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Abstract

An ethogram is a catalogue of discrete behaviors typically employed by a species. Traditionally animal behavior has been
recorded by observing study individuals directly. However, this approach is difficult, often impossible, in the case of
behaviors which occur in remote areas and/or at great depth or altitude. The recent development of increasingly
sophisticated, animal-borne data loggers, has started to overcome this problem. Accelerometers are particularly useful in
this respect because they can record the dynamic motion of a body in e.g. flight, walking, or swimming. However, classifying
behavior using body acceleration characteristics typically requires prior knowledge of the behavior of free-ranging animals.
Here, we demonstrate an automated procedure to categorize behavior from body acceleration, together with the release of
a user-friendly computer application, ‘‘Ethographer’’. We evaluated its performance using longitudinal acceleration data
collected from a foot-propelled diving seabird, the European shag, Phalacrocorax aristotelis. The time series data were
converted into a spectrum by continuous wavelet transformation. Then, each second of the spectrum was categorized into
one of 20 behavior groups by unsupervised cluster analysis, using k-means methods. The typical behaviors extracted were
characterized by the periodicities of body acceleration. Each categorized behavior was assumed to correspond to when the
bird was on land, in flight, on the sea surface, diving and so on. The behaviors classified by the procedures accorded well
with those independently defined from depth profiles. Because our approach is performed by unsupervised computation of
the data, it has the potential to detect previously unknown types of behavior and unknown sequences of some behaviors.
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Introduction

Assessing animal behavior is essential to understand animal life.

The initial process of studying behavior is to make a catalogue of

the discrete behaviors typically employed by a species, namely an

ethogram. Making an ethogram by direct observation is

fundamental to understanding animal behavior [1]. However,

this approach is not feasible for some flying or diving animals that

often spend considerable portions of their lives beyond the limit of

human vision. In such cases, indirect observation via biotelemetry

allows researchers to monitor animal behavior remotely [2].

Furthermore, the development of animal-borne data loggers

allows vast amounts of behavioral and physical information to

be recorded on multiple sensors as an animal moves through its

environment. (i.e., biologging) [3–5]. Several types of devices, such

as light sensors [6], digital cameras [7], and video cameras [8],

have been attached to animals to monitor precise behaviors. One

of the most powerful devices used to monitor free-ranging

behavior is the animal-borne accelerometer, which records both

static and dynamic acceleration. Static acceleration is derived from

an animal’s body pitch, while dynamic acceleration is derived from

body movement. From these two parameters, researchers can

readily identify a range of discrete behaviors [9–13].

To our knowledge, the first study to recognize the potential of

recording acceleration to determine behavior patterns was that of

Yoda et al. [9], in which bi-axial accelerometers were used to

differentiate whether Adélie penguins Pygoscelis adeliae were upright,

prone, walking, porpoising, or tobogganing. The authors discrimi-

nated each behavior by visual observation of acceleration data. A

more sophisticated technique was presented by Watanabe et al. [11]

for the domestic cat Felis catus. They employed fast Fourier

transformation to characterize acceleration signals and discriminated

several behavior patterns by a stepwise canonical discriminant

analysis supported by video-recorded data. More recently, a simple

method was proposed to identify behaviors from a decision tree based

on an acceleration signal feature [12,13]. All these procedures require

the researcher to first create the criteria to identify each behavior [11–

14], and when a full set of information about the behavior is available,

this approach is very effective. However, it is often difficult to obtain

adequate amounts of information to determine behavioral criteria for

animals that spend much of their time out of sight of a human

observer, for example in the open ocean.

To overcome this shortcoming, we adopted a novel two-stage

approach to identifying animal behavior with accelerometers.

Acceleration signals were first categorized into several behavioral

groups by an unsupervised classification algorithm, and then these
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groups were interpreted by the researcher for example as walking,

swimming, sleeping etc. (see Guilford et al. [15]). However, in

some cases behaviors cannot readily be interpreted because

information on basic behavior patterns is lacking. For instance,

humans have never directly observed sperm whale Physeter

macrocephalus behavior at 1000 m depth. Therefore, researchers

can interpret sperm whale behavior only indirectly using clues

obtained. These are called putative behaviors. However, even if it

is currently impossible to directly observe a certain type of

behavior, categorizing it as distinct from other familiar behaviors is

an important first step to building a picture of how the animal

functions and interacts with its environment.

The oscillation of acceleration signals derived from animal

movement usually changes in periodicity and intensity. The

process we adopted was to generate a spectrum from acceleration

signals based on the continuous wavelet transformation, and then

group each second of the spectrum by an unsupervised

classification algorithm, the k-means clustering method. For

oscillation analysis, the fast Fourier transformation has been

widely employed (e.g. sound analysis) [11]. However, compared to

sound data, body acceleration data are characterized by far fewer

oscillations for each unit of time (i.e., for each distinct behavior).

Therefore to precisely assess behavior at a localized time scale,

continuous wavelet transformation is preferable as it allows small

changes to be detected over short time frames. Continuous wavelet

transformation is similar to fast Fourier transformation; the major

difference is that Fourier transformations are assumed to apply to

a static oscillation signals, whereas continuous wavelet transfor-

mations are not. Although a window function enables the Fourier

transformation to localize an estimation of spectra in time, the

number of oscillations in the signal used for the analysis is

dependent on the signal frequency within the window. Therefore,

the sensitivity for detecting an oscillation is not same among

different frequency signals within the window. By comparing

continuous wavelet transformations of fluctuating oscillations with

Fourier transformation, it has been shown that the wavelet

spectrum provides an unbiased and consistent estimation of the

Fourier spectrum [16]. Recently, continuous wavelet transforma-

tion has been applied to oscillation analysis of climate change [17],

disease vectors [18], and population trends [19,20]. K-means

clustering is a well known method that is efficient for large data

sets and which can be performed in an unsupervised way with the

number of clusters as a parameter [21].

To examine the validity of our procedures, we collected

acceleration data from a medium-sized, foot-propelled diving

seabird, the European shag Phalacrocorax aristotelis. Body acceler-

ation signals associated with different behaviors have previously

been classified [22,23], making this species an ideal subject for the

study. In this paper, we demonstrate our newly developed

procedure for generating ethograms from body acceleration data

and evaluate its performance through a comparison with the

known behavior profile of the European shag.

Japanese translation of this paper is available in Text S1.

Methods

Ethics statement
This study was carried out under Research Permits 15/R/38

and MON/RP/69 and Bird Scientific Licences 4480 and 6676

issued by Scottish Natural Heritage.

The study species
The foraging activity of European shags at the breeding colony

on the Isle of May off the south-east coast of Scotland, UK,

(56u119N, 02u339W), has been studied extensively using VHF

telemetry and a variety of animal-borne logging devices including

accelerometers [22–26]. Birds feed diurnally, typically making 1–4

foraging trips per day during chick rearing [24], and food for the

brood is transported back to the colony in the parent’s stomach

[25–28]. They are foot-propelled pursuit-divers and, at this

colony, mainly feed benthically on small fish such as the lesser

sandeel (Ammodytes marinus) and butterfish (Pholis gunnellus). Whilst

diving, descent and ascent through the water column is almost

vertical. The frequency of the foot stroke used for propulsion

decreases significantly with depth from 5 to 2 Hz (0.2–0.5 sec

cycle) [22]. Shags typically fly to and from the foraging area using

a continuous wing stroke of ca. 5.5 Hz (0.18 sec cycle) [23].

Field work
Field work was conducted on the Isle of May, Scotland during

the 2003 and 2006 breeding seasons. Birds (14 in 2003 and two in

2006) brooding small to medium-sized chicks were captured on

the nest using a crook on the end of a long pole. Birds were sexed

from voice and size (male vocalize and are larger than females),

and a data logger was attached to the central back feathers by

fixing two plastic cable ties and waterproof tape to a piece of

plastic netting (3 cm65 cm) glued to the feathers with a fast-setting

glue in 2003 and waterproof tape only in 2006. Handling time was

less than 10 min, and after release every bird returned to its nest

immediately before voluntarily departing on one or more foraging

trips during daylight hours. Instrumented birds were recaptured in

the evening after completion of their final trip of the day, or the

following day, and the loggers were retrieved.

Instruments
Acceleration data loggers (M190L-D2GT; Little Leonardo Ltd.,

Tokyo, Japan) were used to obtain detailed information on body

acceleration over a 24 h period (maximum 28.2 h because of

memory capacity). Each logger was 15 mm in diameter, 53 mm in

length, had a mass of 18 g in air and recorded depth (1 Hz), two-

dimensional acceleration (64 Hz, only one axis was used in this

study), and temperature (data not used in this study). It is possible

that energy expenditure during a trip might be increased in

instrumented birds. However, the mass of the data logger in air

was only ca. 1% of the body mass of male and female European

shags (18966121 and 1619699 g respectively; means6s.d.), and

weighed markedly less than the typical load of fish brought back

after a foraging trip (mean 106 g) [27]. Furthermore, there was no

evidence of any obvious disruption to attendance behavior in the

instrumented birds. We therefore assumed that the data collected

were representative of normal behavior.

Loggers were positioned so as to detect longitudinal (surge)

accelerations (Fig. 1). Values recorded by the accelerometers were

converted into acceleration (m s22) with linear regression

equations. To obtain the calibration equations, values recorded

by each logger at 90u and 290u from the horizontal were

regressed against the corresponding acceleration (9.8 m s22 and

29.8 m s22, respectively). Loggers measured both dynamic

acceleration (such as wing stroking activity) and static acceleration

(such as gravity). Thus, the amplitude of the surge acceleration

represents the component of gravitational acceleration that

changes in response to the posture of the bird when not moving.

This enabled us to determine the orientation of the tag, which in

turn relates to the posture of a bird, i.e., whether it was standing up

or sitting down. Several behavior patterns were identified by

comparing the acceleration profiles by eye with known informa-

tion (Fig. 2) [9,22,23]. The instrumented birds made between two
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and six foraging trips over their respective deployment periods.

Dives were defined as bird movements to depths greater than 1 m.

Continuous wavelet transformation
We applied continuous wavelet transformation to take into

account the non-stationary oscillation of the acceleration data.

The wavelet transform has been described ‘‘…as a ‘mathematical

microscope’ in which one can observe different parts of the signal

by just adjusting the focus’’ [29]. By decomposing a time-series

into time and periodicity domains, the wavelet analysis can

determine both the dominant modes of variability and how those

modes vary in time [17]. A mother wavelet is a small wave that is

well-defined in both time and periodicity and has a time-integral of

zero. The continuous wavelet transform of a signal recorded as

discrete sequence xn is defined as the convolution of xn with a

scaled and translated version of mother wavelet function y:

W s, nð Þ~
XN-1

n’~0
xn’y

n’{nð Þdt

s

� �
ð1Þ

where s is a scale, n is the localized time index, dt is the time step of

a sequence, and N is the total number of data points [17]. By

varying the wavelet scale s and translating along the localized time

index n, a picture showing both the intensity of any feature versus

the scale and how this intensity varies with time can be

constructed.

We analyzed temporal changes in the distribution of amplitude

at a different scale s using the Morlet mother wavelet function.

The Morlet wavelet function is:

y gð Þ~p{1=4eiv0ge{g2=2 ð2Þ

where v0 is the nondimensional frequency. The Morlet wavelet

function is based on trigonometric principles (Fig. 3A). Therefore

it can decompose time series data into several sine waves (Fig. 3B)

and is widely used for the analysis of ecological processes [18–20].

The nondimentional frequency v0 is the parameter which defines

the balance of decomposition resolution between time and

periodicity domains. The larger v0 value has higher sensitivity

in the periodicity domain and lower sensitivity in the time domain.

The value v0 = 10 was chosen to best differentiate the time and

periodicity domains for the body acceleration of European shags.

This mother wavelet consists of approximately seven waves

(Fig. 3A). The signal was convoluted with this mother wavelet.

Consequently, the sensitivity for both time and periodicity

components was highest when the signal made up approximately

seven waves.

To connect the wavelet coefficient W(s, n) to the amplitude of a

signal, the formula was defined by:

A s, nð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W s, nð Þj j2

q
dtCe

s
ð3Þ

where Ce is the empirical coefficient (1.06392). We added Ce into

the formula to modify the value of A(s, n) equal to the amplitude of

the oscillation in xn at the corresponding scale s and the localized

time index n (Fig. 3B).

The Fourier wavelength (cycle) l corresponding to the scale s is

expressed as [17]:

l~
4p

v0z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2zv2

0

q s ð4Þ

Therefore, this formula can be transformed to:

A l, nð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W kl, nð Þj j2

q
dtCe

kl
ð5Þ

and

k~
v0z

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2zv2

0

q
4p

ð6Þ

The value of A(l, n) corresponds to the amplitude of the

trigonometric function component in the signal with the cycle l at

the localized time index n. We calculated the average value of A(l,

n) within each sec by each cycle l to reduce the data size and

enable further clustering analysis, here termed a ‘‘behavior

spectrum’’ (Fig. 3B, C, D). A behavior spectrum provides a

measure of the contribution of each periodicity to the signal at a

different time position by each sec. We calculated the values of a

behavior spectrum at 64 time steps of a cycle ranging from 0.05 to

1 sec as:

l~Cmin|2
i log2 Cmax=Cminð Þ

T i~1, 2, 3, . . . , 64ð Þ ð7Þ

where T is the number of time steps (64 steps), Cmin is the minimum

cycle (0.05 sec), and Cmax is the maximum cycle (1 sec).

Each behavior was characterized by a behavior spectrum

providing its periodicities and amplitude. The shape of a spectrum

at each time point was determined by the features of the original

signal. Usually, a signal derived from animal movement is not the

shape of a single trigonometric function, but is made up of a

Figure 1. Position of the logger attachment and direction of
the longitudinal (surge) body axis.
doi:10.1371/journal.pone.0005379.g001
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Figure 2. Surge and depth profiles of European shags. Figures represent behavior (A) on land, (B) on the sea surface, (C) in flight, (D)
descending in a dive, (E) in the bottom phase of a dive, and (F) ascending from a dive.
doi:10.1371/journal.pone.0005379.g002
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Figure 3. Schematic diagram of continuous wavelet transformation. (A) Morlet mother wavelet for v0 = 10. Solid and dashed lines indicate
real and imaginary parts respectively. (B) Example of behavior spectrum. Model data are constructed by a cosine function with a cycle of 0.5 sec
(time, = 00:00:07) and two cosine functions with cycles of 0.25 and 0.5 sec (time.00:00:07) (top). Amplitudes of both cosine functions are 1.
Behavior spectrum ranging from 0.1 to 1 sec was generated by model data (bottom). (C) Local behavior spectrum at 0:00:03 and (D) 0:00:11. The peak
amplitude of the local behavior spectrum corresponds to the amplitude of original data at the corresponding cycle.
doi:10.1371/journal.pone.0005379.g003
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number of sine waves of different amplitudes whose frequencies

are integer multiples of each other. The lowest frequency is called

the fundamental frequency and the higher frequencies are called

harmonics (Fig. 3B). The signal at fundamental frequency was

regarded as the cycle of body movement [30].

The amplitude calculated in this procedure is not directly

related to the intensity of animal dynamic movement. However,

the convolution with the Morlet wavelet function decomposes the

acceleration signal into several sine waves and inversely the sum of

decomposed sine waves becomes the same shape as the original

acceleration within the range of cycles applied in the transforma-

tion. Therefore similar suits of sine waves in the decomposed data

may indicate the same type of movement with slightly different

periodicities and intensities [30]. By comparing the signal

amplitudes among similar shapes of the behavior spectrum, the

relative intensity of the movement could be assessed within the

same type of movement.

The ‘cone of influence’ is a reflection of a consequent loss in the

wavelet spectrum near the start and end of the time series [17]. To

avoid the cone of influence, we truncated the behavior spectrum at

the beginning and end region by 3 times the length of the

maximum scale.

Clustering
We employed the k-means algorithm to cluster the behavior

spectra at each sec to generate the ethogram. K-means clustering is

an unsupervised, interactive algorithm that minimizes the within-

cluster sum of squared Euclidean distances from the cluster

centroids. The algorithm is composed of the following steps [21]:

1. Place k points randomly in the space represented by the objects

that are being clustered. These points represent initial group

centroids.

2. Assign each object to the group that has the closest centroid.

3. When all objects have been assigned, recalculate the positions

of the k centroids.

4. Repeat Steps 2 and 3 until the centroids no longer move. This

produces a separation of the objects into groups from which the

metric to be minimized can be calculated.

Behavior spectra at each time point were composed of cycles of

64 time steps. In other words, each spectrum was defined by 64

values. Therefore, it was mathematically the same as a point in 64

dimensions. We performed k-means clustering in the same manner

as clustering points in 64 dimensions [31].

Acceleration ethogram
To generate the acceleration ethogram, we used data from three

male and three female European shags for which data were

available for 24 h. Surge acceleration was converted to the

behavior spectrum. We assumed 20 behavior elements would be

adequate to cover all behavior patterns of European shags in the

breeding season. The behavior spectra from the six birds were

combined and processed by the k-means clustering algorithm to

determine 20 centroids (clusters) in 64 dimensions. These centroids

represented typical spectra of discriminated behaviors. We

regarded these 20 spectra as an ‘‘acceleration ethogram’’.

Behavior discrimination by acceleration ethogram
Surge accelerations from sixteen birds were converted into a

behavior spectrum. Each spectrum at each sec was regarded as a

point in 64 dimensions, and calculated as squared Euclidean

distances between the point and the 20 centroids that corresponded

to the elements of the acceleration ethogram. The centroid providing

the shortest squared Euclidean distance was chosen as the behavior

element for the spectrum at each sec.

Behavior discrimination by water depth
To evaluate the accuracy of our procedure we used independent

information on time spent at depth by the sixteen birds, to

construct detailed time budgets for each individual. A typical

foraging trip for an European shag consists of a flight out from the

breeding colony to the feeding site, followed by a series of dives

with periods between dives spent on the sea surface, after which

the bird returns to the colony [32]. Six behavior phases were

defined from the water depth–time series: on land, commuting to

and from the feeding area, dive descent, the bottom phase of the

dive, dive ascent, and on the sea surface. Different phases within a

dive were defined using the rate of change in depth (descent, less

than 20.6 m s21; bottom, 20.3 to +0.3 m s21; ascent,

.1 m s21). Shags typically dive in bouts, and following Watanuki

et al. [33], we used a bout-ending criterion of 340 secs to identify

discrete bouts [34]. The interval between dives within a dive bout

was defined as time spent on the sea surface. The durations of

flights to and from a foraging site in a foraging trip were reported

to be less than 30 min [32]. Therefore, 30 min before and after a

dive bout were assumed to be the commuting phase. The

remaining time was assumed to correspond to the period spent

on land. The compositions of the behavior elements of the

acceleration ethogram were calculated in each behavior phase

defined by the depth profile.

Computer application
To facilitate and perform the procedures in this study, we

developed a user-friendly application called ‘‘Ethographer’’. The

code was written in Igor Pro language under Igor Pro ver. 5

(WaveMetrics Inc., Lake Oswego, OR, USA). The application

works on an Igor Pro platform, provides a graphical user interface,

and is easy to master. Ethographer is available, at no charge, for

academic use (http://bre.soc.i.kyoto-u.ac.jp/bls/index.php?

Ethographer).

Results

The surge acceleration signals were classified into 20 behavior

groups in the acceleration ethogram. Each behavior element in an

acceleration ethogram was described by the spectrum of an

acceleration pattern (Fig. 4). The spectra were thought of as the

ethogram derived from surge acceleration. The shapes of several

elements in an acceleration ethogram seemed to be similar (e.g.

elements 0, 1, 2; elements 14, 15, 16, 17) (Fig. 4). These elements

may represent the same pattern of behavior with different

periodicities and intensities of movement. The amplitude at the

dominant cycle in an ethogram ranged from 0.024 (0.11 sec cycle

in element 7) to 5.072 (0.13 sec cycle in element 3). In general, a

behavior element producing a strong amplitude exhibited a clear

peak, whereas a spectrum with a weak amplitude tended to be

flatter in shape. This may mean that a discrete behavior with a

strong dynamic movement is composed of periodic motions while

a flat spectrum indicates that the original behavior consists of a less

periodic movement.

Figure 5 shows an example of the application of our procedure.

In the behavior spectrum, only a weak signal appears in the first

section (Fig. 5D). This is equivalent to a weak signal in surge

acceleration (Fig. 5C), indicating that the bird was motionless. In

contrast, a clear peak is seen in the middle section with an

approximately 0.18 sec cycle. This corresponds to the periodicity
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in the flight of the shag (5.5 Hz, [23]). In the last section, a weak

and noisy signal is seen in the spectrum, indicating the existence of

non- or weakly-periodical movement with a cycle of more than

0.3 sec. This could be derived from the bird being in an unstable

position, for example because it was on the sea surface. The lower

panel shows the result of categorization by the k-means clustering

algorithm (Fig. 5E). Behaviors were clearly divided into three parts

as shown in the left, middle and right sections: time on land

(elements 6 and 7), in flight (element 1), and on the sea surface

(element 9). Another example is shown in Fig. 6 in which the

Figure 4. Twenty elements of acceleration ethogram. The ethogram was constructed from 24 h of surge acceleration data from six shags (3
males and 3 females). The vertical axis represents the amplitude of the acceleration. The horizontal axis represents the cycle length of the
acceleration. The ethogram is separated into six figures for ease of visualization.
doi:10.1371/journal.pone.0005379.g004
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behavior spectra were apparently discriminated into four parts: on

the sea surface, dive descent, bottom phase, and dive ascent (Fig. 6D).

In the descent phase, the dominant cycle changed in relation to the

water depth from a 0.2 sec cycle at the surface to a 0.5 sec cycle at

40 m. These data were consistent with a shag descending using foot

propulsion at 2–5 Hz (0.2–0.5 sec cycle), such that the frequency

decreased with depth [22]. The spectrum in the bottom phase was

characterized by a noisy signal with obscure peaks in 0.4 and 0.2 sec

cycles. There was no peak in the spectrum of the ascent phase. Three

behaviors (on the sea surface, bottom phase, and dive ascent) were

well categorized by k-means clustering: element 9, mainly element

10, and element 7 respectively. Of particular interest in the k-means

clustering were the results for dive descent where behavior spectra

were categorized into several elements sequentially (elements 13, 14,

15, 16, 17, and 10). Among the behavior spectra of these elements,

element 13 was characterized by several peaks and large amplitude

(Fig. 4D). Spectrum shapes were similar among elements 14–17.

However, the dominant cycles became longer and the amplitudes

became smaller from element 14 to element 17. The dominant cycle

of element 10 was the longest with the smallest amplitude. The

sequence of these elements was consistent with known foot-

propulsion behavior during descent, which changes in periodicity

and intensity of movement with depth [22]. When visualized over

the whole foraging trip, elements 0, 1, and 2, which produced an

approximately 1.8 sec cycle, were exhibited before and after a dive

bout, indicating continuous flight (Fig. 7). Elements 14, 15, 16, and

17 were associated with dive bouts and may have indicated dive

descent.

Figure 5. Flowchart of procedure to generate ethogram (data representing flight). (A) The behavior phases (on land, in flight and on the
sea surface) were determined by data observation. (B) Depth. (C) Surge acceleration. (D) Behavior spectrum. (E) Behavior element as determined by
acceleration ethogram. The elements were compared with the results of data observation.
doi:10.1371/journal.pone.0005379.g005
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Behavior phases defined by the depth profile exhibited different

compositions of behavior elements in the acceleration ethogram

(Fig. 8). Several behavior phases were composed of one or two

behavior elements: on land (elements 6 and 7), on the sea surface

(elements 6 and 9), bottom phase (elements 10 and 11), and ascent

(element 7). Interestingly, the relative proportions of elements 10

and 11 in the bottom phase of the dive varied considerably among

individual birds (Fig. 8). Element 10 was linked to less periodic

behavior and element 11 represented 0.3 sec cycle motion (Fig. 4).

European shags on the Isle of May are known to be benthic

feeders and to use two distinct foraging habitats in sandy and rocky

areas [33]. Their foraging behavior differs markedly between these

habitats such that in rocky areas birds typically travel horizontally

over the seabed while in sandy areas they focus on a particular

spot during the bottom phase. Currently we do not have sufficient

information to identify the exact behaviors indicated by element

10 and 11 but individual differences in foraging habitat usage

could potentially explain the high level of individual variation. The

descent phase contained several elements, which corresponded to

a change in the foot-propulsion cycle and intensity (Fig. 6 and

Fig. 8D). The commuting phase (Fig. 8C) contained the most

elements 0, 1, 6, 7, 8, and 9. This phase was defined as the time

before and after a dive bout, and had a fixed duration of 30 min,

and could thus contain not only flight, but also time spent on land

and on the sea surface. Components of element 7 and element 9 in

the commuting phase are likely to derive from land-based and sea

Figure 6. Flowchart of procedure to generate ethogram (data representing dive). (A) Behavior phases (on the sea surface, dive descent,
bottom phase and dive ascent) were determined by data observation. (B) Depth. (C) Surge acceleration. (D) Behavior spectrum. (E) Behavior element
as determined by acceleration ethogram. The elements were compared with the results of data observation.
doi:10.1371/journal.pone.0005379.g006
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surface behavior respectively (see Fig. 7). The unique elements in

the commuting phase were elements 0 and 1. The dominant cycle

of these elements was a 0.18 sec cycle, which is consistent with the

dominant cycle of flight in European shags.

It is worth noting that acceleration signals when birds are on the

sea surface could potentially vary due to environmental conditions

such as sea state. Although we did not find such variability in our

data set, such differences might be recognized as different behavior

spectrum and thus ‘sea surface behavior’ could be categorized into

more than one acceleration ethogram.

Discussion

When our procedure is adopted to generate an ethogram, four

parameters need adjusting to take account of the characteristics of

the species under consideration. The first is the cycle range of body

acceleration for continuous wavelet transformation. We selected a

cycle range from 0.05 to 1 second for European shags. This range

corresponds mainly to dynamic body acceleration in this species

[22]. The second parameter is the number of elements generated by

the k-means clustering algorithm. The shapes of major spectra in an

acceleration ethogram obtained as the output of k-means clustering

became stable by increasing the number of behavior elements to 20,

but as a consequence, two similar shaped spectra were generated.

Therefore we set 20 as the number of behavior element to cover all

behavior patterns. Because k-means clustering is processed by

mathematical definition, the clustering result sometimes seems to be

different from what would be expected. The practical solution would

be to set a larger number of elements to apply to the k-means

algorithm than is strictly necessary, and then to combine the

elements that the researcher identifies that represent the same

behavior. The third parameter is the v0 value in the Morlet mother

wavelet function. Owing to the process of continuous wavelet

transformation, detection of periodical movement was preferable to

non-periodical movement. Adjustment of the v0 parameter would

change the sensitivity to time and periodicity in the movements. The

fourth parameter is the time duration of a behavior spectrum. We

calculated the behavior spectrum by averaging the value of A(l, n)

within each sec, assuming enough fine scale sensitivity to describe

each discrete behavior of the European shag for general purposes.

The time duration for averaging should be adjusted by taking the

minimum duration of each discrete behavior in the species into

consideration. The computer application, Ethographer, allows these

parameter values to be changed.

The k-means algorithm assumes the same periodicity with the

same amplitude within a behavior element. Therefore, for

instance, it is difficult to discriminate precisely between walking

and running because behavior changes gradually along a

Figure 7. Correlation between acceleration ethogram and behavior definition by depth profile. (A) Depth. (B) Behavior phase defined by
depth profile. The behavior phases of sea surface, descent, bottom and ascent were together defined as ‘‘Dive bout’’. (C) Percentages of behavior
elements in acceleration ethogram at each min.
doi:10.1371/journal.pone.0005379.g007

Automated Etho-Analysis

PLoS ONE | www.plosone.org 10 April 2009 | Volume 4 | Issue 4 | e5379



continuum. The algorithm will generate several elements with

slightly different periodicities for walking or running (see the

descent section in Fig. 6D). In this case, the exact definitions

among elements may vary between analyses.

We were aware of a few constraints caused by computer

resources, the most important of which was the amount of data

that can be applied to a k-means clustering algorithm. In our

analysis we used 24-hour blocks of data from six out of 16 shags to

apply to the algorithm. The amount of data used to generate the

acceleration ethogram from this subsample was ca. 500,000 time

points, which was the maximum amount our computer (Intel Core

2 Duo 6600 CPU, 2 GB RAM) was able to process. Another

constraint relates to the k-means clustering algorithm where the

output of clustering is not always exactly the same, although the

outputs estimated from the same data set in different analysis

sessions are similar. The reason is that k-means clustering does not

estimate the optimized solution, but rather the approximate

optimized solution. In terms of the amount of computation, we

considered that estimation of the optimized solution was not

practical (e.g. hierarchical clustering).

Figure 8. Compositions of behavior elements in different behavior phases. Box plots for compositions of the behavior elements of the
acceleration ethogram in different behavior phases (n = 16). Each behavior phase was defined by a depth profile. Figures represent the compositions
of the elements in the behavior of (A) on land, (B) on the sea surface, (C) commuting between colony and foraging site, (D) descending in a dive, (E)
bottom phase of a dive, and (F) ascending from a dive. The box plot shows the median (center line), the upper and lower quartiles (edges of the box),
and 10% and 90% percentiles (ends of whiskers).
doi:10.1371/journal.pone.0005379.g008
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The categorization of behavior from body acceleration

coincided well with the behavior definition based on the water

depth–time series. However, it was impossible to discriminate

between time spent on land and dive ascent in our approach. We

used mainly the dynamic acceleration component of the surge to

produce the behavior spectrum. Therefore, when an animal was

motionless, the spectrum was the same even if its posture differed.

The acceleration ethogram produced in this study was the

behavior catalogue derived solely using data for surge acceleration

of the bird’s body. To make a complete ethogram, posture

information obtained from the long periodicity component of body

acceleration, as well as use of a time-depth recorders and GPS

loggers, would be required.

To date, quantifying the behavior of wild animals that are hard

to track has been extremely challenging. In the context of

conservation biology, lack of information about the foraging

ecology of an endangered species may hinder the development of

an effective conservation strategy. Our approach has the potential

to shed light on hitherto unknown aspects of the lives of such

animals. It is noteworthy that our procedure employs an

unsupervised clustering algorithm opening up the possibility to

extract novel behavior patterns that researchers have never

observed directly. Although the present system does not guarantee

the successful generation of an ethogram for other species, our

approach offers considerable potential to study the behavior of

poorly known species, especially in the case of the animals living

far from human observation.
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