
Messina: A Novel Analysis Tool to Identify Biologically
Relevant Molecules in Disease
Mark Pinese1*, Christopher J. Scarlett1, James G. Kench1,2,3, Emily K. Colvin1, Davendra Segara1,4,

Susan M. Henshall1, Robert L. Sutherland1, Andrew V. Biankin1,4

1 Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia, 2 Central Clinical School, University of Sydney, Camperdown,

New South Wales, Australia, 3 Department of Anatomical Pathology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia, 4 Division of Surgery,

Bankstown Hospital, Bankstown, New South Wales, Australia

Abstract

Background: Morphologically similar cancers display heterogeneous patterns of molecular aberrations and follow
substantially different clinical courses. This diversity has become the basis for the definition of molecular phenotypes, with
significant implications for therapy. Microarray or proteomic expression profiling is conventionally employed to identify
disease-associated genes, however, traditional approaches for the analysis of profiling experiments may miss molecular
aberrations which define biologically relevant subtypes.

Methodology/Principal Findings: Here we present Messina, a method that can identify those genes that only sometimes
show aberrant expression in cancer. We demonstrate with simulated data that Messina is highly sensitive and specific when
used to identify genes which are aberrantly expressed in only a proportion of cancers, and compare Messina to
contemporary analysis techniques. We illustrate Messina by using it to detect the aberrant expression of a gene that may
play an important role in pancreatic cancer.

Conclusions/Significance: Messina allows the detection of genes with profiles typical of markers of molecular subtype, and
complements existing methods to assist the identification of such markers. Messina is applicable to any global expression
profiling data, and to allow its easy application has been packaged into a freely-available stand-alone software package.
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Introduction

Key molecular events in the development of disease are usually

not ubiquitous, leading to instances of disease with similar

morphological characteristics often having substantially disparate

molecular phenotypes. This heterogeneity, far from being an

unimportant epiphenomenon of disease development, has proven

important in therapy: major advances in cancer therapeutics and

patient outcomes have been achieved through the study and

targeting of specific molecules and molecular mechanisms such as

the estrogen receptor, and HER2/neu, aberrant expression of

which occurs in approximately 30% and 25% of breast cancers,

respectively [1,2,3]. Thus inconsistent molecular aberrations,

which do not occur in every case of a disease, are biologically

and clinically relevant and have proven useful in the development

of effective therapies.

Traditional analysis methods for global gene expression data are

poorly suited for the identification of genes that are aberrantly

expressed at low frequency, and will fail to find genes that show

aberrant expression in only a small subset of samples. This

limitation in conventional techniques is gaining recognition, and

new analyses of cancer datasets searching for genes with low

frequency aberrant expression have produced novel insights into

disease [4,5].

Here we present Messina, a novel technique that identifies genes

with lower frequencies of aberrant expression in disease. In

contrast to currently available outlier detection methods (e.g.

[4,6,7]), Messina can smoothly vary between identifying consistent

differences, as in traditional approaches, to selecting the low

frequency outliers found by current outlier detection techniques.

This flexibility allows prior biological knowledge about the

expected frequency of aberrant gene expression to inform the

analysis, and enables the user to more specifically identify the

genes of interest. Messina has its roots in machine learning theory,

and its results can be directly used to implement robust single-gene

classifiers separating case and control sample groups with user-

supplied minimum sensitivity and specificity. In our work this has

been useful in identifying lead target proteins for the development

of radioactive tracers for disease diagnosis and localisation, but is

generally applicable to any diagnostic problem for which the

number of genes that can be measured is strictly limited. This

paper describes the implementation, performance and validation
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of Messina compared to current commonly-used techniques, and

demonstrates its utility in the detection of inconsistent differential

expression in a case-control setting.

Results

Messina is an algorithm for constructing classifiers capable of

separating two sample groups (eg. cancer and normal tissue) on the

basis of the expression level of a single gene. Classifiers (and thus

genes) which can be used to separate the two sample groups are

reported to the user as the final result of the algorithm.

Although Messina is fundamentally a classifier, its primary use is

to identify genes with low frequency aberrant expression, such as

markers of molecular subtype, thus complementing existing

approaches that identify genes that show either consistent or

outlier profiles. Messina identifies genes with low frequency

aberrant expression by allowing the analyst to specify minimum

sensitivity (the fraction of case samples that are placed into the case

group by the classifier) and specificity (the fraction of control

samples that are classified as being in the control group)

constraints that classifiers must satisfy. The sensitivity can be

considered to reflect the proportion of case samples with ‘case-like’

expression levels, and the specificity the proportion of control

samples with ‘control-like’ expression. By modifying these two

inputs the analyst can tune Messina to identify genes with

particular profiles of expression across the spectrum from highly

consistent differences (sensitivity and specificity both high), to

genes detected by current outlier techniques (sensitivity low,

specificity high). This link between classifier performance and low

frequency aberrant expression is further developed in Methods S1.

Messina selectively identifies genes of interest
We evaluated Messina’s ability to detect genes that display

aberrant expression in at least a user-defined proportion of samples

using a series of simulation experiments which model genes with

known frequencies of differential expression. These experiments

examined how accurately Messina identified only those genes which

satisfied its input performance constraints across a range of

simulated experimental conditions. The selectivity of a simple t test

was also examined to contrast its performance with Messina.

We generated simulated case-control expression data that

spanned a range of sample sizes, differential expression magnitude

(the difference between case and control sample distribution

means), and differential expression degree. We defined differential

expression degree as the fraction of simulated case samples which

were drawn from the case distribution rather than the control

distribution; this was varied in order to examine performance

under conditions of inconsistent differential expression. Conven-

tional analyses assume degree is equal to 1; values lower than 1

indicate that some case samples display control-like expression

levels, and are indicative of low frequency aberrant expression.

Under the conditions of the simulation, the simulated gene’s

differential expression degree was equal to the theoretical optimal

sensitivity of a classifier based upon that gene. Therefore, an ideal

gene detection response would be zero detection if the simulated

gene’s degree was less than the supplied sensitivity cutoff, and full

detection otherwise.

In all sample size scenarios, Messina detected only those genes

with degrees of differential expression near to or exceeding its

supplied sensitivity threshold (Figure 1). For genes with a small

magnitude of differential expression (one log2 unit), Messina’s

detection efficiency reached a plateau at approximately 80%

(Figure 1b,d), however for genes with a four-fold change and

above Messina’s detection efficiency rapidly approached 100%

with increasing degree of differential expression, even in the case

of only five samples per group (Figure 1a,c).

To illustrate the performance of a simple conventional analysis

method, we applied a t test to the simulated data. The t test

displayed a rapid increase in detection performance with increasing

degree of differential expression, with the critical degree at which

detection became likely varying with the sample size, magnitude of

differential expression, and supplied test size (Figure 2). Notably,

manipulation of the one free parameter in the t test (the test size) did

not effectively change the degree of differential expression required

for consistent detection (data not shown).

In contrast to the t test, Messina could be tuned to detect low

frequency aberrant expression. However, it was important to

verify that this improved flexibility did not come at the expense of

specificity, and that Messina was still strongly selective against

genes that did not satisfy its supplied criteria. Messina’s specificity

naturally increases as the minimum degree of differential

expression required for detection is increased. In simulations of

data with 20 samples per group, Messina’s false discovery rate

(FDR), defined as the fraction of detected genes with less than the

minimum required simulation frequency of differential expression,

was 2.26%. For the more demanding case of only five samples per

group, Messina’s FDR was 8.17% at the very liberal 50%

sensitivity cutoff, and only 1.09% at the more stringent 90% cutoff.

In all cases, even under demanding conditions of a very liberal

minimum classifier sensitivity cutoff and small sample size,

Messina effectively controlled the false discovery rate.

Illustration of Messina vs limma
Simulation studies indicated that Messina reliably detected

inconsistent differential expression in complex microarray datasets

with few samples per group. In order to demonstrate its relevance

to contemporary biological problems, we compared the algorithm

to limma, an established conventional analysis platform, in the

analysis of a representative experiment. Both Messina and limma

were used to analyse a previously-published microarray data set

[8] comparing human pancreatic cancer samples to normal

pancreas.

The results of the Messina and limma analyses were broadly

concordant (Figure 3a). Of 44,928 probesets in total, 42,405

(94.4%) were considered not differentially expressed by either

technique, while 837 (1.9%) were considered differentially

expressed by both techniques. The techniques disagreed for

1,686 (3.8%) probesets, 809 of which were considered differentially

expressed by Messina alone, and 877 of which were only

considered differentially expressed by limma.

To demonstrate the differences between the analysis techniques

we selected six illustrative cases of the 1,686 discordant probesets

(Figure 3b). All three Messina-selected probesets displayed a high

intra-group variability, with one to two cancer samples exhibiting

an expression level close to that of normal tissue (Figure 3b, panels

x–z). Nonetheless, all three probesets could form the basis of

single-gene classifiers with wide classifier margins. Conversely, two

of the probesets selected by limma, but considered unattractive by

Messina, show quite low intra-group variability and a small mean

difference (Figure 3b, panels v, w). A third probeset selected by

limma was rejected outright by Messina (Figure 3b, panel u).

Although this probeset could be used to construct a classifier with a

reasonably large margin, the presence of a sample of normal tissue

with expression close to the cancer group drastically reduces the

specificity of a classifier based upon this probeset. As Messina was

supplied a minimum specificity requirement of 90% when these

data were analysed, and this probeset could not satisfy this

condition, it was rejected by Messina.

The Messina Algorithm
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S100A2 calcium-binding protein mRNA was detected as

differentially-expressed by Messina, but not by limma (Figure 3b,

panel y), and thus it was of interest to determine if S100A2 was

differentially-expressed in a larger cohort, using a different assay to

validate Messina’s findings. S100A2 protein levels in a pancreatic

cancer cohort of 115 patients [8] were measured by IHC. Scoring

of staining intensity and percentage of staining cells revealed

moderate or high S100A2 expression in 29 samples (25.2%), of

which 13 samples (11.3%) displayed very strong staining, in

agreement with the Messina results. High expression of S100A2 in

this cohort was significantly associated with a poor prognosis (data

not shown).

Discussion

Genes that display low frequencies of differential expression in

disease have often been neglected by high throughput studies

despite their central role in the definition of molecular subtypes.

Traditional analysis methods typically ignore such genes, and new

techniques capable of identifying genes with low frequency

aberrant expression have produced promising results [4,5].

However, these outlier detection techniques offer little flexibility

in the types of gene profiles selected, selecting only genes

displaying high magnitude aberrant expression at a very low

frequency. Messina is a flexible method that is ideally suited for the

analysis of small datasets, and bridges the gap between traditional

analysis techniques and newer outlier detection approaches.

Messina’s flexibility allows the user to input prior biological

knowledge about the expected patterns of aberrant expression to

inform the analysis, an advantage in heterogeneous diseases such

as cancer.

Messina naturally detects low-frequency differential expression,

an area upon which conventional analysis techniques do not

specifically focus. When compared to the commonly-used t test,

Messina was superior at identifying genes with low frequency

differential expression (Figures 1,2), especially with small sample

sizes, and maintained a low FDR under all conditions. Many more

sophisticated analysis methods are refinements of the t test and

Figure 1. Messina detection performance. Each plot displays the probability that a gene will be detected by Messina, as a function of the gene’s
degree of differential expression, for three different sensitivity cutoffs: 50% (orange), 70% (green) and 90% (blue). Under these simulation conditions,
an ideal response is zero detection for degrees under the sensitivity cutoff, and complete detection for degrees at or above the sensitivity cutoff. In all
cases, Messina’s specificity cutoff was set to 90%.
doi:10.1371/journal.pone.0005337.g001

The Messina Algorithm
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share, to some degree, the penalty it applies to genes with low

frequency aberrant expression.

When used for its designed purpose, Messina performed

favourably when compared to a popular and highly powerful

analysis platform, limma. The results of Messina and limma were

broadly concordant (Figure 3); however their disparate results

highlight their different application. Limma very sensitively detects

consistent differences in expression, even when these differences

are subtle, but permits little flexibility in the types of differential

expression profiles found. Messina detects both consistent and

inconsistent differences in expression and grants the experimenter

great flexibility, but favours large margins. These approaches are

complementary: limma and other conventional microarray

analyses are appropriate to detect genes that are differentially

expressed in close to every single sample of a group, whereas

Messina is optimised to detect differences between groups even if

the differential expression is present at a low frequency. Although

Messina cannot analyse the complex experimental designs handled

by limma, for a simple case-control type analysis it serves as a

useful adjunct method.

The key strength of Messina is that the method provides a

mechanism by which the user can control the types of gene profiles

selected, and the performance and robustness of the classifiers that

are based upon the selected genes. Messina accepts from the user

the minimum sensitivity and specificity values that all classifiers

(equivalently, genes) identified must satisfy, and therefore allows

the experimenter to flexibly reduce the stringency of the gene

selection process. The benefit of allowing more lenient cutoffs is

twofold: in a classification context it permits the discovery of more

robust classifiers, and in a gene discovery context it enables the

detection of genes with inconsistent aberrant expression. If high

classifier robustness or the detection of genes with inconsistent

expression are a main goal, the sensitivity cutoff may be relaxed,

trading classifier performance for improved resistance to noise,

and a low false positive rate for improved detection of inconsistent

aberrant expression. Should the analysis require it, the specificity

cutoff can also be reduced, with a similar attendant trade-off. In

simulations Messina faithfully matched the supplied constraints

across a wide range of restrictions and gene expression scenarios,

permitting the researcher to flexibly experiment with performance

requirements with confidence that these constraints will be

respected by the identified genes and classifiers. However, as the

constraints are relaxed beyond a point the genes thus found will be

progressively less likely to be biologically relevant; this point will

vary with the particulars of the experiment and the downstream

application of the identified genes, and defines Messina’s lowest

practical sensitivity and specificity thresholds. To our knowledge, no

other analysis technique allows this control over the types of

differential expression detected, nor the performance of classifiers

thus generated.

Messina’s ability to detect genes with inconsistent aberrant

expression was demonstrated using immunohistochemistry, by

which S100A2 was found overexpressed in 25% of samples. The

expression pattern of S100A2 (Figure 3a, point y) is typical of

markers of molecular subtype; such patterns are penalised by many

conventional techniques due to their high intra-group variance.

Whereas conventional analysis techniques promise great

sensitivity in detecting genes with subtle but consistent changes

in expression, Messina offers the opportunity to identify those with

inconsistent differences. Accumulated knowledge about disease

biology indicates that both types of genes are likely to be

important, and by using a combined approach the researcher is

offered a broader range of analyses to guide further work.

Messina’s flexibility is unique in the emerging field of low

frequency differential expression analysis, and this feature makes

Messina a natural companion to traditional methods of analysis,

being able to detect many different types of expression profiles

depending on its input parameters. The Messina software is free,

and includes a user-friendly graphical interface for use by

biologists.

Methods

Threshold classifiers
The classifiers trained by Messina decide the class of an

unknown sample by comparing the expression of a single gene in

Figure 2. t test detection performance. As per Figure 1, each plot displays the probability of a gene being detected as differentially-expressed as
a function of its degree of differential expression. Line types represent three different differential expression magnitudes: 2-fold (dotted line), 4-fold
(dashed line) and 16-fold (solid line). A gene was defined as detected if it was assigned a Benjamini-Hochberg corrected P-value for the difference in
group means of less than 0.01.
doi:10.1371/journal.pone.0005337.g002

The Messina Algorithm
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that sample to a threshold value. If the expression of an unknown

sample exceeds the threshold value, the sample is assigned one

class, and the remaining class otherwise. Threshold classifiers are

completely specified by the classifier’s threshold value, and its

direction, the latter being the class to which samples with

expression exceeding the threshold are assigned.

Core training algorithm
Given the classifier direction and a set of sample expression

values and associated classes, classifier sensitivity and specificity (as

evaluated on the training data) are monotonic functions of the

classifier threshold value. The (possibly empty) set of threshold

values for which the sensitivity and specificity both satisfy the

experimenter-supplied constraints is termed the feasible region for a

given gene and classifier direction. Following the reasoning

underlying the Support Vector Machine [9], the final threshold

is selected as the midpoint of the feasible region, resulting in a

maximum margin of safety before either of the classifier

constraints is violated. This margin is employed as a measure of

classifier robustness to noise: classifiers with larger margins are

supposed to be more resistant to measurement error or

peculiarities of the training set. Messina’s training algorithm is

illustrated in Figure S1 and described in more exhaustive detail in

Methods S2, where the close link between Messina and empirical

cumulative distribution functions is also developed.

Messina implementation
For each gene, Messina’s core training algorithm determines the

feasible region for both classifier directions. In the case of both

directions yielding a feasible region, the one with the largest

margin is selected. In the case of genes that do not yield a feasible

region for either classifier direction, the training algorithm

produces a zero-rule classifier that randomly produces class labels

with frequencies equal to the training set class frequencies. During

cross-validation (CV), this naturally penalises genes which cannot

consistently be used to produce acceptable classifiers.

Messina’s core training algorithm is wrapped in a CV loop that

employs independently-sampled data set splits [10]. The mean CV

performance is compared to the performance constraints, and if

these CV performance estimates satisfy the constraints, the

classifier is trained on the full data set, and the full classifier

parameters and CV performance reported to the user.

The overall steps of the Messina procedure are presented in

pseudo-code form in Figure S2.

Messina software
Software that implements the Messina algorithm is freely-

available at http://www.garvan.unsw.edu.au/public/mpinese/

messina.

Detection performance simulation study
In order to test Messina’s detection performance, we produced a

series of simulated microarray datasets with known differential

expression using data from a previously-published study [8]. This

data set included six normal human pancreas samples hybridised

to Affymetrix HG-U133A microarrays. To characterise the data

for subsequent synthesis, array pre-processing was performed

using RMA [11], and for each probeset a maximum-likelihood

lognormal distribution was fit to the six normal sample RMA

expression measures.

The synthetic datasets were generated by drawing simulated

case and control samples from lognormal distributions: control

samples from a distribution with a lower mean, and case samples

from either the control distribution or a case distribution with a

higher mean. The proportion of case samples drawn from the case

distribution was varied to simulate a range of differential

expression types from highly consistent (high proportion) to outlier

(low proportion). Full details of the generation procedure follow.

For each synthetic probeset, n simulated control samples and n

simulated case samples were generated by random sampling from

two lognormal distributions. The mean of the lognormal

distribution of the n control samples, and m of the case samples,

was ln t; the mean of the lognormal distribution of the remaining

n–m case samples was ln (t + d), with d representing a gene’s

magnitude of differential expression. In the experiments, t M{4, 6,

8, 10}, d M {1, 2, 4}, m M{0, …, n}, and n M{5, 10, 20}. m

represents the number of case samples that exhibit a control-like

distribution; as m approaches n the proportion of simulated case

samples that are generated from the case distribution decreases.

To simulate the heteroskedascity common in array data, standard

deviations of the simulated probeset lognormal distributions were

generated empirically by random sampling from the standard

deviations of the lognormal fits to the array data. This sampling

was performed independently for the samples with mean ln t and

the samples with mean ln (t + d); sampling was from within those

fitted probesets that had a fitted mean expression value within 0.1

percentiles of the simulated probeset mean. A simulated gene’s

degree of differential expression was defined as d = 12m/n. 100

simulated probesets were generated for each combination of t, d,

and n, yielding 45,600 simulated probesets in total.

The Messina analysis and a two-sample t test procedure were

applied to the simulated data in order to evaluate the detection

performance of the two methods. Messina was run upon the data

three times, with sensitivity cutoffs of 50%, 70% and 90%; all runs

employed a specificity cutoff of 90%, 60 CV iterations, and a

training set size of 90% of the full data. A probeset was considered

detected by Messina if its CV sensitivity and specificity were both

at least as high as the supplied cutoff values. Welch’s two-sample t

test was also applied to the data, testing for each probeset the null

hypothesis of no difference between the case and control means. A

probeset was considered detected by the t test if its Benjamini-

Hochberg corrected [12] P-value was less than 0.01. Detection

probability was defined as the proportion of probesets that were

detected by an analysis method for fixed values of d and n, as a

function of the degree of differential expression.

Application to pancreatic cancer data
In order to contrast Messina with conventional techniques, we

applied the algorithm to a small pancreatic cancer data set, and

Figure 3. Comparison of Messina and limma results. (a) Log10-transformed limma P-values are displayed on the horizontal axis; a vertical line at
22 units denotes the P,0.01 cutoff value. Ranks of Messina-assigned margins occupy the vertical axis, with larger margins being assigned smaller
ranks; a horizontal line at rank 1,646 denotes the margin .1 cutoff value. Limma P-values for probesets rejected outright by Messina (ie. no threshold
could satisfy the input performance requirements) are displayed above the horizontal line at rank 15,898; the vertical position for these Messina-
rejected probesets has been jittered for display purposes only. Probesets selected by both methods are plotted as filled black circles, all other
probesets are plotted as black dots. Six discordant probesets that were selected for closer examination are highlighted by open circles. (b) Expression
profiles of selected discordant probesets. Grey and black bars represent normal and cancer samples, respectively. For the probesets selected by
Messina (panels x2z), the relevant feasible region and margin size are marked.
doi:10.1371/journal.pone.0005337.g003
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compared its performance to that of an established microarray

analysis technique [13] implemented in the package limma [14]. A

subset of a previously-published microarray study [8] was used;

this subset featured data from six bulk pancreatic adenocarcino-

mas and six unmatched bulk normal pancreata, hybridised to

Affymetrix U133 A and B arrays. Array pre-processing was

performed using RMA [11].

The array data were analysed separately using Messina and

limma. In the Messina analysis genes were selected if their CV

performance passed the supplied performance thresholds of 50%

sensitivity and 90% specificity and they had a classifier margin of

at least one log2 unit; in the limma analysis genes were labelled as

differentially expressed if they were assigned a Benjamini-Yekutieli

(BY) corrected [15] P value for no difference between cancer and

normal mean expression of less than 0.01. To facilitate comparison

between Messina and limma results, the rank of Messina’s

reported probeset classifier margin (a measure of the robustness

of the trained classifier) was compared to the log10-transformed

BY-corrected [15] P value reported by limma.

Immunohistochemistry
To validate Messina’s results, we measured expression of

S100A2 protein by immunohistochemistry upon a separate patient

cohort from that used in the microarray data [8]. Tissue

microarray sections were dewaxed in xylene and rehydrated, then

unmasked in retrieval solution (S2367, DAKO) at 121uC in a

pressure cooker for 5 minutes. Slides were blocked with 3% H2O2

in methanol and incubated with 1:50 mouse antibody to S100A2

(DAK-2100A2/1, NeoMarkers) for 60 minutes. Detection was

performed using Envision+ anti mouse (DAKO) with a 3,39-

diaminobenzidine substrate and slides were counterstained with

hematoxylin. All slides were double scored by independent

observers including a histopathologist.

Supporting Information

Methods S1 Informal development of the reasoning underlying

the core of the Messina algorithm.

Found at: doi:10.1371/journal.pone.0005337.s001 (0.03 MB

DOC)

Methods S2 Formal development of the link between the

Messina algorithm and inverse eCDF estimation.

Found at: doi:10.1371/journal.pone.0005337.s002 (0.06 MB

DOC)

Figure S1 Illustration of the Messina training algorithm. The

main plot shows the classifier sensitivity or specificity as a function

of the threshold, for the classifier direction in which expression less

than the threshold value is associated with control samples.

Sample expression (n = 6 per group) is depicted by boxes beneath

the main plot; empty boxes represent control samples and filled

boxes case samples. The algorithm’s supplied performance limits

in this example (sensitivity $ 0.6, specificity $ 0.9) are represented

by horizontal dotted lines, and when combined with the sensitivity

and specificity curves define threshold values that produce

classifiers with acceptable sensitivity and specificity, respectively.

The range of possible thresholds in which both sensitivity and

specificity satisfy the supplied constraints is denoted the feasible

region. Messina selects a threshold in the centre of this feasible

region, and defines the classifier margin as the width of the feasible

region.

Found at: doi:10.1371/journal.pone.0005337.s003 (0.82 MB TIF)

Figure S2 The Messina algorithm pseudo-code.

Found at: doi:10.1371/journal.pone.0005337.s004 (0.03 MB

DOC)
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