, anti-tubulin and anti-RhoA antibodies, respectively. (C) HeLa cells were transfected with the indicated DLC1 constructs and selected
with G418 for 2 weeks. The colonies formed were visualized by crystal violet staining. The mean difference in colony formation efficiency between
groups was found to be statistically significant (p,0.001; one-way ANOVA test).
doi:10.1371/journal.pone.0005572.g005
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Rhotekin pull-down assay
HEK293T cells were transfected with 4 mg of FLAG-tagged

DLC1 construct. The RhoA activity level in DLC1 transfected

cells was detected using a Rho Activation Assay Biochem Kit

(Cytoskeleton) as described by Liao et al [37]. Two mg of dominant

active RhoA (RhoA DA) in pcDNA3.1(2) was transfected as a

positive control, as previously described [41].

Colony formation assay
HeLa cells seeded at 16105 cells per well on a 6-well plate were

transfected with 2 mg GFP-tagged DLC1 construct for 24 hours.

Transfected cells were then seeded onto a new 6-well plate in a 1:5

dilution and selected with 0.5 mg/ml G418. The colony was fixed

two weeks after selection and visualized by crystal violet staining.

The number of colonies formed was analyzed by AlphaEase FC

Software (Alpha Innotech Corporation).

Supporting Information

Figure S1 C-terminus of tensin1 with SH2 and PTB domain

was required for DLC1 interaction. (A) Schematic outlining the

structures of the tensin1 N-terminus fragment 1–1186 and the

tensin1 C-terminus fragment 648-stop, with respect to the full

length. (B) HEK293T cells were transfected with Myc-tagged

tensin1 and FLAG-tagged DLC1 constructs as indicated. Cleared

cell lysates were incubated with anti-Myc antibody to immuno-

precipitate tensin1. DLC1 in the precipitates was detected by

immunoblotting with anti-FLAG antibody. Removal of the

tensin1 SH2 and PTB at the C-terminus completely abolished

DLC1 interaction.

Found at: doi:10.1371/journal.pone.0005572.s001 (0.44 MB TIF)
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Figure 6. Proposed model of the focal adhesion targeting and tensin2 interaction of DLC1. DLC1 was targeted to the focal adhesions and
required residues Y442 and S440. At the focal adhesion, besides the SH2 binding mechanism, DLC1 utilized region 375–385 to interact with the PTB
domain of tensin2, as indicated by the dotted line. The formation of this binding complex was important for DLC1 to exert growth-suppressive function.
doi:10.1371/journal.pone.0005572.g006
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