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Abstract

Background: Assessment of coronary heart disease (CHD) risk is typically based on a weighted combination of standard risk
factors. We sought to determine the extent to which a lipidomic approach based on red blood cell fatty acid (RBC-FA)
profiles could discriminate acute coronary syndrome (ACS) cases from controls, and to compare RBC-FA discrimination with
that based on standard risk factors.

Methodology/Principal Findings: RBC-FA profiles were measured in 668 ACS cases and 680 age-, race- and gender-
matched controls. Multivariable logistic regression models based on FA profiles (FA) and standard risk factors (SRF) were
developed on a random 2/3rds derivation set and validated on the remaining 1/3rd. The area under receiver operating
characteristic (ROC) curves (c-statistics), misclassification rates, and model calibrations were used to evaluate the individual
and combined models. The FA discriminated cases from controls better than the SRF (c = 0.85 vs. 0.77, p = 0.003) and the FA
profile added significantly to the standard model (c = 0.88 vs. 0.77, p,0.0001). Hosmer-Lemeshow calibration was poor for
the FA model alone (p = 0.01), but acceptable for both the SRF (p = 0.30) and combined models (p = 0.22). Misclassification
rates were 23%, 29% and 20% for FA, the SRF, and the combined models, respectively.

Conclusions/Significance: RBC-FA profiles contribute significantly to the discrimination of ACS cases, especially when
combined with standard risk factors. The utility of FA patterns in risk prediction warrants further investigation.
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Introduction

Predicting risk for coronary heart disease (CHD) remains an

inexact science. Several recent risk prediction algorithms have

been proposed, such as those from the Prospective Cardiovascular

Munster (PROCAM) study [1], the 3rd Joint European Task

Force [Systematic Coronary Risk Evaluation (SCORE)] [2], the

Atherosclerosis Risk in Communities (ARIC) study [3], the

Reynolds Risk Score [4,5] and finally, the original and most

widely used system, the Framingham Risk Score [6,7] The latter

was designed to predict the 10-year risk for major coronary events,

and it does so with a c-statistic [area under the receiver operating

characteristic (ROC) curve] of 0.7–0.8 [3,6,7]. All of these

prediction algorithms generally include the following standard risk

factors: age, sex, total (or low-density lipoprotein) cholesterol (C),

high-density lipoprotein C (HDL-C), blood pressure, and smoking

and diabetic status. Despite the demonstrated utility of standard

factors in coronary heart disease (CHD) risk prediction, there

remains an intense interest in finding additional markers that

would improve upon this standard [8,9,10], and while a number

of putative risk factors have been tested, few have added

meaningfully [11,12].

Fatty acids (FAs) are powerful modulators of cell membrane

receptors and affect signal transduction, gene transcription, and

eicosanoid metabolism. They are present in many tissue compart-

ments, including plasma (non-esterified or esterified in triglycerides,

cholesteryl esters, or phospholipids), adipose tissue and cell

membranes. Some of these compartments (e.g., plasma triglycerides

and non-esterified FAs) are sensitive indicators of acute changes in

dietary habits and in hepatic and adipocyte function. Adipose tissue

FA composition is a long-term (months to years) reflection of dietary

habits, whereas membrane FA composition (e.g., red blood cells,

RBC) provides a more intermediate estimate (weeks). We [13] and

others [14,15,16] have reported that specific RBC FA (typically

omega-3, omega-6 or trans FAs) strongly predict CHD events.

However, the utility of other FAs that may be robust indicators and

regulators of metabolism is largely unknown. Because RBC-FA

reflect relatively recent FA intake, are highly correlated with

myocardial FA composition [17], and are not affected by acute

coronary events [15], they are ideal objective biomarkers of FA

status. We hypothesized that a RBC-FA ‘‘lipidomic’’ approach

(which focus on FA patterns instead of individual FAs) would predict

risk for acute coronary syndromes (ACS) and add to the predictive

utility of standard CHD risk factors.
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Methods

Ethical Statement
This research was performed in accordance with the ethical

principles for medical research involving human subjects outlined

in the Declaration of Helsinki.

Selection of Cases
All consecutive patients admitted to two hospitals associated

with the University of Missouri-Kansas City School of Medicine

were prospectively screened for an ACS between March 2001and

June 2004 (Figure 1). The subjects signed a consent form that

included the following statement: ‘‘A small portion of your blood

will be frozen and stored in case future tests are developed specific

for heart attacks. If a future study were to be done, we may share

the blood with these researchers.’’ Acute myocardial infarction was

diagnosed based on the presentation of suggestive cardiac

symptoms and/or ischemic ECG changes, and a positive troponin

blood test [18]. A diagnosis of unstable angina was based on a

negative troponin test, new onset angina (,2 months) of at least

Canadian Cardiovascular Society Classification class III, pro-

longed (.20 minutes) rest angina, recent (,2 months) worsening

of angina, or angina that occurred within 2 weeks of a previous MI

[19]. Patients were excluded if a subsequent diagnostic study (e.g.

coronary angiography, nuclear or echocardiographic stress testing)

excluded symptomatic ischemic heart disease or confirmed an

alternative explanation for their presentation (e.g., esophagogas-

troduodenoscopy). Three physicians reviewed the charts of all

patients for whom diagnostic uncertainty remained and attained

consensus on the final diagnosis. With this approach, a total of

1,661 patients were included in this registry and enrolled as

described in Figure 1.

Selection of Controls
Patients having blood drawn for routine clinical testing were

recruited from blood drawing centers at Saint Luke’s Hospital

(where 88% of the cases were derived) between March 2004 to

March 2005 as outlined in Figure 1. To maximize similarity to

cases, participation was limited to men and non-pregnant women

over age 34. Patients entering the centers were passively invited (by

a sign placed on the registration desk) to participate in the study by

providing demographic and health information and then allowing

the phlebotomist to collect one additional 10 mL blood tube. The

study was approved by the Institutional Review Board of Saint

Luke’s Hospital and the Institutional Review Board of the

University of Missouri-Kansas City School of Medicine.

Figure 1. Flowchart describing recruitment of study subjects.
doi:10.1371/journal.pone.0005444.g001
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Assessment of Standard Risk Factors
ACS patients completed a baseline interview within 24 to

72 hours of admission, and detailed information on patient

presentation, race, comorbidities, and treatments were obtained

by chart abstraction. Standard risk factors included age, sex, total-

C, HDL-C, a history of diagnosed hypertension and diabetes, and

smoking status [7]. Controls filled out a 19-item questionnaire

based on the interview forms used for the ACS patients. Although

all 7 risk factors were available for the cases, we did not have

independent evidence of a history of diabetes or hypertension. We

therefore use self-reported data.

Laboratory Methods
RBC-FA composition was measured as previously described

[13]. Briefly, RBC membranes were treated with 14% boron

trifluoride in methanol at 100uC for ten minutes. The resulting FA

methyl esters were analyzed by gas chromatography (GC) using an

Agilent 6890 (Agilent Technologies, Palo Alto, CA) equipped with

a capillary column (SP2560, 100 m., Supelco, Bellefonte, PA).

Coefficients of Variation (CVs) for high abundance FAs (.5.0

percent of total FAs) was between 0.3% and 1.0%, and for low

abundance FAs (,1.5%) it was between 1.6% and 5.8%. The

minimum detection level of the equipment was 0.01%. Serum

lipids were measured in the hospital laboratory by routine

enzymatic methods as clinically indicated within 1–2 days of

admission. (Lipids are not materially altered by an ACS event

[7,20]). Lipid levels in controls were determined in frozen plasma

samples.

Statistical Methods
768 patients diagnosed with ACS were matched one-to-one

with controls on the basis of age (5-yr windows), gender, and race

(Caucasian vs. non-Caucasian). 228 were excluded due to

incomplete information on HDL-C, total-C, self-reported hyper-

tension (HTN), self-reported diabetes mellitus (DM), age, gender,

or current smoking status (Figure 1). Two-thirds of the 1,348

subjects were randomly selected (without regard to matching or

case status) as a training dataset for model building, while the

remaining one-third was used later as a validation dataset to

estimate prediction capabilities. Although disregarding case-

control matching sacrifices power, it does not introduce bias,

and since we were developing prediction (as opposed to inference)

models, we chose the more conservative approach. The training

and validation datasets contained 445 and 223 cases, and 453 and

227 controls, respectively. We evaluated the predictive value of

RBC-FA profiles alone, the standard risk factors alone, and then

the combination. We also performed a secondary analysis

including only those individuals who were not taking statin drugs.

We used total cholesterol instead of LDL-C for two reasons. First,

since both provide equivalent predictive value in the Framingham

Risk calculation [7], they are essentially interchangeable (as would

be expected for values with a Spearman correlation of 0.91,

p,0.0001). Secondly, 3% of subjects had triglyceride levels greater

than 400 mg/dL (making LDL-C incalculable), and thus using

LDL-C would have reduced the number of subjects available for

our analysis.

Stepwise unconditional multivariable logistic regression was

used to develop prediction models with p = 0.01 used to enter and

remain in the model. One model was developed using RBC-

FAs(FA), another with the 7 standard risk factors (SRF), and

another using the FAs selected in the FA model combined with the

standard risk factors (SRF+FA). Natural log transformations were

used for HDL-C and total-C to improve normality. Robust, non-

parametric 95% confidence intervals (CI) of the parameter

estimates were obtained using bootstrapping method with 10,000

replicates from the training data set for both FA models. In

addition to using the stepwise selected FAs, four pre-specified FA

metrics were also tested for their ability to add to the SRF model:

the omega-3 index (eicosapentaenoic acid (EPA)+docosahexaenoic

acid (DHA)) [21], the n-6:n-3 ratio [22], the total long-chain n-3

FAs (EPA+DHA+docosapentaenoic acid), and the proportion of

all long-chain polyunsaturated FAs that were of the n-3 class [23].

For each MLR model a single continuous variable, a risk score,

was calculated (equation 1) as the linear combination of the

parameter estimates (bi, i = 0 to p) multiplied by each subject’s FA

levels (expressed as a percent of total FAs) or by the standard risk

factors (xij, j = 1 to n) as follows:

riskscore~b0zb1x1jzb2x2j . . . zbpxpn ð1Þ

The risk score was then used in the logit function (equation 2) to

determine the probability of case status, Pr(case). A Pr(case) .0.5

was classified as a case, otherwise as a control.

Pr caseð Þ~ 1

1ze{ riskscoreð Þ ð2Þ

Performance Metrics
Several metrics were examined to compare the performance of

the various models using the validation set [9,10,24,25,26].

Discrimination was assessed with the c-statistic (concordance

index). Positive likelihood ratios combine in one number the

sensitivity and specificity at the cut-point threshold by dividing the

proportion of true positives by the proportion of false positives.

This statistic indicates how likely it is that a case will have an

abnormal test compared to a control. Calibration was examined

using the Hosmer-Lemeshow statistic, a goodness-of-fit measure-

ment that compares predicted to observed counts of subjects by

risk score deciles. Misclassification rates were also determined.

The area under the ROC curve (c-statistic) was determined for

each model and the difference compared to the SRF alone. The

standard error (SE) for the c-statistic was computed as described

by Hanley and McNeil [27] taking into account the fact that the

areas were correlated since the same patient data were used in

each method [28].

Results

Baseline Characteristics
Due to matching on age, sex and race, there were no differences

in these attributes (Table 1). As expected, classic CHD risk factors

were generally more common among cases than controls. Twelve

of the 18 FAs differed between groups, with cases having lower

levels in 6 and higher levels in the other 6 FAs (Table 1).

Parameter estimates
Odds ratios for the 7 standard risk factors alone, FAs alone and

the combination are presented in Table 2. The only factors that

were significantly related to ACS case status were HDL-C

(OR = 0.56, 95% CI 0.43 to 0.71) and smoking status

(OR = 2.86, 95% CI 1.79 to 5.07; age and sex were not predictive

because they were matched variables). Stepwise selection identified

ten FAs significantly related to ACS case status comprising the

final model. Two FAs (eicosadienoic acid and trans oleic acid)

were directly related to case status, whereas the other eight were

inversely related. On a per-standard deviation basis, the 3

Fatty Acids and ACS Status
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strongest contributors to case status prediction among the latter

were linoleic acid, stearic acid, and docosahexaenoic acid.

Model Discrimination
Using the standard risk factors, and the parameter estimates for

blood cell FAs, the ability of MLR models to discriminate cases

from controls were compared, both alone and in combination

(Table 3 and Figure 2). The FA performed better than the SRF,

with a c-statistic 8 percentage points higher (p = 0.003). Adding the

FA profile to the standard risk factors significantly increased the c-

statistic of the latter by 11 percentage points (p,0.0001), whereas

the FA-profile derived c-statistic was not significantly improved by

including the standard risk factors (0.85 to 0.88, p = 0.16).

Although the 10-FA profile added significantly to the standard

model, none of the simpler, pre-defined FA metrics (the omega-3

index, the total n6:n3 ratio, the long-chain n-6:n-3 ratio, and total

n-3) added significantly to SRF discrimination (c-statistics were

0.77–0.78 for all, compared to 0.77 to SRF alone). In the subgroup

Table 1. Baseline Characteristics of Cases and Controls (N = 1,348).

Variable Cases (n = 668) Controls (n = 680) P-value*

Demographics

Caucasian 611 (91){ 624 (92) 0.84

Body mass index [kg/m2] 29 (25, 33) { 27 (25, 31) ,0.0001

Myocardial infarction or revascularization (by history) 567 (85) 141 (21) ,0.0001

Family history of premature CHD 356 (53) 239 (36) ,0.0001

Statin use 290 (43) 258 (38) 0.04

Standard CVD Risk Factors

Age [yr] 59 (52, 70) 59 (52, 70) 0.94

Male 445 (67) 448 (66) 0.78

Hypertension (by history) 423 (63) 361 (53) 0.0001

Total cholesterol [mg/dL] 176 (148, 206) 187 (159, 217) ,0.0001

High density lipoprotein cholesterol [mg/dL] 39 (32, 48) 48 (40, 57) ,0.0001

Diabetes mellitus 156 (23) 110 (16) 0.0009

Currently smoking 237 (35) 97 (14) ,0.0001

Fatty Acids (% total FA)

saturated:

Palmitic acid 22 (21, 24) 21 (20, 23) ,0.0001

Stearic acid 14 (13, 16) 15 (14, 15) 0.86

monounsaturated:

Palmitoleic acid 1.4 (1.0, 1.9) 1.3 (1.0, 1.7) 0.21

Oleic Acid 18 (15, 20) 17 (15, 19) 0.0006

trans unsaturated:

trans Palmitoleic acid 0.42 (0.30, 0.59) 0.33 (0.23, 0.50) ,0.0001

trans Oleic acid 2.7 (2.2, 3.2) 2.4 (1.9, 2.9) ,0.0001

trans, trans linoleic acid 0.15 (0.11, 0.20) 0.15 (0.11, 0.19) 0.06

n-6 polyunsaturated:

Linoleic acid 14 (12, 16) 16 (15, 18) ,0.0001

c-Linolenic acid 0.37 (0.32, 0.42) 0.43 (0.37, 0.49) ,0.0001

Eicosadienoic acid 0.25 (0.22, 0.28) 0.25 (0.22, 0.28) 0.85

Eicosatrienoic acid 1.7 (1.5, 2.0) 1.7 (1.5, 1.9) 0.31

Arachidonic acid 14 (12, 17) 14 (12, 15) 0.13

Docosapentaenoic acid 0.61 (0.46, 0.76) 0.53 (0.41, 0.65) ,0.0001

Docosatetraenoic acid 2.7 (2.1, 3.5) 2.5 (2.0, 3.0) ,0.0001

n-3 polyunsaturated:

a-Linolenic acid 0.29 (0.21, 0.40) 0.44 (0.31, 0.60) ,0.0001

Eicosapentaenoic acid (EPA) 0.39 (0.30, 0.51) 0.53 (0.38, 0.85) ,0.0001

Docosapentaenoic acid 1.7 (1.3, 2.1) 1.8 (1.5, 2.0) ,0.0001

Docosahexaenoic acid (DHA) 2.6 (2.0, 3.6) 3.1 (2.4, 4.5) ,0.0001

*Mann-Whitney (Wilcoxon rank-sum) nonparametric test was used for continuous variables, and Chi-square test was used for categorical variables.
{n (%).
{Median (Inter-quartile range).
doi:10.1371/journal.pone.0005444.t001
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Table 2. Odds ratios and estimated coefficients from multivariable logistic regression models based on 10 fatty acids (FA) and
standard risk factors (SRF) separately and combined from the derivation set (per 1 SD; n = 898).

Variable Structure
1 SD (% of
totalFAs) FA and SRF Separately FA and SRF Combined

Odds Ratio 95% CI* Est. (b) SE Odds Ratio 95% CI* Est. (b) SE

FA

Intercept - - - - 34.55 3.42 - - 7.29 2.67

Linoleic acid (n-6) C18:2 2.79 0.15 0.10 to 0.21 21.88 0.19 0.17 0.10 to 0.24 21.78 0.21

Stearic acid C18:0 1.72 0.22 0.15 to 0.30 21.50 0.17 0.22 0.14 to 0.30 21.52 0.18

Docosahexaenoic acid (n-3) C22:6 1.50 0.33 0.23 to 0.41 21.12 0.13 0.37 0.26 to 0.48 20.99 0.14

alpha Linoleic acid (n-3) C18:3 0.23 0.35 0.24 to 0.48 21.04 0.16 0.32 0.21 to 0.44 21.13 0.16

gamma Linolenic acid (n-6) C18:3 0.10 0.42 0.29 to 0.56 20.87 0.13 0.46 0.31 to 0.62 20.78 0.14

Palmitoleic acid C16:1 0.69 0.43 0.27 to 0.63 20.85 0.21 0.43 0.25 to 0.67 20.85 0.24

Arachidonic acid (n-6) C20:4 3.12 0.43 0.30 to 0.58 20.84 0.17 0.44 0.29 to 0.60 20.83 0.18

trans Palmitoleic acid trans C16:1 1.04 0.76 0.63 to 0.91 20.27 0.10 0.76 0.62 to 0.92 20.27 0.10

Eicosadienoic acid (n-6) C20:2 0.06 1.37 1.12 to 1.73 0.31 0.11 1.43 1.15 to 1.85 0.36 0.11

trans Oleic acid trans C18:1 0.84 1.37 1.06 to 1.82 0.31 0.12 1.32 1.02 to 1.78 0.27 0.12

SRF

Intercept - - - - 10.97 2.05 - - - -

Male - - 0.77 0.55 to 1.06 0.27 0.16 0.92 0.56 to 1.51 20.09 0.23

Hypertension - - 1.35 1.00 to 1.85 0.30 0.16 1.17 0.76 to 1.84 0.16 0.21

Diabetes Mellitus - - 1.10 0.74 to 1.59 0.09 0.19 0.79 0.46 to 1.31 20.24 0.26

Current Smoker - - 3.53 2.43 to 5.29 1.26 0.19 2.86 1.79 to 5.07 1.05 0.26

Age (per 10 years) - - 1.19 1.04 to 1.36 0.17 0.06 1.10 0.91 to 1.33 0.10 0.09

Total-C{ (per SD<43 mg/dL) - - 0.82 0.78 to 1.05 20.19 0.08 0.95 0.75 to 1.19 20.05 0.11

HDL-C{ (per SD<16 mg/dL) - - 0.54 0.40 to 0.59 20.62 0.09 0.56 0.43 to 0.71 20.57 0.12

*95% confidence intervals obtained using bootstrapping method with 10,000 replicates.
{Natural log transformation was modeled.
doi:10.1371/journal.pone.0005444.t002

Table 3. Diagnostic characteristics and misclassification error rates of ACS patients and controls from the validation set.

Model
# Variables
in Model

AUC
c-statistic

Hosmer-
Lemeshowp-value

Positive
Likelihood Ratio

Sensitivity
(TP)

Specificity
(1-FP) Misclassification Rates (%)

Total Cases Controls

(n = 450) (n = 223) (n = 227)

All patients

SRF 7 0.77 0.30 2.5 0.70 0.72 29 30 28

FA 10 0.85{ 0.01 3.2 0.79 0.75 23 22 25

SRF+FA 17 0.88{ 0.22 3.8 0.83 0.78 20 18 22

Patients not on statins

(n = 266) (n = 126) (n = 140)

SRF 7 0.81{ 0.15 2.9 0.73 0.75 26 27 25

FA 10 0.86 0.00 4.1 0.83 0.80 19 18 20

SRF+FA 17 0.891 0.01 4.6 0.85 0.81 15 18 12

SRF, standard risk factor model; FA, fatty acid model; SRF+FA, combined model.
{P = 0.003.
{P,0.0002 when compared to SRF (all subjects).
1P = 0.002 when compared to SRF (statin naı̈ve subgroup).
TP, true positive; FP, false positive; AUC, area under the receiver operating characteristic curve (c-statistic).
doi:10.1371/journal.pone.0005444.t003
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of patients not on statins, the SRF c-statistic was significantly

improved over that in the group as a whole (0.81 vs. 0.77,

p = 0.0002), but the addition of the FA profile (which had a c-

statistic of 0.86 in this subgroup) still added significantly (0.89 vs

0.81, p = 0.002).

Model calibration
The only models for which calibration was acceptable (i.e.,

p.0.05) were those that included the SFR, either alone or when

combined with FAs (Table 3). The FA model failed calibration

because of the presence of 4 controls with FA-based risk scores

above the 90th percentile, highly predictive of case status.

Model sensitivity and specificity
Since sensitivity and specificity were highest with the combined

model (Table 3), the positive likelihood ratio for the SRF+FA

model was about 50% greater than that for the SFR alone.

Model misclassification rate
The overall misclassification rate was 31% lower using the

SRF+FA compared to the SRF model (Table 3). When restricted

to cases, the SRF+FA misclassification rate was 40% lower.

Discussion

We found that a RBC-FA lipidomics approach discriminated

ACS cases from controls better than standard risk factors, and that

the combination of the latter with FAs performed even better,

increasing the c-statistic from 0.77 to 0.88. Importantly, the

superiority of the RBC-FA vs. the standard risk factor model was

not due to poor discrimination of the latter since the c-statistic was

very similar to that seen in the most recent report from the

Framingham group (0.77 in men and 0.79 in women) [6]. The

combined model was also well-calibrated. Thus, our findings

indicate that lipidomic approach based on RBC-FAs, an objective

and stable biomarker of FA intake and metabolism, adds

significantly to traditional CHD risk factor-based prediction.

The relations between risk for CHD and RBC levels of the

individual FAs included in the model generally fit well with

previous observations: inverse associations with omega-3 and

omega-6 FAs and direct associations with trans FAs. Of the ten

FAs included in the model, increasing levels of eight were inversely

associated with odds for ACS case status. These included the FAs

of both the omega-3 and omega-6 series, the monounsaturated FA

palmitoleic acid, and the saturated FA, stearic acid. These levels

reflect a mixture of diet and metabolism since the essential FAs

(omega-3 and omega-6) are strongly affected by diet whereas

palmitic and stearic, which can be synthesized de novo, reflect

metabolic processes. Direct associations were found only with

trans-oleic (or elaidic) acid and eicosadienoic acid. Associations of

increased intakes and/or in vivo levels of industrially-produced

trans FAs with CHD risk are well established [29], whereas little

information exists for eicosadienoic acid. It is known to be an

intermediate in a secondary biosynthetic pathway to arachidonic

acid from linoleic acid [30], and a potential substrate for cyclo-

oxygenase [31] but its physiological significance remains to be

defined. The FA that had the greatest impact was the omega-6 FA

linoleic acid, the most abundant essential FA in the diet. EPA, an

FA with well-established cardioprotective effects, was notably

absent from the ten. This is most likely explained by the fact that

each FA in the model had to predict independently of all other

FAs, and since EPA strongly correlated with DHA (which was in

the model; r = 0.75, p,0.0001) it provided no additional

information. Several n-6 and n-3 FA-based metrics have been

proposed as risk markers in CHD including the omega-3 index

[32], the n-6:n3 ratio [22], and the Lands’ index [23]. For the

purpose of ACS case discrimination, none of these simple FA

metrics were able to add to the standard risk factors. Perhaps they

would have greater utility in predicting risk for sudden cardiac

death [33] than non-fatal ACS events.

A potential weakness of case control studies is that the exposure

of interest could be altered by the clinical event it is intended to

predict. The use of RBC-FAs is attractive in this regard as levels

remain stable for at least 4–6 weeks and are not appreciably

affected by CHD events in primate models [15] or in human

studies [34,35,36]. Thus, RBC-FA profiles provide an objective

biomarker of pre-event tissue FA levels, but this marker should be

further evaluated for ACS prediction in prospective cohorts.

Based on those criteria set forth by Vasan [8] that were

addressable with this study design (e.g. discrimination, positive

likelihood ratios, misclassification rates, etc.), FA profiles per-

formed well and show promise as a new risk marker for CHD.

Other proposed criteria such as the potential to reveal novel

disease mechanisms are also satisfied since FAs affect a variety of

metabolic and regulatory pathways linked to CHD (inflammation,

plaque instability, arrhythmic susceptibility, dyslipidemia, hyper-

tension, etc.). These may be in part mediated by alterations in the

activity of membrane-associated receptors[37]. Hence, pursuing

membrane-mediated mechanisms of disease could lead to new

interventional strategies to reduce CHD risk. In addition, some

specific membrane FAs are strongly altered by diet, and such

alterations have been shown to reduce risk for CHD [38,39].

Thus, tracking FA profiles could affect dietary and clinical

recommendations, another characteristic of a useful biomarker.

Figure 2. Discrimination between acute coronary syndrome
cases and controls was assessed in the validation set (n = 450)
with receiver operating characteristic curves. Areas under the
curves (c-statistics) were compared for the standard risk factors alone
(c = 0.77; broken gray line), the RBC-FA model alone (c = 0.85; solid black
line), and the combined model (c = 0.88; dashed black line). C-statistics
for both models including FAs were significantly greater than the
standard model but were not different from each other (Table 3;
abbreviations as in Table 1).
doi:10.1371/journal.pone.0005444.g002
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There remains a need for additional investigations of cost

effectiveness, clinical applicability, and method standardization.

Finally, it would be important to compare the discriminatory

power of FA profiles to that of other emerging (e.g., inflammatory)

[40,41] CHD risk factors, some of which could theoretically

modulate or mediate the FA effect.

Strengths of this study include a large sample size, a rigorously-

defined ACS population, detailed FA analysis, the use of stable

biomarker of tissue FA status, use of separate derivation and

validation data sets, and a comprehensive examination of several

metrics of model utility. Potential limitations should also be

considered. It is possible that the outpatients who agreed to

participate were not truly representative of the case population.

Nevertheless, the fact that the standard risk factors predicted case-

control status very comparably to other prospective studies

suggests that control selection bias was unlikely to have materially

affected our results. Hypertension and diabetes were self-reported

in controls. Since these conditions are often under-diagnosed some

controls may have incorrectly reported normal blood pressure or

glycemia. Under-reporting by controls would help the SRF, but

not the FA, model discrimination. In addition, FA profiles have

been reported to predict the presence of vascular disease

independently of hypertension and diabetes [42]. Finally, as noted

earlier, the similar performance of the SRF model here and in

studies where these diagnoses were known suggests that the

classification was reasonable. We only evaluated non-fatal ACS

and results could differ for fatal CHD events (that are

predominantly due to arrhythmias). Finally, this study was

conducted in a single metropolitan area and included few

minorities, and further investigation is warranted in more diverse

populations.

In conclusion, an RBC-FA lipidomic approach added substan-

tially to standard risk factors for prediction of ACS. These findings

suggest that substantial, previously unrecognized biological

information may reside in membrane FA patterns. A deeper

appreciation of the mechanisms by which FAs modulate cellular

metabolism could lead to a new understanding of causes and

pathways of CHD as well as to improved clinical risk prediction

and treatment strategies.
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