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Abstract

Background: Epidemiological and pedigree studies suggest that lung cancer results from the combined effects of age,
smoking, impaired lung function and genetic factors. In a case control association study of healthy smokers and lung cancer
cases, we identified genetic markers associated with either susceptibility or protection to lung cancer.

Methodology/Principal Findings: We screened 157 candidate single nucleotide polymorphisms (SNP) in a discovery cohort
of 439 subjects (200 controls and 239 lung cancer cases) and identified 30 SNPs associated with either the healthy smokers
(protective) or lung cancer (susceptibility) phenotype. After genotyping this 30 SNP panel in a validation cohort of 491
subjects (248 controls and 207 lung cancers) and, using the same protective and susceptibility genotypes from our
discovery cohort, a 20 SNP panel was selected based on replication of SNP associations in the validation cohort. Following
multivariate logistic regression analyses, including the selected SNPs from runs 1 and 2, we found age and family history of
lung cancer to be significantly and independently associated with lung cancer. Numeric scores were assigned to both the
SNP and demographic data, and combined to form a simple algorithm of risk.

Conclusions/Significance: Significant differences in the distribution of the lung cancer susceptibility score was found between
normal controls and lung cancer cases, which remained after accounting for differences in lung function. Validation in other
case-control and prospective cohorts are underway to further define the potential clinical utility of this model.
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Introduction

While 90% of people with lung cancer have a smoking history,

only 10–15% of chronic smokers develop lung cancer suggesting

factors in addition to smoking exposure are relevant [1].

Age,smoking exposure, impaired lung function and family history

have been identified as independent risk factors for lung cancer

[2]. Genetic factors have also been shown to play a role in

determining susceptibility to lung cancer [3]. These genetic factors

are believed to confer an inherent susceptibility (exaggerated or

maladaptive response) to chronic inflammation from cigarette

smoking [4,5]. Consistent with many cancer models, this

inflammatory stimulus in the lungs results in tissue remodeling,

DNA damage and impaired cell cycle control [3–5]. This tissue

remodeling results in impaired lung function (ie chronic

obstructive pulmonary disease or COPD) that, despite affecting

the minority of smokers [6], is present in 50% or more of lung

cancer cases [7] and recognized as one of the most important

markers of lung cancer risk [8].

Genetic predisposition to lung cancer is likely to be both

polygenic and heterogeneous, conferred by a variable combination

of relatively common polymorphisms with low penetrance and

modest effect sizes [9,10]. Moreover, it is likely that important

smoking-gene interactions underlie lung cancer [11] as seen in

other smoking-related cancers (e.g. bladder and stomach). Genetic

variants associated with both COPD and lung cancer have been

identified, most recently the chromosome 15q25 gene locus

[12,13]. Therefore to avoid possible confounding we suggest it is

important to measure lung function in participants of case-control

studies of lung cancer [13]. For both epidemiological and

biostatistical reasons, spirometric screening of comparably exposed

controls will increase the power of the study to identify relevant

genetic variants (distinguishing low from high risk people)

compared to studies where the control group is unscreened [14].

It is well known that non-genetic risk factors such as age, history

of lung disease and smoking history are very important and can be

combined to develop risk based tools for lung cancer susceptibility

such as the Lung Cancer Assessment Tool developed by Bach

(www.mskcc.org) [15]. Recently, genotype data from previously

implicated prostate cancer susceptibility SNPs were combined

with family history to derive risk estimates for prostate cancer [16].

In the latter study, controls were screened using prostate specific

antigen and only those with normal levels were recruited as

controls. This approach minimizes misclassification of controls (ie
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men with undiagnosed prostate cancer or at increased risk of

prostate cancer). We have used a similar approach in our case

control study design and analysis, and show how genetic variants

previously showing small effects on lung cancer risk can be

combined in an algorithm with other known risk factors to derive a

risk model for lung cancer.

Methods

Study Population
This study was a two stage case control design conducted in 3

centers following the same recruitment protocol. Lung cancer

cases of Caucasian ancestry (all 4 grandparents of Caucasian

descent) were identified through hospital clinics between 2004 and

2007 as follows: .40 yrs of age, past history of smoking (minimum

15 pack years), diagnosis confirmed on histological or cytological

grounds and limited to the following 4 histological subtypes-

adenocarcinoma, squamous cell cancer, small cell cancer and non-

small cell cancer (generally large cell or bronchoalveolar subtypes).

The median time interval between diagnosis and recruitment was

3 months. Lung cancer cases underwent blood sampling for DNA

extraction, an investigator administered questionnaire and spi-

rometry using a portable spirometer (Easy-OneTM, ndd Medizin-

technik AG, Switzerland) following American Thoracic Society

(ATS) criteria. For those lung cancer cases who had already

undergone surgery, pre-operative lung function performed by the

hospital laboratory (using ATS criteria) was sourced from the

medical records.

Control subjects were recruited from the same communities as

the cases as follows: Caucasian ancestry (as defined above), aged

45–80 yrs old and had a past or current smoking history of a

minimum of 15 pack years. Controls were volunteers who met the

above criteria and were identified through either a community

mail out or while attending community based social clubs. All

smoking controls underwent blood sampling, spirometry and the

same investigator administered questionnaire given to lung cancer

cases. Control smokers recruited from the community that were

found to have COPD, based on screening spirometry (FEV1/

FVC,70% and FEV1 % predicted ,80%), were analysed

separately. All subjects provided informed written consent. The

study was approved by the Multi-Region Ethics Committee,

Wellington, New Zealand (AKX/03/08/207). The questionnaire

(modified from the ATS respiratory questionnaire) included data

on demographic variables such as age, gender, medical history,

family history of lung disease, active and passive tobacco exposure

and occupational aero-pollutant exposures.

Selection and genotyping of single nucleotide
polymorphisms

Following literature review, polymorphisms previously impli-

cated in either COPD or lung cancer with the following attributes

were selected: (a) single nucleotide polymorphisms (SNPs) in genes

encoding proteins in pathways of cell-cycle control, oxidant

response, apoptosis and airways inflammation and (b) SNPs that

were known to have either functional effects on in vitro assays, or

were non-synonymous or in regulatory regions. In a discovery

cohort of 439 smokers (run 1 recruited during the years 2003–

2005: 239 lung cancer cases and 200 control smokers), 157

candidate SNPs were screened (see supplementary data S1) and

those where the difference in genotype frequencies between cases

and controls (using recessive or co-dominant model) exceeded a

20% magnitude difference and P value ,0.20 were identified as

part of our model forming approach [17]. SNPs with call rates

,95% after retesting, were not included in further analysis. SNPs

were assigned as ‘‘protective’’ or susceptible when the homozygote

and/or heterozygote genotype for either allele were found in

excess in control smokers or lung cancer cases respectively (in a

recessive or co-dominant model).

Genotyping
Genomic DNA was extracted from whole blood samples using

standard salt based methods. Purified genomic DNA was aliquoted

(10 ng/ul concentration) into 96 well plates and genotyped on a

SequenomTM system (SequenomTM Autoflex Mass Spectrometer

and Samsung 24 pin nanodispenser) by the Australian Genome

Research Facility (www.agrf.com.au) using sequences designed in

house (available on request) and recommended amplification and

separation methods (iPLEXTM, www.sequenom.com) [16].

From the 157 candidate SNPs screened in our discovery cohort

(see supplementary data S1), 30 SNPs met the above criteria in run

1. These 30 SNPs were genotyped in a second validation cohort of

491 smokers (run 2 recruited during the years 2006–2007: 207

lung cancer cases and 284 control smokers) recruited in the same

way. For all SNP assays, again a minimum of 95% call rate was

required. This second cohort of lung cancer cases and healthy

control smokers were comparable to the first groups in respect to

demographic factors and lung cancer characteristics (unpublished

data). Based on independent replication of the associations

(univariate analyses with similar OR and P values) in run 2 as

observed in run 1 (ie. consistency, direction and significance of

association), a final panel of the 20 most discriminatory SNPs (12

susceptibility SNPs and 8 protective SNPs from the test panel of

30) was selected (see supplementary data S1).

Algorithm
The assignment of a protective or susceptible SNP genotype/s

was made from the test cohort data (run 1) and was strictly applied

to the data from run 2. For each subject, a numerical value of 21

was assigned for each of the protective genotypes present among

the protective SNPs and +1 for each of the susceptible genotypes

present. Where an individual did not have either the protective or

susceptibility genotype for that SNP the score was 0 (ie. did not

contribute to the genetic score). This approach is consistent with a

recently published study in prostate cancer [16]. Weighting the

presence of specific susceptible or protective genotypes according

to their individual odds ratios (OR from univariate regression or

point estimates from multivariate regression) did not significantly

improve the discriminatory performance of the raw SNP score

(unpublished data).

Lung cancer susceptibility score
Using multivariate logistic and stepwise regression analysis from

run 1, the SNPs were examined along with relevant non-genetic

factors which identified age and family history of lung cancer as

significant contributors to lung cancer susceptibility. Consistent

with other case control studies, previously diagnosed COPD and

female gender in our study were also associated with an increased

risk of lung cancer (p,0.001 and p,0.01 respectively). We did not

include gender in the final risk model as its importance in

prospective studies is lacking [18]. We did not include COPD in

the model as this was the basis of selecting our controls. Based on

the multivariate analysis in run 1, a score was assigned according

to age and family history and tested in run 1 and run 2 separately

in a receiver operator curve analysis (ROC, see results below).

These two variables have been identified in other risk assessment

tools for lung cancer susceptibility [15] and improved the

discriminatory power of the SNP score data alone. As smoking

exposure (pack years) was a recruitment criteria for this study and

Lung Cancer Risk Model
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comparable between cases and controls, it was not surprising to

find it made little contribution to this scoring system derived from

our cohorts. The lung cancer susceptibility score for the combined

lung cancer cases and controls (n = 930) was plotted with (a) the

frequency of lung cancer, and (b) the floating absolute risk

(equivalent to odds ratio) across the combined smoker/ex-smoker

cohort [19,20].

Statistical analysis
Patient characteristics in the cases and controls were compared

by unpaired t-tests for continuous variables and chi-square test for

discrete variables. Genotype and allele frequencies were checked

for each SNP by Hardy Weinberg Equilibrium (HWE). Population

admixture was excluded by the Population structure analysis on

genotyping data from 40 unrelated SNPs [21]. Distortions in the

genotype frequencies were identified between cases and controls

using 2 by 3 contingency tables. Genotype data (20 SNP panel)

and the most relevant non-genetic variables were combined in a

stepwise fashion to assess their combined effects on discriminating

low and high risk (by odds ratio and ROC) by score quintile. The

frequency distribution of the optimized lung cancer susceptibility

score was compared across the cases and controls. It’s potential

clinical utility as a risk tool was assessed using receiver-operator

curve analysis.

Results

Demographic variables and genotyping
Characteristics of the healthy control smokers, and lung cancer

cases are summarized in Table 1. The 446 lung cancer cases (run

1 = 239 and run 2 = 207) were comparable to a recently published

series [22]. Given the small difference in age, the 482 healthy

control smokers (run 1 = 200 run 2 = 282) were comparably

exposed with respect to smoking and other aero-pollutants. The

lower frequency of current smokers in the lung cancer group likely

reflects co-existing COPD (higher quit rates) while longer duration

of smoking in lung cancer cases reflects their older age. In a gene

by smoking interaction model such as this, differences in smoking

exposure are more likely to obscure effects (bias to the null) than

generate effects. Consistent with the findings of others, the lung

cancer cohort had higher rates of a family history of lung cancer

(19% vs 9%) and history of COPD (29% vs 5%). The latter (5%)

most likely reflects a clinical diagnosis of COPD, based on

symptoms but not spirometry, in smokers with asthma and/or

Table 1. Summary of characteristics for the Lung cancer and healthy control smokers.

Parameter Lung Cancer N = 446 Healthy control smokers N = 484 P value for differences

Characteristics (% or mean (1SD))

% male 53% 60% 0.007

Age (yrs) 69 (10) 60 (10) ,0.001

Height (cm) 167(0.08) 170 (0.09) ,0.001

Weight (kg) 69 (15) 79(15) ,0.001

History of COPD 29% 5% ,0.001

Smoking History

Current smoking (%) 35% 48% ,0.001

Age started (yr) 18 (4) 17 (3) ,0.001

Yrs smoked 41 (12) 35 (11) ,0.001

Pack years 41 (25) 40 (19) 0.28

Cigarettes/day 20 (10) 24 (11) ,0.001

History of other exposures

In utero smoke exposure 18% 17% ns

Mother smoked in childhood 37% 41% 0.03

Home ETS exposure as adult 79% 58% ,0.001

Work ETS exposure 86% 63% ,0.001

Work dust exposure 63% 47% ,0.001

Work fume exposure 41% 38% 0.16

Asbestos exposure 23% 16% 0.02

Family History

FHx of COPD 33% 28% 0.12

FHx of lung cancer 19% 9% ,0.001

Lung function

FEV1 (L) 1.86 (0.48) 2.86 (0.68) ,0.001

FEV1 % predict 73% 99% ,0.001

FEV1/FVC 64 (13) 78 (7) ,0.001

Spirometric COPD* 51% 0% ,0.001

ETS = environmental tobacco smoke.
*According to GOLD 2+ criteria.
doi:10.1371/journal.pone.0005302.t001

Lung Cancer Risk Model
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chronic bronchitis. As expected, lung function was worse in the

lung cancer cohort compared to the healthy smoker controls.

Testing lung function in the lung cancer cases (performed within 3

months of diagnosis, in the absence of pleural effusions and prior

to surgery) allows us to test for confounding by COPD (see below).

Based on replication of association in run 1 and independently

in run 2, the 20 most consistently associated SNPs were selected.

The observed genotypes for the 20 SNPs in this study were in

Hardy-Weinberg equilibrium (see Table 2) thereby excluding

significant genotyping error. The genotype frequencies for the

controls were comparable to those from the International Hapmap

Project (www.hapmap.org). The development of the lung cancer

susceptibility score is described in methods above and a summary

of the 20 SNP panel univariate analysis is presented in Table 3.

Although 6 of the top 20 SNPs do not reach traditional levels of

significance they have been included in the panel because (a) in

previous studies they have been shown to have functional effects

(b) they have been previously associated with COPD and/or lung

cancer (see discussion), (c) in combination they make a

contribution to the performance of the susceptibility score (AUC

for the model including only the 14 significant SNPs P#0.05, see

below), and (d) their inclusion allows for the genetic heterogeneity

that exits in lung cancer case control studies.

Risk model development
In a multivariate logistic regression analysis that included the

selected SNPs (individually), age (.60 yrs), family history of lung

cancer (first degree relative), gender and history of COPD were

found to be independently associated with lung cancer suscepti-

bility in run 1, run 2 and combined. For the combined data set,

OR for the susceptibility and protective SNPs ranged between

1.1–3.2 and 0.20–0.80 respectively (the combined SNP score is

independently related to lung cancer, P,0.001). The OR for

age.60 yrs and family history of lung cancer were 3.5 (2.5–4.9,

p,0.001) and 2.5 (1.6–4.0, p,0.001) respectively (total

AUC = 0.75 where SNPs were included individually while

adjusting for the non-genetic variables). Based on these findings,

and those from previously published studies [3,6,7], we assigned

scores to non-genetic variables as follows; +4 for those aged

.60 yrs old and +3 for those with a family history of lung cancer.

Such an approach is consistent with existing risk scores [15,16]

and places the SNP data in appropriate clinical context [15].

Gender and diagnosed COPD were not included in this risk model

for the reasons described above.

Model performance
In the combined 20 SNP model, the lung cancer susceptibility

score was compared with frequency of lung cancer and a linear

relationship was found across the lung cancer susceptibility scores #1

to 8+ with lung cancer frequency spanning 18% to 81% (figure 1a).

The magnitude of this effect was also examined using the floating

absolute risk [19,20] plotted on a log scale (equivalent to an Odds

ratio, OR), which references the lowest frequency group as OR = 1

(referent group, lung cancer score #1) and compares each lung

cancer score relative to the referent group (Figure 1b). The OR

spanned from 1 to 19.1 across the lung cancer scores when subjects

were grouped approximately as quintiles (p,0.001). The lung cancer

susceptibility score for lung cancer cases and controls shows a

Table 2. Expected genotype frequencies and Hardy Weinberg Equilibrium.

SNP # SNP Name rs number Allele frequencies

HWE observed
genotypes P value Allele frequencies Allele frequencies

Study total (n = 930) Study controls (n = 484) Hapmap –Caucasian*

Major Minor Major Minor Major Minor

1 a5 nAChR rs16969968 0.65 0.35 0.57 0.69 0.31 0.58 0.42

2 CYP 2E1 rs2031920 0.98 0.02 0.06 0.99 0.01 0.94 0.06

3 Interleukin-18 rs360721 0.70 0.30 0.77 0.68 0.32 0.70 0.32

4 Interleukin-8 rs4073 0.54 0.46 0.14 0.51 0.49 0.60 0.40

5 Interleukin 1B rs16944 0.69 0.31 0.80 0.67 0.33 0.65 0.35

6 ITGA11 rs2306022 0.90 0.10 0.07 0.91 0.09 0.93 0.07

7 NAT 2 rs1799930 0.71 0.29 0.87 0.69 0.31 0.71 0.29

8 a1-antichymotrypsin rs4934 0.50 0.50 0.54 0.47 0.53 0.51 0.49

9 Cerberus 1 rs10115703 0.92 0.08 0.54 0.93 0.07 0.89 0.11

10 DAT1 rs6413429 0.93 0.07 0.78 0.94 0.06 0.87 0.13

11 TNFR1 rs1139417 0.57 0.43 0.96 0.56 0.44 0.51 0.49

12 TLR9 rs5743836 0.85 0.15 0.92 0.85 0.15 0.84 0.16

13 P73 (TP73) rs2273953 0.75 0.25 0.93 0.78 0.22 0.85 0.15

14 SOD3 rs1799895 0.99 0.01 0.99 0.98 0.02 0.97 0.03

15 ITGB3 rs2317676 0.93 0.07 0.51 0.91 0.09 0.95 0.05

16 DRD2 rs1799732 0.90 0.10 0.67 0.89 0.11 0.90 0.10

17 BCL2 rs2279115 0.51 0.49 0.60 0.53 0.47 0.57 0.43

18 XPD (ERCC2) rs13181 0.61 0.39 0.90 0.59 0.41 0.67 0.33

19 REV1 (REV1L) rs3087386 0.56 0.44 0.96 0.58 0.42 0.50 0.50

20 FasL (TNFSF6) rs 763110 0.63 0.37 0.83 0.61 0.39 0.64 0.36

*allele frequencies for Caucasians from www.hapmap.org.
doi:10.1371/journal.pone.0005302.t002
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bimodal distribution on frequency distribution (Figure 2) indicating

potential utility as a screening test of risk [23].

Model sensitivity analysis
To correct for the small differences in age, smoking status and

gender mix between cases and controls, a subgroup (sensitivity)

analysis was done (a) limited to those over 60 years of age (age

weighting equally applied to all) and (b) where mean age, pack

years and gender were closely matched between cases and controls

(n = 450: 72 vs 69 yrs, 45 vs 43 pack years and 70% vs 70% male

respectively). A linear increase in OR across quintiles of the lung

cancer susceptibility score (range 1–28, p,0.01) remained evident

Table 3. Genotypes and results of regression analysis.

SNP * Rs number Genotype
LungCancer
N (%)

Smoking
Contr N (%)

Call
rate

Univariate OR
(95% CI) P value Phenotype

a5-nAChR rs16969968 AA 68 (16%) 45 (9%) 98% 1.8 (1.2–2.7) 0.004 susceptibility

AG/GG 361 (84%) 426 (91%)

CYP 2E1 rs2031920 TT/TC 24 (6%) 14 (3%) 95% 2.1 (1.0–4.3) 0.03 susceptibility

CC 379 (94%) 463 (97%)

Interleukin-18 rs360721 CC 237 (54%) 208 (45%) 96% 1.4 (1.1–1.9) 0.009 susceptibility

CG/GG 201 (46%) 250 (55%)

Interleukin-8 rs4073 TT 129 (31%) 109 (23%) 96% 1.5 (1.1–2.1) 0.005 susceptibility

AT/AA 284 (69%) 367 (77%)

Interleukin 1B rs16944 GG 215 (49%) 212 (44%) 99% 1.2 (0.9–1.6) 0.14 susceptibility

AA/AG 224 (51%) 269 (56%)

ITGA11 rs2306022 AA 14 (3%) 6 (1%) 98% 2.6 (0.9–7.6) 0.04 susceptibility

GA/GG 422 (97%) 470 (99%)

N–acetylcysteine
transferase 2

rs1799930 GG 239 (56%) 222 (47%) 97% 1.4 (1.1–1.9) 0.006 susceptibility

AA/AG 189 (44%) 253 (53%)

a1-antichymotrypsin rs4934 GG 123 (28%) 96 (20%) 98% 1.6 (1.2–2.2) 0.004 susceptibility

AG/AA 312 (72%) 383 (80%)

Cerberus 1 rs10115703 AA/AG 71 (16%) 59 (12%) 97% 1.4 (0.9–2.0) 0.10 susceptibility

GG 363 (84%) 413 (88%)

DAT1 rs6413429 GT/TT 64 (15%) 50 (10%) 98% 1.5 (1.0–2.3) 0.04 susceptibility

GG 367 (85%) 431 (90%)

TNFR1 (TNFRSF1A) rs1139417 AA 148 (36%) 142 (30%) 96% 1.3 (1.0–1.8) 0.05 susceptibility

AG/GG 258 (64%) 329 (70%)

TLR9 rs5743836 CC 12 (3%) 6 (1%) 96% 2.2 (0.8–6.6) 0.12 susceptibility

CT/TT 419 (97%) 455 (99%)

P73 (TP73) rs2273953 CC 219 (52%) 292 (62%) 96% 0.65 (0.49–0.85) 0.001 protective

TC/TT 206 (48%) 178 (38%)

SOD3 rs1799895 GG/GC 4 (1%) 15 (3%) 96% 0.28 (0.10–0.90) 0.02 protective

CC 425 (99%) 451 (97%)

ITGB3 rs2317676 GG/GA 44 (10%) 77 (16%) 98% 0.59 (0.39–0.89) 0.008 protective

AA 391 (90%) 403 (84%)

DRD2 rs1799732 CDel/Del.Del 70 (16%) 107 (22%) 98% 0.68 (0.48–0.96) 0.02 protective

CC 359 (84%) 372 (78%)

BCL2 rs2279115 AA 103 (24%) 145 (31%) 97% 0.71 (0.53–0.97) 0.03 protective

AC/CC 328 (76%) 330 69%)

XPD (ERCC2) rs13181 GG 60 (14%) 81 (18%) 96% 0.74 (0.51–1.10) 0.11 protective

GT/TT 376 (86%) 377 (82%)

REV1 (REV1L) rs3087386 CC 128 (29%) 163 (34%) 98% 0.79 (0.59–1.10) 0.10 protective

TC/TT 310 (71%) 312 (66%)

FasL (TNFSF6) rs 763110 TT 53 (12%) 78 (16%) 98% 0.72 (0.49–1.10) 0.09 protective

TC/CC 379 (88%) 403 (84%)

*(OMIM nomenclature).
doi:10.1371/journal.pone.0005302.t003
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with confidence intervals consistent (ie. overlapping) with those

derived using the full data set (figure 1b). The potential

confounding effect of COPD was also examined by (a) comparing

the distribution of the lung cancer susceptibility score in lung

cancer cases according to spirometric criteria (% predicted FEV1,

Figure 3a) and (b) excluding lung cancer cases with co-existing

COPD (based on previously described spirometric criteria n = 227,

Figure 3b). The distribution of the scores among cancer cases sub-

grouped according to lung function or COPD are not different to

the total lung cancer cohort (Figures 3a and 3b) and exclude

significant confounding by COPD.

ROC analysis
In a receiver operator curved analysis (n = 930) of the combined

20 SNP model, we found the area under the curve (AUC or C

statistic) for run 1, run 2 and run 1+2 was 0.82, 0.75 and 0.77

respectively. The AUC in the total cohort for the 20 SNP panel, age,

and family history of lung cancer on their own were 0.68, 0.70 and

0.55 respectively. When ‘‘genetic factors’’ only are utilised in the risk

model (SNPs+FHx of lung cancer), as seen in the Prostate cancer

study [16], the OR spans 1–10 across quintiles and the AUC = 0.70

(with no contribution from age). On stepwise analysis, age and the

SNP panel make the greatest contribution to the AUC

(SNPs = 0.68, age+SNPs = 0.76 and age+SNPs+FHx = 0.77). When

the SNP panel is limited to the 14 significant SNPs, the AUC for the

SNPs alone is 0.66 and when combined with age and family history

is 0.75. When gender was included in the 20 SNP combined model

the AUC was not improved. When past history of COPD was also

added to the combined model (scoring +4 based on multivariate

regression), the AUC increased to 0.79. As stated above, when age

and pack years were stringently matched and possible confounding

by COPD analysed, there was no difference in our findings.

Discussion

Using a candidate gene approach in a two stage selection

process a panel of protective and susceptibility SNPs were

Figure 1. 1a. Frequency of lung cancer according to the lung cancer susceptibility (risk) score. 1b. Odds ratio of lung cancer according to the lung
cancer susceptibility (risk) score.
doi:10.1371/journal.pone.0005302.g001

Figure 2. Frequency distribution of the lung cancer susceptibility (risk) score in cases and controls.
doi:10.1371/journal.pone.0005302.g002

Lung Cancer Risk Model
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identified that individually confer only small effects on risk of lung

cancer (OR ranging from 0.3 to 2.6). This is very much in keeping

with the experience from case control association studies to date

[11,12,16,24]. Consistent with existing risk models, relevant

factors were combined using an algorithm (in this study including

SNP data) to derive a susceptibility score on a simple linear scale.

This study design, and the algorithmic approach that underlies this

lung cancer susceptibility score, is comparable to a recent study in

prostate cancer. Moreover, it takes into account important

epidemiological observations relevant to genetic predisposition to

Figure 3. 3a Frequency distribution of the lung cancer score among controls and lung cancer cases divided according to low (COPD) and normal
lung function. 3b Frequency distribution of the lung cancer score among controls and lung cancer cases with normal lung function (COPD excluded).
doi:10.1371/journal.pone.0005302.g003

Lung Cancer Risk Model
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lung cancer. First, that although smoking exposure is essentially a

pre-requisite to getting lung cancer, increasing age and poor lung

function have important independent effects on lung cancer

susceptibility. Second, the genetic factors underlying lung cancer

risk are likely to be both polygenic and heterogeneous, conferred

by a variable combination of genetic variants (i.e. SNPs with low

penetrance and small effect sizes). Third, genetic factors may

confer either a protective [24] or susceptibility [13] phenotype to

lung cancer. Fourth, the potential confounding effect of COPD

[13] has been accounted for in the model. Here we report a 20

SNP panel which combined with family history [16] define risk

(OR) across quintiles ranging 1–10 with an AUC of 0.70. A risk

tool with greater clinical utility can be derived by including age to

identify those at greatest susceptibility to lung cancer (OR ranging

1–19 and AUC = 0.77).

This study sought to minimize false positive results in a number of

ways. The most important of these was to internally validate the

SNP associations using a two stage design with an initial discovery

cohort (run 1) to identify SNPs of potential interest. Only these SNPs

were tested in a second (validation) cohort of cases and controls (run

2) and using univariate analysis from the two runs independently to

select the SNPs based on replication. Second, population stratifi-

cation was excluded and third, the presence of genotyping error was

minimized through HWE analysis and by the exclusion of SNPs

with ,95% call rate (fails on genotyping is invariably genotype

specific, thus generating false positive associations). With respect to

possible confounding, in a sensitivity analysis where lung cancer

cases and healthy smoking controls were matched for smoking

exposure (pack years), age, gender and presence of COPD, the

performance of the lung cancer score was not reduced.

Weaknesses in this study include the modest size of the cohorts,

borderline significance of some SNPs in the absence of correction,

cross-sectional design and recruitment limited to Caucasians with

a minimum 15 pack years. Furthermore, we chose to recruit

smokers with essentially normal lung function as controls to

improve power [14] and best represent those least susceptible to

the adverse effects of smoking (COPD and lung cancer) but most

representative of smokers in general who maintain normal lung

function [6]. For this reason, COPD was not included in the

model although it is an important risk factor and added to the

score’s utility in a post-hoc analysis. A further limitation of the

study is that although the cases and controls were arguably

representative, not all variables were precisely matched in the

initial analysis (eg age, gender and smoking patterns). It should be

noted that although precise matching of all demographic variables

reduces the potential for confounding, it also potentially obscures

important effects of variables in a risk model. Although only 14 of

the 20 SNPs reached traditional levels of significance in the

combined cohorts, and the addition of the remaining six SNPs

only contributed modestly to the model, this was a two stage

design where replication of associations (in this and other studies)

and biological plausibility [23–42] were the basis of SNP selection.

Further studies will need to be done to further validate this SNP

panel and risk model in unselected populations.

In this study a candidate gene (i.e. hypothesis driven) approach

was used to identify potentially functional SNPs associated with the

development of both COPD and lung cancer. Although the SNPs

identified in this study may only reflect linkage disequilibrium with

functional variants nearby, these SNPs are likely to have functional

effects and involvement directly with susceptibility to lung cancer.

The 20 SNP panel consists of genetic variants known to encode

proteins underlying important pathways implicated in lung

carcinogenesis, specifically; metabolism of smoking-derived carcin-

ogens (N-Acetyl Transferase 2 and Cytochrome P450 2E1) [25,26],

inflammatory cytokines (Interleukins 1, 8 and 18, Tissue necrosis

factor alpha1 receptor, Toll-like receptor 9) [27–30], smoking

addiction (dopamine D2 receptor and Dopamine transporter 1)

[31,32], anti-oxidant response to smoking (a1 anti-chymotrypsin

and extracellular superoxide dismutase) [24,33], cell cycle control,

DNA repair and apoptosis (Xeroderma Pigmentosum complemen-

tary group D, p73, Bcl-2, FasL, Cerb1 and REV1) [34–39] and

integrins implicated in apoptosis [40–42]. One of the SNPs (a5

nAChR) has recently been associated with both lung cancer and

COPD in candidate gene [13] and genome wide association studies

[43,44]. This receptor appears to de directly related to nicotine

effects on airway inflammation [45]. As can be seen, the SNP panel

(Table III) is made up of a variety of SNPs from genes implicated in

many inter-related pathways. Twelve of these SNPs have been

associated with lung cancer in other cohorts. It is likely other SNPs

from as yet unidentified genes will be identified in the future. To

assess further the utility of the lung cancer susceptibility score, a

prospective study is in progress. To date the lung cancer cases

(n = 43) have the same mean and distribution as the lung cancer

cases reported in this study (unpublished data). Further case control

and functional studies will be needed to further explore the role of

these SNPs in lung cancer susceptibility.

The authors propose that clinical utility of genotype data

requires that many SNPs are analyzed and their effects combined

with other epidemiological factors of relevance [16]. The

algorithm approach used in this study assumes a simple additive

model comparable to that recently published in Prostate cancer

[16] and involves minimal assumptions (not hierarchical or Path

analysis based). The patient’s score can be compared with the

scores in smokers with least susceptibility to lung cancer (lowest

quintiles) in a simple linear fashion. Such an approach is

comparable to the risk tools developed by others [15,16]. The

potential clinical utility of the lung cancer susceptibility score was

assessed by receiver operator curve analysis. This showed the c

statistic to be 0.77 and, at a cut off of $3, an estimated sensitivity

of 89% and corresponding specificity of 45%. These findings are

comparable to the ROC performance of the Framingham score (c

statistic = 0.74). The c statistic for the 20 SNP panel on its own was

0.68 (and 0.70 when combined with family history) indicating its

utility in the current cohort. There is evidence, although limited,

that genetic testing may positively alter the behavior of smokers in

the context of smoking cessation (increase intent and possibly

improve quit rate [46,47]) or by lowering smoking prevalence

[48]. Although further validation studies are required, this study

suggests that genetic data may be combined with other risk

variables from smokers or ex-smokers to identify individuals most

susceptible to developing lung cancer. Further studies are planned

in larger cohorts of unselected cases and controls.
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