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Abstract

Background: The development of new therapeutic targets and strategies to control highly pathogenic avian influenza
(HPAI) H5N1 virus infection in humans is urgently needed. Broadly cross-neutralizing recombinant human antibodies
obtained from the survivors of H5N1 avian influenza provide an important role in immunotherapy for human H5N1 virus
infection and definition of the critical epitopes for vaccine development.

Methodology/Principal Findings: We have characterized two recombinant baculovirus-expressed human antibodies
(rhAbs), AVFluIgG01 and AVFluIgG03, generated by screening a Fab antibody phage library derived from a patient
recovered from infection with a highly pathogenic avian influenza A H5N1 clade 2.3 virus. AVFluIgG01 cross-neutralized the
most of clade 0, clade 1, and clade 2 viruses tested, in contrast, AVFluIgG03 only neutralized clade 2 viruses. Passive
immunization of mice with either AVFluIgG01 or AVFluIgG03 antibody resulted in protection from a lethal H5N1 clade 2.3
virus infection. Furthermore, through epitope mapping, we identify two distinct epitopes on H5 HA molecule recognized by
these rhAbs and demonstrate their potential to protect against a lethal H5N1 virus infection in a mouse model.

Conclusions/Significance: Importantly, localization of the epitopes recognized by these two neutralizing and protective
antibodies has provided, for the first time, insight into the human antibody responses to H5N1 viruses which contribute to
the H5 immunity in the recovered patient. These results highlight the potential of a rhAbs treatment strategy for human
H5N1 virus infection and provide new insight for the development of effective H5N1 pandemic vaccines.
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Introduction

Multiple distinct and geographically diverse genotypes of highly

pathogenic avian influenza (HPAI) A H5N1 viruses now exist and

continue to cause outbreaks of disease in domestic poultry on three

continents [1,2]. The occasional spill-over of HPAI H5N1 virus

into humans has, since late 2003, resulted in over 387 confirmed

human cases of H5N1 influenza of which 245 have been fatal [3].

H5N1 viruses are now endemic in multiple countries in parts of

Asia, Africa, and possibly the Middle East [2]. Accordingly, these

viruses pose a substantial public health threat; if H5N1 viruses

acquire the ability to spread efficiently in humans lacking antibody-

mediated immunity to the H5 surface protein, a pandemic would

result. If the virus retains its current virulence for humans, an H5N1

pandemic would have catastrophic consequences.

Influenza A viruses are enveloped RNA viruses in the family

Orthomyxoviridae possessing eight negative-sense genomic seg-

ments and are classified into subtypes based on their two surface

glycoproteins, the hemagglutinin (HA) and neuraminidase (NA).

There are 16 known HA and 9 NA subtypes that exist in aquatic

birds, the natural reservoir of all influenza A viruses [4,5,6].

Currently circulating HPAI H5N1 viruses arose from a progenitor

virus isolated in China in 1996 [7]. Since 1997, ten distinct clades

(0-9) of H5N1 viruses have been recognized based on the

phylogeny of the H5 HA gene [7]. Clade 0 viruses caused the

1997 Hong Kong outbreak of human disease, whereas the human

cases associated with the reemergence of H5N1 viruses in

Southeast Asia in 2003–2005 were a result of infection with

Clade1 viruses. H5N1 Clade 2.1 viruses are now endemic in

Indonesia, whereas Clade 2.2 viruses spread from Qinghai Lake,
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China in 2005, and are now found in birds in Western Asia, the

Middle East, Europe and Africa and have caused fatal human

disease in these respective regions. Clade 2.3 H5N1 viruses have

played a dominant role in outbreaks in China and adjacent

countries in 2005–2007 [2,8,9] and have resulted in recent human

fatalities in Vietnam and Laos [2,3]. The multiple clades and

subclades of H5N1 viruses causing human disease are also

antigenically distinguishable, which poses a considerable problem

for H5N1 human vaccine development, since influenza vaccines

offer optimal protection when the vaccine strain is a close

antigenic match with the circulation virus causing disease

[10,11,12]. Moreover, treatment options for H5N1 virus-infected

patients remain limited and empirical, and resistance of newly

emergent H5N1 viruses to either of the two classes of licensed

influenza antiviral drugs, further hampers effective treatment

[9,13,14]. Therefore, the development of new therapeutic targets

and strategies to control HPAI H5N1 virus infection in humans is

urgently needed.

Neutralizing antibodies directed against the HA glycoprotein

are the primary mediator of protection against influenza virus

infection [15,16]. Three HA monomers, each consisting of an

HA1 and an HA2 subunit, form the trimeric HA spike protruding

from the viral membrane. The HA1 subunit contains the receptor-

binding site which mediates viral attachment to the cell

membrane, whereas, the HA2 subunit contributes to membrane

fusion [17,18]. Passive immunization with human monoclonal

antibodies (mAbs), humanized mouse mAbs or equine F(ab9)2
fragments specific for HA has been reported to be effective in

protecting animals from death from influenza, even when

administrated after H5N1 virus infection [19,20,21]. Indeed,

there is some evidence that passive immunotherapy may be

suitable treatment option for patients with H5N1 virus infection,

suggesting that the development of human monoclonal or

polyclonal antibodies for such treatment is warranted [22].

Although neutralizing mAbs derived from H5N1 patients have

been reported recently [21,23], the precise epitopes recognized by

such antibodies conferring protective immunity against H5N1

viruses are yet to be identified [24].

The structure of influenza virus HA and location of antibody-

binding epitopes were first characterized for HA of the human H3

subtype [25]. The H3 three-dimensional structure was used to

map antigenic sites on the H1 [26] and H2 [27], and North

American H5 HA molecules [28]. To date, three antigenic sites on

the H5 HA molecule have been mapped in detail by locating

substitutions detected in anti-HA mouse mAb escape mutants of

H5N2 or H5N1 viruses on the crystallographic structure of HA

[29,30]. However, epitopes on H5N1 HA recognized by human

mAbs are yet to be identified.

In this report, we describe for the first time the generation and

characterization of two broadly cross-neutralizing recombinant

human antibodies (rhAbs; AVFluIgG01 and AVFluIgG03)

generated by screening a Fab antibody phage library derived

from a patient recovered from infection with a clade 2.3 H5N1

virus. Furthermore, through epitope mapping, we identify two

distinct epitopes on H5 HA molecule recognized by these rhAbs

and demonstrate their potential to protect against a lethal H5N1

virus infection in a mouse model. These results highlight the

potential of a rhAbs treatment strategy for human H5N1 virus

infection and provide new insight for the development of effective

H5N1 pandemic vaccines.

Results

Generation of two recombinant human antibodies
against H5N1 viruses

A combinatorial antibody library, prepared from a 26 year old

donor who was infected with H5N1 virus 14 weeks earlier, was

screened with purified AH/1/05 (clade 2.3) virus. After four

rounds of panning, 43 human Fab clones were selected which

demonstrated reactivity with AH/1/05 purified virus by ELISA.

Sequence analysis of all 43 selected Fab clones revealed the

presence of only two unique clones, both of them comprising an

IgG1 Fd heavy chains and lambda light chains. As shown in

Table 1, a Fab antibody designated AVFluFab01 represented 18

Fab clones that possessed a unique VH4 and VL2 sequences, while

the antibody designated AVFluFab03 represented the other 25

Fab clones that possessed distinct VH3, and VL1 sequences. To

further characterize the two Fabs, the two unique Fab clones were

converted into intact human IgG1 antibodies, AVFluIgG01 and

AVFluIgG03.

Characterization of AVFluIgG01 and AVFluIgG03 in vitro
and in vivo.

The AVFluIgG01 and AVFluIgG03 binding properties were

characterized using indirect immunofloresence assay (IFA), micro-

neutralization assay (MN), and hemagglutination inhibition assay

(HI) assays, and in vivo by passive immunization study in BALB/c

mice.

To further identified the relative binding specificities and

binding regions, the two rhAbs previously shown to bind to AH/

1/05 whole virus in ELISA were tested by IFA with MDCK cells

infected with H5N1, H3N2, or H1N1 virus (Figure 1A), or SF-9

cells expressing rHA, rHA1 or rHA2 of AH/1/05 virus

(Figure 1B). A serum sample from the H5N1 virus-infected patient

reacted with H5N1 AH/1/05 and contemporary human influenza

A viruses, HB/53/05 (H1N1) and YN/1145/05 (H3N2); and also

reacted with rHA, rHA1, and rHA2 of AH/1/05 virus

(Supplemental Figure S1). Both AVFluIgG01 and AVFluIgG03

reacted with AH/1/05 virus, but exhibited no reactivity with

human H3N2 and H1N1 viruses (Figure 1A). Additionally, both

Table 1. Amino acid sequences of variable regions in the H and L chains of H5N1 viruse-specificn Fabs

Fabs VRa CDR1b CDR2 CDR3

AVFluFab01 VH GYYWS YLFDSGSTNYNPSLTS RFWGLDGFDI

VL TGTSSDVGDYNYVS DVNKRPS SSYTSSSTWVF

AVFluFab03 VH DYAMS AISGNGGSSTYYADSVKG DDSYDGGGQYGLHNWFDS

VL TGSSSNIGAGYDVH GNSNRPS QSYDSSLVVF

aVR, variable region; VH, heavy chain in VR; VL, light chain in VR.
bCDR, complementarity determining region.
doi:10.1371/journal.pone.0005476.t001

Human Antibody to H5N1 Virus

PLoS ONE | www.plosone.org 2 May 2009 | Volume 4 | Issue 5 | e5476



rhAbs reacted with rHA or rHA1 of AH/1/05 virus, but exhibited

no reactivity with H5 HA2 region (Figure 1B).

To evaluate the neutralizing activities of the two rhAbs, MN

assays were performed first using clade-2.3 and clade-2.2 H5N1

viruses isolated from patients from China (Table 2). With a single

exception, AVFluIgG01 showed neutralizing activity against all of

the clade 2.3/2.2 viruses tested with the 50% neutralizing

antibody concentrations ranging between 1.3–5.2 mg/ml; no

AVFluIgG01 neutralizing activity was detected against the clade

2.3 virus, A/Guangdong/1/06 (GD/1/06). In contrast, AV-

FluIgG03 neutralized all clade 2.3 strains including GD/1/06,

and also neutralized the clade 2.2 (XJ/1/06) virus, but required

approximately 10-fold more antibody compared with AV-

FluIgG01 to achieve 50% neutralization. In a second experiment,

the rhAbs were tested for their ability to cross-neutralize multiple

H5N1 viruses, representing clade 0, 1, 2.1, 2.2 and 2.3 which have

all been associated with human disease to date (Table 3).

Interestingly, while AVFluIgG01 exhibited broad cross-neutrali-

zation of all viruses tested, AVFluIgG03 had no detectable cross-

neutralizing activity against the clade 0 and clade 1 viruses, but

had neutralizing activity against the all clade 2 viruses tested. The

neutralizing activity of the rhAbs against the clade 2.3 virus AH/

1/05 were again similar in this experiment, and likewise, the

neutralizing activity of AVFluIgG01 against a clade 2.2 virus

(Turkey/15/06) was again 10-fold higher than that observed for

AVFluIgG03. Taken together, these data demonstrate distinct

binding patterns of the two rhAbs for epitope(s) within the HA1

domain of H5N1 viruses.

To confirm the reactivity patterns of AVFluIgG01 and

AVFluIgG03, HI activities against H5N1, H3N2, and H1N1

viruses were assessed (Table 4). The results of the HI assays were

consistent with those achieved by the MN assays in that

AVFluIgG01 reacted broadly with all H5N1 viruses tested in a

concentration range of 1.6–3.1 mg/ml, whereas, AVFluIgG03

reacted in a similar concentration range with all clade 2 viruses,

but failed to inhibit hemagglutination of clade 0, and clade 1

H5N1 viruses (Table 3). Lack of binding activity between

AVFluIgG03 and rHA of clade 0 and clade 1 H5N1 viruses was

Figure 1. Characterization of AVFluIgG01 and AVFluIgG03 in IFAs. (A) MDCK cells were infected with AH/1/05 (H5N1), HB/53/05 (H1N1), or
YN/1145/05 (H3N2) viruses. (B) SF-9 cells were infected with recombinant baculoviruses expressing full length HA, HA1 or HA2 gene from AH/1/05
virus. Bound antibodies were detected by using FITC-conjugated anti-human antibody with PBS dilution buffer (pH 7.4) containing 0.01% (w/v) Evens
blue counterstain (Sigma, USA).
doi:10.1371/journal.pone.0005476.g001

Table 2. Neutralization activity of recombinant human
antibodies against influenza A H5N1 viruses isolated from
China

Viruses used
Genetic
clades Concentrations (mg/ml)a

AVFluIgG01 AVFluIgG03

A/Xinjiang/1/06 (XJ/1/06) 2.2 1.3 12.5

A/Anhui/1/05 (AH/1/05) 2.3 1.3 0.8

A/Guangxi/1/05 (GX/1/05) 2.3 2.6 3.1

A/Fujian/1/05 (FJ/1/05) 2.3 2.6 1.6

A/Sichuan/1/06 (SC/1/06) 2.3 5.2 0.8

A/Hunan/1/06 (HN/1/06) 2.3 1.3 0.8

A/Zhejiang/1/06 (ZJ/1/06) 2.3 5.2 3.1

A/Guangdong/1/06 (GD/1/
06)

2.3 .500 1.6

doi:10.1371/journal.pone.0005476.t002

Human Antibody to H5N1 Virus
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also observed in ELISA assays (Supplemental Table S1).

Furthermore, the HI assays confirmed the lack of reactivity of

either rhAbs for contemporary human influenza A viruses of the

H1N1 and H3N2 subtypes.

To investigate the protective efficacy of prophylaxis by passive

immunization with AVFluIgG01 and AVFluIgG03, BALB/c mice

were administered 2.5, 0.25 or 0.025 mg/kg of either rhAb or

10 mg/kg of a control human IgG1 antibody (HIgG1), 24 hr prior

to challenge i.n. with 10 LD50 ( = 104MID50; = 105.5EID50) of

AH/1/05 wild-type virus. As shown in Figure 2, all mice receiving

the control HIgG1 succumbed to the lethal H5N1 virus by day 10

post-infection (p.i.). In contrast, mice that received prophylaxis

with a single 2.5 mg/ml dose of AVFluIgG01 or AVFluIgG03

were completely protected from lethal disease (p = 0.0006). A dose-

dependent decrease in protective efficacy was observed in mice

receiving 10- or 100-fold lower amounts of either rhAb. Although

the lower doses of AVFluIgG01 or AVFluIgG03 did not

completely prevent fatal disease, they delayed time to death

(p,0.05). Nevertheless, even at a dose of 0.025 mg/kg, the

AVFluIg03 protected 50% of mice from lethal disease (p = 0.045).

Although lung and brain virus titers determined 6 days p.i. were

reduced ($3-fold) in mice that received 2.5 mg/kg of either rhAb

compared with those receiving the control HIgG1, theses

differences did not achieve statistical significance (Supplemental

Table S2). These results demonstrate that passive immunization of

mice with either anti-H5 clade 2.3 rhAb resulted in protection

from lethal H5N1 virus disease.

Table 3. Neutralization activity of recombinant human
antibodies against H5N1 viruses isolated from China and
other countries

Viruses used
Genetic
clades Concentrations (mg/ml) a

AVFluIgG01 AVFluIgG03

A/HongKong/156/97
(HK/156/97)

0 0.4 .500

A/Viet Nam/1203/04
(VN/1203/04)

1 0.8 .500

A/Indonesia/5/05 (Indo/5/05) 2.1 12.5 6.3

A/Turkey/15/06 (Turkey/15/06) 2.2 0.4 6.3

A/Anhui/1/05 (AH/1/05) 2.3 0.8 0.2

aMinimum concentrations of rhAbs that required to neutralize the 50%
infectivity of 100 TCID50 of viruses were determined by Micro-neutralization
(MN) assay.

doi:10.1371/journal.pone.0005476.t003

Table 4. HI activity of recombinant human antibodies against
influenza A H5N1, H3N2, and H1N1 viruses

Influenza A
Viruses used Subtypes

Genetic
clades Concentrations (mg/ml) a

AVFluIgG01 AVFluIgG03

HK/156/97 H5N1 0 1.6 .250

VN/1203/04 H5N1 1 1.6 .250

Indo/5/05 H5N1 2.1 3.1 3.1

Turkey/15/06 H5N1 2.2 1.6 3.1

XJ/1/06 H5N1 2.2 3.1 3.1

AH/1/05 H5N1 2.3 1.6 0.8

GX/1/05 H5N1 2.3 1.6 1.6

FJ/1/05 H5N1 2.3 3.1 1.6

JX/1/05 H5N1 2.3 3.1 1.6

SC/1/06 H5N1 2.3 3.1 1.6

A/Fujian/1/07
(FJ/1/07)

H5N1 2.3 1.6 3.1

A/Wyoming/3/03
(WY/3/03)

H3N2 NA b .250 .250

A/New
Caledonia/20/99
(NC/20/99)

H1N1 NA .250 .250

aMinimum concentrations, in micrograms per milliliter (mg/ml), that required to
completely inhibit 4 HA units of virus were determined by HI assay by using
1% of horse erythrocytes for H5N1 virus or 0.5% of turkey erythrocytes for
human H3N2 and H1N1 viruses.

bNA, not applicable.
doi:10.1371/journal.pone.0005476.t004

Figure 2. Protective efficacy of AVFluIgG01 and AVFluIgG03 in
mice. BALB/c mice (n = 6 per group) were passively immunized by i.p.
injection of graded doses of rhAbs, AVFluIgG01 or AVFluIgG03, or
human IgG1 (HIgG1) as a negative control (NC). Mice were challenge i.n.
with 50 ml of 10 LD50 ( = 104MID50; 105.5EID50) of AH/1/05 virus 24 h
later. The data show the Kaplan-Meier survival curves for the 21 days p.i.
Mice that received 2.5 mg/kg of either AVFluIgG01 or AVFluIgG03 were
completely protected from a lethal challenge (rhAbs versus HIgG1,
p = 0.0006, log rank test). Both rhAbs also afforded partial protection
and delayed days to death at lower doses of 0.25 mg/kg and 0.025 mg/
kg (rhAbs versus HIgG1, p,0.05, log rank test).
doi:10.1371/journal.pone.0005476.g002
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Epitope mapping
To identify the potential individual amino acids essential for

interaction with the two cross-neutralizing human antibodies,

amino acid sequences of HA1 region of some human H5N1

isolates used above in the MN and/or HI assays were aligned

(Table 5) and analyzed in the context of the respective rhAbs

binding reactivity and the antigenic sites previously identified on

the H5 HA1 molecule [19,30,31]. AVFluIgG01 showed broad

cross-neutralizing reactivity to all H5N1 representatives of clade

0, clade 1 and clade 2 viruses except the clade 2.3 virus GD/1/

06 (Table 2). Sequence alignment of HA1 proteins identified two

amino acid substitutions at position 123 and 183 (S123P and

D183N) that were unique to GD/1/06 virus compared with

AH/1/05 virus and other clade 2.3 H5N1 viruses tested with

which AVFluIgG01 reacted (Table 5). On the other hand,

AVFluIgG03 had failed to react with clade-0 and clade-1 viruses

by the MN and horse HI assays (Table 3 and Table 4) and also

failed to bind clade 0 (HK/156/97) and clade-1 (VN/1203/04)

rHA by ELISA (Supplemental Table S1). As illustrated in

Table 5, sequence alignment of the HA1 regions identified eight

amino acid differences in the clade 0 and clade 1 viruses

compared with the clade 2 H5N1 viruses at positions D124S/N,

E126D, S129L, Q138L, T140R/K/S, P141S, N155S, and

T156A. Therefore, we next investigated whether each of these

amino acid positions contributed to the antibody-binding

epitopes recognized by AVFluIgG01 and AVFluIgG03, respec-

tively.

To test the impact of the above identified changes of amino acid

substitutions identified in natural H5N1 strains, we generated

AH/1/05 rHA gene products possessing single amino acid

substitutions as identified above (Table 5) and expressed in 293T

cells. The ability of the AVFluIgG01 and AVFluIgG03 to bind to

the mutated rHA proteins was detected by IFA. As a control for

expression, the IFA reactivity of the polyclonal patient serum was

also determined for each mutated protein. As shown in Table 6,

the mutation S123P resulted in the complete loss of binding of

AVFluIgG01 to the expressed rHA product. In contrast, the other

substitution that was unique to GD/1/06, D183N, had no effect

on the binding of the AVFluIgG01. For AVFluIgG03, mutations

at E126D, S129L and N155S abolished or substantially reduced

binding of the AVFluIgG03 to the rHA antigen. The remaining

substitutions, D124S/N, Q138L, T140K, P141S, and T156A, had

no effect on the binding of either AVFluIgG01 or AVFluIgG03 to

expressed rHA. The results indicated that the amino acid residue

at position 123 was critical for the binding of AVFluIgG01, while

Glu126, Ser129 and Asn155 were important for the binding of

AVFluIgG03.

WB analysis demonstrated that AVFluIgG01 reacted with the

denatured viral HA1 protein. In contrast, AVFluIgG03 showed no

Table 5. Amino acid changes in HA1 of the H5N1 viruses isolated from humans

Viruses (clade) HI and/or MN
a

Amino acid positions b

AVFluIgG01 AVFluIgG03 123 124 126 129 138 140 141 155 156 183

HK/156/97 (0) + 2 S N D S L R S S A D

VN/1203/04 (1) + 2 S S E L Q K S S T D

Indo/5/05 (2.1) + + S D E S L S P S T D

Turkey/15/06 (2.2) + + S D E S Q R S N A D

XJ/1/06 (2.2) + + S D E S Q R S N T D

AH/1/05 (2.3) + + S D E S Q T P N T D

GD/1/06 (2.3) 2 + P D E S Q T P N T N

a‘‘+’’, indicates positive binding; ‘‘2‘‘, indicates negative binding in HI and/or MN assays.
bAmino acid numbering is based on H5 HA.
doi:10.1371/journal.pone.0005476.t005

Table 6. Epitope mapping of rhAbs to a panel of site mutant
rHA of AH/1/05

Mutant site a AVFluIgG01 AVFluIgG03 PC

rHA1 of wild type +++ b +++ +++

Q115G +++ +++ +++

I116H 2 2 +++

I117P 2 2 +++

P118S 2 +++ +++

K119G +++ +++ +++

S120N + +++ +++

S121A + +++ +++

W122G 2 2 +++

S123P 2 +++ +++

D124S/N +++ +++ +++

H125Y ++ +++ +++

E126D ++ 2 +++

A127V +++ +++ +++

S128Y +++ +++ +++

S129L +++ 2 +++

Q138L +++ +++ +++

T140K +++ +++ +++

P141S +++ +++ +++

K152G +++ 2 +++

K153G +++ +++ +++

N154G +++ +++ +++

N155S/G +++ +/+ +++

T156A/G +++ +++ +++

D183N +++ +++ +++

aThe amino acid mutant positions are in H5 numbering.
bIFA were performed on 293T cells transfected with mutant rHA constructions.

(+) to (+++) indicates the relative intensity of fluorescence.
doi:10.1371/journal.pone.0005476.t006

Human Antibody to H5N1 Virus
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binding activity with denatured HA1 (Figure 3). The WB result

suggested that the epitope recognized by AVFluIgG01 may be a

linear epitope, while the epitope recognized by AVFluIgG03 may

be a conformational epitope. In an effort to further map the

respective epitopes bound by these rhAbs, we generated an

additional series of rHA mutants and tested the ability of both

rhAbs to bind to the expressed rHA products by IFA. Except for

two highly conserved amino acids (Lys119 and Trp122) each

selected amino acid was replaced by a corresponding variable

amino acid identified in wild-type human H5N1 virus strains

emerging in Asia and Africa respectively (Influenza Virus Resource:

http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html). The two

conserved amino acids were replaced with Glycine (G). To

further delineate the binding epitope of AVFluIgG01, single

amino acid substitutions around Ser123, from HA1 residues 115

to 129 were constructed. Mutations at I116H, I117P, P118S

and W122G resulted in complete loss of AVFluIgG01 binding;

moreover, mutations at S120N and S121A resulted in

substantially reduced binding of AVFluIgG01, but had no

impact on the binding of the polyclonal patient’s serum

(Table 6). In contrast, substitutions at Q115G, K119G,

D124S/N, H125Y, E126D, A127V, S128Y and S129L had

no or little effect on the binding of this rhAb. These results are

consistent with the AVFluIgG01 epitope being linear and

comprised of HA1 residues 116–123. Interestingly, the muta-

tions at I116H, I117P, and W122G also led to the abolishment

of AVFluIgG03 binding. To further investigate the likely

conformational epitope for AVFluIgG03, we analyzed the

three-dimensional structure of the H5 HA molecule (Figure 4)

and the structure prediction of the H5 A/Anhui/1/2005 HA1

by modeling were created with the software Discovery StudioTM

2.0(Accelrys, USA)and the H5 A/Anhui/1/2005 HA1 structure

was obtained from the crystal structure of the highly related the

H5 A/Viet Nam/1194/2004 HA1 (PDB accession number

2IBX) by DS MODELER (Discovery Studio 2.0). Amino acid

positions are designated in H5 numbering. We noted that

amino acids Lys152, Lys153, Asn154, Asn155, The156, which were

on a pocket in the distal part of each HA monomer sterically

close to Glu126 and Ser129. These residues were selected for

glycine scanning mutagenesis assay. As shown in Table 6,

glycine substitution at K153G, N154G and T156G have little or

no effect on the binding for AVFluIgG03. In contrast, the

N155G mutations resulted in a noteable reduction in AV-

FluIgG03 binding, whereas the K152G mutation completely

abolished AVFluIgG03 binding, in a manner similar to

mutations I116H, I117P, W122G, E126D and S129L. There-

fore three non-continuous regions, designated site I (Ile116,

Ile117, Trp122), site II (Glu126, Ser129) and Site III (Lys152,

Asn155) likely contribute to the non-continuous conformational

epitope for AVFluIgG03.

Discussion

In the present study, we generated two H5N1-specific rhAbs

(AVFluIgG01 and AVFluIgG03) representing the repertoire of

Fab clones recovered from the blood of a convalescent H5N1

virus-infected patient (Table 1 and Figure 1). Interestingly,

convalescent plasma from this same patient who had donated

the blood for generating hAbs a few weeks earlier was used to

transfuse a critically ill patient infected with a genetically similar

H5N1 virus; the passive immunotherapy recipient subsequently

recovered [32,33]. Furthermore, as demonstrated in this study, the

rhAbs were confirmed to protect mice from lethal H5N1 disease

(Figure 2), suggesting that they may represent the dominant B cell

response in the recovered H5N1 virus-infected patient. Generation

of such human antibodies provides not only important insight into

the protective immune response to H5N1 virus in humans, but

also provides a valuable treatment option for future H5N1 virus-

infected patients [32,34,35].

The immune reactivity profile showed that AVFluIgG01 had

broad cross HI and/or neutralizing activity in vitro against all

viruses tested except one clade 2.3 virus, GD/1/06 in which one

amino acid substitution (S123P) was implicated in the loss of

reactivity with this virus (Table 2–4). On the other hand,

AVFluIgG03 showed a more narrow HI and neutralizing profile

in that it failed to react with clade 0 and clade 1 viruses, but

exhibited strong and broad cross activity for all 2005 and 2006

clade 2 virus strains tested (Table 2, Table 3, Table 4). Both rhAbs

gave 50% neutralization of H5N1 viruses in the 0.2–12.5 mg/ml

range and protected 100% of mice from fatal disease at a dose of

2.5 mg/kg, doses that were comparable to the virus-neutralizing

and lowest in vivo protective concentrations of human H5-specific

mAbs derived from memory B cells of a clade 1 H5N1 virus-

infected patients reported elsewhere [21]. Although we observed

an antibody dose-dependent reduction in viral load in the lung and

brain tissue, our results did not achieve statistical significance, at

this antibody dose (2.5 mg/kg) that conferred complete protection

from death. It should be noted that, where other studies have

demonstrated significant reduction in viral load in lung and brain

tissues in mice given human H5 antibody prophylaxis, the doses

used to demonstrate protection were up to 8 times higher than the

dose that gave complete protection from death in our study [21].

Figure 3. Western Blot analysis of AVFluIgG01 and AV-
FluIgG03. Purified AH/1/05 virus was applied to SDS–PAGE. The
antigens were probed with either AVFluIgG01 or AVFluIgG03. A human
serum from H5N1 virus-infected patient was used as a positive control
(PC).
doi:10.1371/journal.pone.0005476.g003
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Figure 4. Schematic representation of the epitopes recognized by AVFluIgG01 and AVFluIgG03 on the globular head of the H5 AH/
1/05 HA1 molecule. Amino acid positions are designated in H5 numbering. A linear epitope (IIPKSSWS, amino acid 116–123) recognized by
AVFluIgG01 is colored in red; non-continuous conformational epitope of AVFluIgG03 is colored in blue; the overlapping binding site for both
AVFluIgG01 and AVFluIgG03 are colored in green. The receptor binding domain (RBD) is highlighted with a purple oval. (A) Side view of the HA1
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We predict that, had we used higher doses of antibody, or a less

stringent challenge dose, we would have observed a significant

correlation between reduction in viral load and survival. Further

studies are needed to address the mechanism of antibody action in

protection from death. Our previous studies in mice have

suggested that a reduction in extrapulmonary spread is important

in survival from H5N1 virus infection [41]. The mouse model used

in this study described the primary functionality of the antibodies,

we are planning more detailed studies to address the prophylactic

or therapeutic potential of these antibodies, either alone or in

combination, for their ability to protect from severe disease

induced by homologous H5N1 virus, as well as heterologous

H5N1 viruses of other clades. We think that it would help to

understand the relevance of the epitopes and their mode of action.

The epitopes recognized by AVFluIgG01 or AVFluIgG03 were

on the head of the HA1, but not HA2 molecule and appeared to

be linear or conformational, respectively (Figure 1 and Figure 3).

Sequence alignment and site-directed mutagenesis of HA (AH/1/

05) identified amino acid residues that were critical for the binding

activity of the two H5-specific rhAbs (Table 5 and Table 6). For

the linear epitope recognized by AVFluIgG01, alignment of the

H5N1 viruses HA1 used in MN assays revealed that GD/1/06

HA1 differed in 2 amino acids (S123P, D183N) from the wild-type

AH/1/05 and/or other clade 2.3 H5N1 viruses, thereby providing

important insight as to the location of the linear epitope. The

results of site-directed mutagenesis indicated that the linear

epitope for AVFluIgG01 was contained within a sequence of

IIPKSSWS (amino acid 116–123 of HA1) and identifies for the

first time a linear neutralizing antigenic epitope recognized by

H5N1 patient-derived human antibody, of which the critical

amino acid residues (Ile116, Ile117, Pro118, Trp122, Ser123) were not

reported previously. Interestingly, mutations I116H, I117P and

W122G also abolished AVFluIgG03 binding. Furthermore, by

examining the positions of the AH/1/05 HA1 sequences on three-

dimensional H5 HA structure as illustrated in Figure 4, we

observed that this newly defined linear epitope recognized by

AVFluIgG01 (colored in red and green) (Figure 4A and 4B)

comprises a remarkably tight cluster on the exposed surface of the

globular head of the HA1 H5 molecule, forming a ridge that

protrudes prominently from the H5 AH/1/05 HA1 surface, that is

in close proximity to the receptor binding region (RBD), which

comprises 190 helix, 130 loop and 220 loop as colored in pink in

Figure 4A and 4B [31,36]. The position of the surface-exposed

epitope is consistent with a direct role of AVFluIgG01 in

neutralizing virus infectivity through binding the epitope on the

HA spike and block attachment of virus to the receptor. Moreover,

by performing a bioinformatics analysis, using the 266 human

H5N1 virus strains available in the database of Influenza Virus

Resource (http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.

html), we found that residues Lys119 and Trp122 were absolutely

conserved while other residues in the proposed linear epitope were

highly conserved among 266 human H5N1 viruses (96.2%–

99.9%). Although our results indicated that the single mutation

K119G had no direct effect on the antibody binding, the

illustration of the three dimensional structure shown in Figure 4C

and 4E indicates that residues Lys119, Ser120 and Ser121 comprise a

major helix structure with Ser120 and Ser121 are positioned on the

outer face of the helix (96.2% conservation), whereas Lys119 is

positioned in the inner helix, which may explain the conservation

of this residue among 266 human H5N1 viruses. Residue Ile117 is

partially buried at the surface of the globular head of the HA1 and

may contribute through stabilizing and/or positioning of the linear

epitope on the globular head of the HA1 H5 molecule. We

propose that this novel linear epitope defined by the broadly

neutralizing human antibody AVFluIgG01 represents a highly

conserved neutralization epitope that may play an important role

in inducing protective humoral immune responses to H5N1

viruses in humans. In contrast to the continuous epitope identified

by AVFluIgG01, the epitope recognized by AVFluIgG03, is

comprised of three non-continuous sites which comprise a

conformational determinant as illustrated in blue and green in

Figure 4 (A, B, D, and E),from the top view of the H5 three-

dimensional structure (Figure 4B and 4E). Site I (Ile116, Ile117 and

Trp122) in green, partially overlaps with the linear epitope

identified by AVFluIgG01 but is not exposed from the upper

surface of the H5 HA molecule, suggesting that this site may not

directly interact with the AVFluIgG03 but may otherwise affect

the stability of the conformational epitope on the globular head of

the HA1 H5 molecule. Site II (Glu126 and Ser129) overlaps with a

previously described antigenic site 3 in H5 HA based on the X-ray

crystallographic structure of the clade 1 virus VN/1203/04 virus

[30,31] and is adjacent to the Sa site defined in the H1 subtype

based on the antigenic structure analysis of A/Puerto Rico/8/34

virus with mouse mAbs [26]. Site III (Lys152, Asn155) partially

corresponds to the previously identified antigenic site 2 in the H5

HA [29,30] and site B in the H3 HA structure [25]. Both site II

and the site III are exposed on the upper surface of the H5 HA

molecule and are located along the upper edge of receptor-binding

domain pocket (RBD; in purple) (Figure 4A and 4B). Residues

126, 129 and 155 were initially implicated in the binding of

AVFluIgG03 since differences at these positions were identified

between the 2005 clade 2.3 AH/1/05 and the clade 0 and clade 1

viruses which failed to react with the AVFluIgG03 by MN and HI

tests (Table 2–4). Site-directed mutagenesis of AH/1/05 HA

confirmed that the residues Glu126 and Ser129 were critical

residues for the binding of AVFluIgG03. Interestingly, the H5

epitope for the human antibody AVFluIgG03 overlaps with

epitopes recognized by mouse mAbs on a mouse-adapted duck

H5N2 virus (A/Mallard/Pennsylvania/10218/84) identified by

the sequence analysis of virus escape mutants [29,30]. Using a

similar approach, amino acid residue 152 was identified as a key

position within the epitope recognized by certain mouse mAbs on

the clade 1 H5N1 virus VN/1203/04 HA [30]. These results

suggest that the conformational antigenic determinant defined

here may be a key region for drift variation among H5N1 viruses

that have infected humans.

In summary, we have generated and characterized two

recombinant baculovirus-expressed human neutralizing and

protective antibodies directed against an H5N1 clade 2.3 virus

which exhibit unique properties for intra and inter-clade virus

reactivity. Importantly, localization of the epitopes recognized by

the two rhAbs has provided, for the first time, insight into the

human antibody responses to H5N1 viruses which contribute to

the H5 immunity in the recovered patient. The primary

prophylactic functionality of the antibodies were addressed in this

study with the mouse model. More detailed studies in vivo would

help to understand the significance of the defined epitopes and the

important mechanisms for prophylaxis or therapy of human

infection with H5N1 viruses. The utility of the recombinant

approach allows for rapid scale-up in production, as well as a

structure. (B) Top view of the globular head. (C) Cartoon illustration of the three-dimensional structure of the linear epitope for AVFluIgG01. (D)
Cartoon illustration of the three-dimensional structure of the conformational epitope of AVFluIgG03. (E) Overall structure of the two epitopes of
AVFluIgG01 and AVFluIgG03 depicted in cartoon representation.
doi:10.1371/journal.pone.0005476.g004
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means to rapidly clone and express antibodies with specificity for

newly emerging H5N1 variants. More functional human antibod-

ies could be obtained by additional screenings. The rhAbs

described here alone or in combination with other functional

human antibodies may provide a promising for broadly neutral-

izing passive immunotherapy treatment that could supplement

existing antiviral strategies against human H5N1 virus infection.

Materials and Methods

Viruses
Influenza viruses used in this study were propagated at 37uC in

the allantoic cavity of 10-day-old embryonated hens’ eggs for

26 hours (H5N1 virus) or 48 hours (H3N2 and H1N1 viruses), and

were aliquoted and stored at 270uC until use. Fifty percent egg

infectious dose (EID50) titers were determined by serial titration of

virus in eggs and calculated by the method of Reed and Muench

[37]. A/Anhui/1/2005 (AH/1/05) virus was propagated in

MDCK cells. Culture supernatants were clarified by low-speed

centrifugation to remove cell debris, and were further purified by

using continuous sucrose density gradient ultracentrifugation.

Generation of recombinant human antibodies to H5N1
virus

Lymphocytes used for mRNA extraction were isolated from

blood that was collected from a 26-year-old female convalescent

H5N1 virus-infected patient from Anhui province. The blood

donor developed symptoms on 11 February 2006 following

contact with diseased poultry [22,33] and convalescent blood

was obtained 14 weeks after the onset of a disease. The written

informed consent was agreed by the patient. Total cellular mRNA

was extracted and cDNA was synthesized. The heavy and light

chain genes were amplified from the cDNAs by PCR and

sequentially cloned into the phagemid vector pComb3H. The

H5N1 virus-infected patient antibody phage library was con-

structed by using primers and methods as previously described

[38]. The antibody library was screened by panning on purified

AH/1/05 virus [39]. After three or four rounds of panning, crude

Fab antibody preparations were tested by indirect ELISA using 96

well plates coated with 0.5–1 mg of purified AH/1/05 virus. HRP-

conjugated anti-human Fab was used as the secondary antibody.

The selected human Fab antibody genes were sequenced and two

of them were converted to human IgG by cloning the Fab genes

into IgG expression cassette vectors pAc-L-Fc as previously

described [40]. The two rhAbs (AVFluIgG01 and AVFluIgG03)

were expressed in SF9 cells and purified on a Protein A column for

further characterization and functional analysis. Purity of rhAbs

was confirmed using SDS-PAGE analysis.

Construction and expression of rHA, rHA1, and rHA2
The viral RNA was extracted from AH/1/05 virus and the

cDNA was synthesised. The DNA fragments encoding full length

HA, HA1 or HA2 were amplified by RT-PCR and cloned into

pAcUW51 vector (BD Bioscienses) and then expressed in SF-9

insect cells as previously described [41,42].

Immunofluorescence Assay (IFA)
IFAs were performed on different cells according to the

experimental design. To measure rhAbs reactivity for viral

antigens, Madin Darby Canine Kidney (MDCK) cells were

infected respectively with AH/1/05 (H5N1), A/Hubeihongshan/

53/2005 (HB/53/05; H1N1), and A/Yunnan/1145/2005 (YN/

1145/05; H3N2) viruses. To measure rhAbs reactivity for viral

recombinant HA (rHA), rHA1, or rHA2, SF-9 cells were infected

with recombinant baculoviruses expressing HA, HA1 or HA2

products from AH/1/05 virus, respectively. To evaluate rHA

containing site-directed mutations, rHAs were transiently ex-

pressed in 293T cells. Cells were grown in 24 wells plates and were

then either directly stained in the wells or were prepared as

monolayer on glass slides followed by acetone fixation. Bound

antibodies were detected by using FITC-conjugated anti-human

antibodies and observation under an immunofluorescence micro-

scope.

Microneutralization assay
To verify the neutralizing ability of AVFluIgG01 and

AVFluIgG03, the micro-neutralization (MN) assay was performed

as previously described [43]. Neutralizing antibody titers are

expressed as the concentrations of rhAbs that gave 50%

neutralization of 100 50% tissue culture infectious dose (TCID50)

of virus in MDCK cells.

Hemagglutination-inhibition (HI) assay
To verify the HI ability of AVFluIgG01 and AVFluIgG03

against avian H5N1 or human H3N2 and H1N1 viruses, the HI

assays were performed using 0.5% turkey red blood cells for

detecting reactivity with human H3N2 and H1N1 virus [44] or

1% horse red blood cells for detecting reactivity with avian H5N1

viruses [45]. HI antibody titers are expressed as the concentrations

of rhAbs that completely inhibited 4 hemagglutinating units

(HAU) of virus.

Passive immunization of mice and challenge experiment
The fifty percent mouse infectious dose (MID50) and 50% lethal

dose (LD50) of AH/1/05 virus were determined as previously

described [46]. To evaluate the degree of protection, 8 week-old

female BALB/c mice (Jackson Laboratories, Bar Harbor, MA,

USA) were intraperitoneally (i.p.) injected with 0.5 ml of purified

rhAb preparations of various concentrations or hyperimmune

rabbit antiserum raised against baculovirus expressed H5 rHA of

A/Vietnam/1203/2004 virus (VN/1203/04) (Protein Sciences

Corporation, Meriden, CT, USA) as a positive control (PC).

Negative control (NC) antibody was a purified human myeloma

IgG1 (Sigma, Missouri, USA). Twenty-four hours after passive

immunization, mice were lightly anesthetized by inhalation of

CO2 and challenged intranasally (i.n.) with 10 LD50 ( = 104MID50;

105.5EID50) of AH/1/05 virus in 50 ml. Mice were monitored

daily for sickness, weight loss and death for 21 days.

Western blot (WB) analysis
Purified virus of AH/1/05 were applied to 10% SDS–PAGE

and transferred to a PVDF membrane with a mini-protean

apparatus (Bio-Rad). The denatured antigens were probed with

patient sera (1:150 dilution) as a PC or 1 mg/ml of an anti-SARS

IgG as a NC or the two rhAbs at 1 mg/ml. A goat anti-human IgG

conjugated to HRP was used as the secondary antibody. The

reaction was detected by ECL reagent (Pierce) according to the

manufacturer’s instructions.

Amino acid substitutions by site-directed mutagenesis
Mutagenic primers were designed after aligning sequences of

HAs region of MN and HI tested human H5N1 isolates including

A/Anhui/1/2005 (Genebank accession DQ371928), A/Guangxi/

1/2005 (DQ371930), A/Hunan/1/2006 (FJ492879), A/Zhejiang/

1/2006 (FJ492880), A/Sichuan/1/2006 (FJ492881), A/Fujian/1/

2005 (FJ492882), A/Fujian/1/2007 (FJ492883), A/Guangdong/1/

2006 (FJ492884), A/Jiangxi/1/05 (FJ492885), A/Xinjiang/1/2006
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(FJ492886), A/VietNam/1203/2004 (AY818135), A/HongKong/

156/1997 (AF023709), A/Turkey/15/2006 (EF619989) and A/

Indonesia/5/2005 (EU146622), and the DNA fragments of site-

directed mutagenesis of the HA gene of AH/1/05 were amplified by

PCR, cloned into XhoI and BamHI sites of pCDNA3.0, and

confirmed by DNA sequencing to exclude secondary mutation. All

constructs were transfected to 293T cells for transient expression.

The resulting mutated rHAs were assayed by IFA described above

for binding activity for AVFluIgG01 and AVFluIgG03.

Schematic representation of the epitopes recognized by
AVFluIgG01 and AVFluIgG03 on the globular head of the
H5 HA1 molecule

The H5 AH/1/05 HA1 structure was based on the crystal

structure of the highly related the H5 A/Viet Nam/1194/2004

HA1 (PDB accession number 2IBX) by DS MODELER

(Discovery Studio 2.0). Images were created with the software

Discovery StudioTM 2.0 (Accelrys, USA).

Statistical analysis
Kaplan-Meier survival curves and logrank tests were used to

measure differences between rhAb treated mice and NC mice.
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