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Abstract

Commercial SNP microarrays now provide comprehensive and affordable coverage of the human genome. However, some
diseases have biologically relevant genomic regions that may require additional coverage. Addiction, for example, is
thought to be influenced by complex interactions among many relevant genes and pathways. We have assembled a list of
486 biologically relevant genes nominated by a panel of experts on addiction. We then added 424 genes that showed
evidence of association with addiction phenotypes through mouse QTL mappings and gene co-expression analysis. We
demonstrate that there are a substantial number of SNPs in these genes that are not well represented by commercial SNP
platforms. We address this problem by introducing a publicly available SNP database for addiction. The database is
annotated using numeric prioritization scores indicating the extent of biological relevance. The scores incorporate a number
of factors such as SNP/gene functional properties (including synonymy and promoter regions), data from mouse systems
genetics and measures of human/mouse evolutionary conservation. We then used HapMap genotyping data to determine if
a SNP is tagged by a commercial microarray through linkage disequilibrium. This combination of biological prioritization
scores and LD tagging annotation will enable addiction researchers to supplement commercial SNP microarrays to ensure
comprehensive coverage of biologically relevant regions.
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Introduction

Genome-wide association studies (GWAS) have pushed human

genetics into a new era. Advances in technology and affordability

are rapidly allowing GWAS to identify genetic variants that affect

risk for human disease (http://genome.gov/26525384). GWAS

have used microarrays that allow parallel assessment of hundreds

of thousands of single nucleotide polymorphisms (SNPs), and now

also copy number variant (CNVs). The technology of Affymetrix

(http://affymetrix.com), Illumina (http://illumina.com) and Per-

legen (http://perlegen.com) have been most often used for these

studies. While these microarrays have been designed to efficiently

explore genetic variation across the entire human genome, they

each provide better coverage in some genomic regions than in

others [1,2].

Most of the SNPs assessed by these commercial microarrays

were chosen in ways that are not based on hypotheses about the

underlying biology of any particular disorder. However, to the

extent that there is a body of knowledge concerning the biology of

a disorder, not all genes may be as likely, a priori, to contain disease

associated variants. Thus, if a commercial microarray is used for a

GWAS, we might ask – how well does the microarray cover
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biologically relevant genes for which there is a priori reason to

believe their products are involved in the disease of interest [3]?

For example, because genes that encode nicotinic cholinergic

receptors have a clear biochemical connection to nicotine

dependence, as do alcohol dehydrogenases for alcoholism, we

should be especially vigilant in testing the hypothesis that variants

in these genes might influence addiction vulnerability.

We have assembled data concerning the biology of addiction in

order to examine the genomic coverage of commercial SNP

microarrays. We show that several of these arrays, including top of

the line models such as the Illumina 1M and Affymetrix 6.0, fail to

cover a significant amount of common genetic variation in

addiction-related genes. We have also developed a SNP database

that can be used to supplement these microarrays to achieve

comprehensive coverage of these regions. This database is

annotated with numeric prioritization scores [4] indicating the

biological relevance of a SNP to addiction. This allows the

prioritization of supplementary SNPs when resources are limited.

We also include annotation indicating the extent to which a SNP is

tagged through linkage disequilibrium (LD) with some SNP on a

specific array with respect to a specific HapMap population:

African, Chinese, European-American and Japanese. By combin-

ing the prioritization scores with LD tagging data, we can

determine the most biologically relevant SNPs for comprehensive

LD tagged coverage of genes that are biologically relevant to

addiction.

Results

Table 1 shows the number of supplementary SNPs needed to

tag all common variants in various populations for our primary set

of 910 genes that are biologically relevant to addiction. This set

includes 486 genes that were derived mainly through an expert

nomination process, and 424 additional genes that correspond to

roughly the top 5% of genes identified using mouse systems

genetics (Chesler and colleagues, submitted). Together this set of

910 genes was our primary set for the analysis of microarray

coverage (see supporting file S1 for the complete list of these

genes). We assessed the SNP coverage of these genes by

determining if common SNPs (MAF$5%) were tagged through

LD by SNPs on a particular microarray. In Table 1, for each array

and each population, we report the number of common SNPs in

these genes that fail to satisfy r2$0.8 with a SNP from the array;

that is, the number of SNPs not tagged by the array. For example,

we found that 57% of the common SNPs in these genes were not

tagged by the Affymetrix 5.0 SNP microarray in the African

population. In other words, due to the haplotype/LD structure in

the African population, 43% of the common genetic variation in

these regions fails to be captured by this microarray. Table S1

gives a broader view of how microarray coverage depends on

biology, and shows that the Illumina coverage tends to improve

with the prioritization score, while the Affymetrix coverage is

uniform.

These results suggest that a significant amount of common

genetic variation in these addiction related genes is unaccounted

for by these commercial SNP microarrays. The deficiency is

particularly high in the African sample. This is likely due to the

lower LD in this older population, which means more SNPs are

required for tagging. While the Illumina 1M clearly provides the

best coverage, we would still need to add 23,441 SNPs to tag all

common SNPs in the HapMap African sample for these 910

genes. The best-case scenario is when the Illumina 1M is used for

European-Americans. But even in this case, there are still 5,117

SNPs that are not well represented.

Table 2 shows some examples of coverage by the Illumina 610

Quad microarray for ten genes that are of particular interest. We

chose this array because it offers a median level of coverage among

the seven arrays we studied. These genes were among the most

highly prioritized by the addiction researchers with whom we

consulted. The selection process involved a number of criteria,

including pharmacogenetic pathways, gene expression data, and

mouse models. For example, CDH13 (Cadherin 13) is known to be

expressed in neurons in the human adult cerebral cortex,

midbrain, thalamus and medulla regions [5]. Because it is also

known to inhibit neurite extension [6] and activate a number of

signaling pathways [7–10], it is a strong candidate for the genetic

study of addiction phenotypes [11]. CDH13 contains 2,414 SNPs

that are common in the African population, and only 50% of these

are tagged by the by the Illumina 610 Quad microarray. Figure S1

shows the complete distribution of individual gene coverage

percentages using our primary set of 910 genes for the Illumina

610 Quad microarray in each population.

Table 1. The number of SNPs required to supplement commercial microarrays in order to comprehensively cover our primary set
of 910 genes that are biologically relevant to addiction.

Number of Supplementary SNPs (%)

African Chinese European-American Japanese

All Common SNPs: 86,925 73,241 79,274 72,843

Microarray

Affymetrix 5.0 49,762 (57) 24,691 (34) 28,001 (35) 24,183 (33)

Affymetrix 6.0 27,945 (32) 11,499 (16) 12,542 (16) 11,132 (15)

Illumina 300 Duo 56,475 (65) 22,821 (31) 16,364 (21) 22,934 (31)

Illumina 550 37,776 (43) 10,166 (14) 7,362 (9) 9,962 (14)

Illumina 610 Quad 36,448 (42) 10,064 (14) 7,324 (9) 9,845 (14)

Illumina 650Y 29,417 (34) 9,396 (13) 7,062 (9) 9,105 (12)

Illumina 1M 23,441 (27) 6,370 (9) 5,117 (6) 6,056 (8)

Results are listed for four populations. The numbers in parentheses are the percentages of all common SNPs in these genes in the corresponding population. For
example, there are 86,925 SNPs in these genes with MAF$5% in the African population, and we found that 57% of these SNPs fail to satisfy r2$0.8 with a SNP from the
Affymetrix 5.0 microarray.
doi:10.1371/journal.pone.0005225.t001
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We have designed a SNP database (available at http://zork.

wustl.edu/nida/neurosnp.html) to systematically determine how

to supplement these commercial microarrays for addiction. Our

database includes a SNP prioritization score based on the genomic

information network (GIN) method introduced by S. Saccone and

colleagues [4]. This method was originally designed to systemat-

ically incorporate a priori biological hypotheses into the prioritiza-

tion of SNPs after a genome-wide association study. The method

begins with a set of SNPs that are ranked by their association p-

values, and then increases the rank of a SNP when it is determined

to be biologically relevant to the phenotype according to an a priori

set of conditions, such as being in a biologically relevant gene, and

additionally, perhaps, being a missense mutation. The score is a

measure of biological relevance to addiction, and can be used

independently of association p-values to prioritize which SNPs are

selected to supplement commercial microarrays. The score

incorporates SNP/gene functional properties (such as coding

and promoter regions), human/mouse evolutionary conservation,

and a quantitative trait locus (QTL) mapping method that utilizes

mouse models to identify genes associated with addiction

phenotypes (Chesler and colleagues, submitted). Figure S2 shows

the distribution of prioritization scores for our genome-wide SNP

database, and Figure S3 shows the GIN network model we used to

model addiction, which was adapted from the nicotine depen-

dence model used by Saccone and colleagues [4].

In addition to our primary set of 910 genes, the mouse systems

genetics method (Chesler and colleagues, submitted) that identified

7,842 additional genes with potential biological relevance to

addiction through mouse QTL and gene expression correlation

analysis and the GIN prioritization scores reflect this quantitative

assessment of biological relevance. Genes with a large number of

mouse associations are prioritized more highly, and those with a

relatively low number receive little increase in the prioritization

score relative to arbitrary genes (see the methods section for

details). These additional data provide a broader measure of

biological relevance to addiction which may be useful for

prioritizing SNPs for further study after a GWAS [4] or fine

mapping a region of genetic linkage. This method has the effect of

combining information from the expert nomination process and

the mouse systems genetics data. SNPs in the 486 expert

nominated genes, the determination of which did not involve the

mouse data, receive a uniform increase in priority. If there is

additional evidence from the mouse data of relevance of the gene

to addiction, the priority is increased further depending on the

extent of the evidence, which is measured by the number of mouse

phenotypes that link to the gene.

Table S2 shows the distribution of phenotypes that map to

mouse genes, both for the entire set of mouse genes considered and

for the top 424 genes that were used for our primary analysis of

SNP microarrays (these were mapped to human genes via NCBI

Homologene). More detailed information on this latter set of genes

can be found in supporting file S1 which is discussed in more detail

below. Complete details on the data and experiments for this

mouse systems genetics project are described in Chesler and

colleagues (submitted).

In order to determine the coverage of regions inferred to be

undergoing recent adaptive selection [12,13], all SNPs detected by

the LD decay (LDD) test in the Perlegen and HapMap datasets

were compared to the Illumina 1M and Affymetrix 6.0 SNPs.

Uncovering evidence for recent selection is an additional approach

to defining functional human genomic variation. The LDD test

identifies alleles undergoing selection by searching for an expected

increase with distance in the fraction of inferred recombinant

chromosomes surrounding a selected variant. This method is

insensitive to local recombination rate because it relies on LD

differences between the two alleles at a site, while the local rate

influences the extent of LD surrounding both alleles. While over

99.9% of the selected regions defined by the LDD test fall within

+/210 kb of a SNP present on these microarrays, there are some

important exceptions. For example, the extensive LD surrounding

the selected DRD4 7R allele [14] is not captured by these arrays,

which contain very few SNPs in the region (only 1 in 100 kb). In

general, however, the extensive long-range LD exhibited by these

recently selected alleles (up to 1 Mb), and the current density of

microarray SNPs, indicates that most of these evolutionarily

important alleles can be ‘‘tagged’’ by an adjacent SNP surrogate.

The combined set of 910 genes used for our analysis of SNP

microarrays is available as a spreadsheet in supporting file S1. The

spreadsheet contains detailed annotation, including the logical

category used by the NeuroSNP project, such as ‘‘Nicotine System’’

and ‘‘Dopamine System’’ (further documentation of these categories

and other columns is contained in the spreadsheet – see the sheet

labeled ‘‘Column Descriptions’’). Other columns include the Entrez

Gene ID and gene symbol, the full name of the gene as well as all

known symbol aliases and alternative descriptions, build 36.2 physical

mapping data and mouse homologs. Some columns contain links to

external databases, such as GenoPedia (http://www.hugenavigator.

net/HuGENavigator/startPagePedia.do), which contains a list of all

human diseases that have been linked to the gene, including links to

publications. The spreadsheet also contains links to the Knowledge-

base of Addiction Related Genes (KARG, http://karg.cbi.pku.edu.

cn) [15], and also GeneNetwork (http://genenetwork.org) for

additional information on mouse systems genetics data. We have

also created a web site (http://zork.wustl.edu/nida/neurosnp.html)

that contains a searchable database of this set of genes, as well as

downloadable files for the gene and SNP databases. These resources

will allow investigators to both gather new biologically relevant targets

for genetic association studies of addiction, and also to discover new

information on well-known targets, such as the extent of tagged

coverage in various population by commercial SNP microarrays.

Our complete SNP database is available for download from our

web site at http://zork.wustl.edu/nida/neurosnp.html, and the

top 5,000 SNPs ranked by GIN prioritization score [4] is provided

in a spreadsheet as supporting file S2. The entire database includes

Table 2. The number of SNPs required to supplement the
Illumina 610 Quad microarray for genes of particularly strong
interest.

Gene Number of Supplementary SNPs (%)

African Chinese European-American Japanese

CDH13 1,207 (50) 417 (21) 340 (15) 389 (20)

CHRNA3 7 (28) 2 (9) 0 0

CHRNA5 4 (15) 1 (5) 0 4 (21)

CHRNB4 4 (33) 5 (38) 3 (23) 5 (38)

COMT 11 (48) 4 (17) 4 (20) 3 (13)

GABRA2 32 (29) 5 (5) 8 (8) 5 (5)

MAPK1 20 (33) 7 (10) 0 16 (24)

OPRM1 90 (40) 20 (14) 16 (6) 13 (7)

SLC1A2 82 (36) 12 (5) 7 (3) 19 (9)

SLC7A11 19 (48) 7 (28) 7 (21) 3 (10)

The numbers in parentheses are the percentages of all common SNPs in these
genes in the corresponding population.
doi:10.1371/journal.pone.0005225.t002
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all SNPs from dbSNP build 128, and is annotated with allele

frequency data from the four HapMap samples; there is no

restriction on the allele frequency in the database. There are also

flags indicating whether a SNP is on a particular custom

microarray specifically designed by Hodgkinson and colleagues

to target alcoholism and other addiction related phenotypes [16],

or was part of an addiction study by Nielsen and colleagues [17].

Discussion

We have found that in order to achieve comprehensive tagged

coverage of genes that are biologically relevant to addiction in the

African, Chinese, European-American and Japanese populations,

all the commercial SNP microarrays we considered require

significant supplementation. The approaches used here will aid

other investigators to supplement these arrays, to target specific

genomic regions such as genes and linkage regions, and also

improve the general selection of SNPs for genetic studies of

addiction based on the ‘‘biological role in addiction’’ criterion.

The development of a database of addiction related genes is

similar to existing methods and resources in the literature [15–17],

the primary difference being our development of a SNP database

and a prioritization algorithm that allows the systematic

supplementation of commercial SNP microarrays.

These methods and resources were developed with the intention

that they would be useful to researchers who wish to test a priori

biological hypotheses, either within the context of a GWAS, or for a

more targeted study such as studying specific addiction-related genes

or fine mapping a region of genetic linkage for an addiction-related

phenotype. The need for this kind of approach has been discussed in

the literature [3], and to this end we have used multiple domains to

develop a collection of genes with evidence of biological relevance to

addiction. The biological principles guiding the selection criteria,

such as biochemical pathways and expression data, do not necessarily

imply the existence of genetic variants within these genes that

influence addiction phenotypes. For example, metabolic pathways

related to nicotine are an obvious source for cataloging genes that are

biologically relevant to genetic studies of nicotine dependence, but

these normal biological systems do not necessarily involve genes with

variants that influence abnormal phenotypes. Therefore, the utility of

these methods and resources depend on the subjective preferences of

investigators on the genetics of addiction and their specific a priori

biological hypotheses [3].

While the primary utility of the resource we have developed is the

supplementation of commercial SNP microarrays, it has several other

useful applications. For example, the GIN prioritization scoring

method is useful for interpreting the results of a GWAS, and can be

used to prioritize SNPs for further study after a GWAS [4], as well as

prioritize tests of gene-gene interaction. As the genomic coverage of

commercial SNP microarrays improves, and subsequently whole-

genome sequencing becomes the new standard, the problem of

multiple testing will continue to hinder progress in understanding

complex interactions underlying the genetics of addiction and other

complex diseases. Therefore tests of gene-gene interaction will in

most cases require a mechanism of prioritization, and our database

will be a useful resource for this approach. By limiting tests of gene-

gene interaction to genes that have a biological connection to the

phenotype, the issues of multiple testing and computational

tractability are substantially reduced. And even within a set of

biologically relevant genes, using the GIN prioritization scores to

further refine interactions tests, such as testing only within the top 100

SNPs ranked by these scores, will further reduce the problem.

Table 1 shows that a substantial amount of variation in high

priority regions for addiction is currently unaccounted for by these

commercial microarrays. Ultimately, the actual number of SNPs

used to supplement a microarray will depend on the genotyping

platform being used for supplementation. This platform could

involve a different technology than that of the original microarray

being supplemented. For example, the Affymetrix 6.0 array could

be supplemented with custom genotyping on the Illumina

GoldenGate platform (http://www.illumina.com), and because

some of the SNPs used for Table 1 may not perform well on the

GoldenGate platform, the numbers reported in the table may need

to be reduced.

Our results highlight the need to supplement commercial SNP

microarrays for genetic studies of addiction in order to have

adequate coverage for genes in relevant neurobiological pathways.

Our SNP database will help researchers to fill the missing gaps by

providing a quantitative measure of biological relevance to help

prioritize SNPs for supplementation. Addiction researchers should

find this resource to be a valuable tool, both in the design and

interpretation stages of a GWAS. It helps prioritize coverage of

biologically relevant regions, and highlights association signals in

those regions when selecting SNPs for replication. It also helps

prioritize tests of gene-gene interaction, which can limit multiple

testing issues. In this study the focus was on addiction, but our

method can be extended to other diseases by creating a new

database of biologically relevant genes.

Methods

We assembled a list of 486 genes biologically relevant for addiction

mainly through an expert nomination process (http://grants.nih.

gov/grants/guide/notice-files/NOT-DA-07-010.html). Most of

these were identified based on involvement in neurobiological

pathways relevant to substance abuse and were in part vetted by

addiction neurobiologists (see Acknowledgments). These included

genes involved in biosynthesis, metabolism, transport, receptor

binding, and intracellular signaling. Common biochemical pathways

and systems included the serotonergic, noradrenergic, dopaminergic,

GABA-ergic, glutamatergic, opioid, alcohol metabolizing and

nicotinic systems. In addition, genes involved in the metabolism of

FDA-approved medications for substance abuse were also included

(e.g., cytochrome p450 genes); genes involved in the medications’

pharmacodynamic effects were selected as part of the pathway-based

approach. 34 of these genes were added to the initial results of the

nomination process because they used for recent custom panel of

SNPs for alcoholism and other addiction related traits [16], and 96 of

these genes were added from a recent study of addiction [17].

An additional 424 genes were nominated based on behavioral

genetic analysis of 255 measures of addiction related phenotypes

obtained by the Tennessee Mouse Genome Consortium in the

recently expanded panel of over 60 BXD recombinant inbred

mouse lines (Chesler and colleagues, submitted). Because we are

interested in identifying addiction associated pathway members

that are polymorphic in humans, but not necessarily polymorphic

in mice, our approach identified both candidate genes for mouse

phenotypic variation, and biomolecular correlates of the mouse

phenotypes. Each gene was chosen because it either resided in a

significant or suggestive QTL interval or was a gene expression

correlate of multiple addiction-related phenotypes. The criteria

used to place genes on the list included correlations with p,.0001,

and QTLs, with genome-wide permutation p,.05 or p,.33, the

conventional thresholds for significant and suggestive loci.

Convergence of evidence of these effects in multiple addiction

assays was the criteria used for list membership. Mouse genes were

then mapped to human genes via the HomoloGene database

(http://www.ncbi.nlm.nih.gov/sites/entrez?db = homologene).

Supplementing SNP Microarrays
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To explore genetic variation in this combined set of 910 human

genes, we created a general purpose genome-wide SNP relational

database. The foundation for this database was Build 128 of

dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP), which was

our source of physical mapping data and SNP/gene functional

properties. We then examined the SNP coverage of these genes as

provided by seven commercial microarrays: the Illumina Human-

Hap300 Duo, HumanHap550, HumanHap650Y and Human1M

(http://www.illumina.com), and the Affymetrix Genome-Wide

Human SNP Array 5.0 and 6.0 (http://www.affymetrix.com). To

assess genomic coverage of common SNPs by these microarrays,

we used genotype data for four populations from the International

HapMap Project, Public Release 23a (http://www.hapmap.org):

African (Yoruba people of Ibidan, Nigeria – YRI), Chinese

(Beijing – CHB), European-Americans (CEPH – CEU), and

Japanese (Japan – JPT). To estimate LD, we used the program

HaploView (version 4.0, http://www.broad.mit.edu/mpg/haplo-

view) [18] to estimate r2 for all SNPs within 500 kb of each other.

The commonly used condition r2$0.8 was used to assess whether

a SNP is tagged through LD in a given population by a given SNP

microarray. General database management was done with a

combination of SAS [19] and Perl [20].

To provide a mechanism for prioritizing SNPs when supple-

menting SNP microarrays for addiction, we used the genomic

information network (GIN) technique introduced by Saccone and

colleagues [4]. The GIN method assigns each SNP a numeric

prioritization score indicating the biological relevance for

addiction: the higher the score, the greater the priority. Figure

S3 shows the network model we used for addiction, which is a

modification of the nicotine dependence model used by Saccone

and colleagues. The score incorporates a number of factors,

including SNP/gene functional properties (such as coding and

promoter regions), and evolutionary conserved regions (ECRs,

provided by ECRbase [21], http://ecrbase.dcode.org). The

original GIN method introduced by Saccone and colleagues

incorporated LD into the prioritization score through the use of

LD proxies. This is more appropriate when prioritizing SNPs for

replication after an initial GWAS. In our current implementation,

where we are selecting SNPs to supplement arrays for the

discovery phase of a GWAS, we have eliminated the LD

component in order to avoid redundancy among the selected

SNPs.

The scoring method is identical to Saccone and colleagues [4]

for the gene and ECR nodes. The ‘‘Addiction Systems’’ node adds

1 to the score for any of the 486 genes from our expert nomination

process. The score for the ‘‘Mouse QTL Mapping’’ node is

min(N/6,1), where N is the number of phenotypes identified for a

gene using the systems genetic methods. This means that the score

is 1 for all genes where N is greater than 6, which corresponds to

the top 5% of QTL mapping results. The score is scaled down

linearly when N is less than 6. Note that this particular GIN model

combines information from the expert nomination process and the

mouse systems genetics data in the sense that SNPs in the 486

expert nominated genes, the determination of which did not

involve the mouse data, would receive an increased score if there

was additional evidence from the mouse data of relevance to

addiction.

Supporting Information

Table S1 The coverage of genomic regions biologically relevant

to addiction in four commercial SNP microarrays. The table is

divided into direct coverage, the percentage of common SNPs

actually on the array, and tagged coverage, the percentage of

common SNPs tagged by an array through LD at r2$0.8 in the

specified HapMap population (for simplicity, we used only two

populations). We explore how coverage varies with biological

relevance by considering SNPs with a GIN prioritization score

greater than a given threshold: the larger the score, the greater the

biological relevance. For direct coverage, common SNPs must

have a MAF of at least 5% in one of the HapMap populations. For

tagged coverage, SNPs must satisfy this condition in the specified

population.

Found at: doi:10.1371/journal.pone.0005225.s001 (0.06 MB

DOC)

Table S2 Results of the systems genetics study to identify mouse

genes related to addiction. For each trait the table shows the

overall number of genes identified by QTL and gene expression

analysis. For our analysis of SNP microarray coverage we used the

top 5% from the mouse systems genetics project ranked by the

number of phenotypes linked to each gene. The third column

shows the number of genes from the top 5% identified for each

trait.

Found at: doi:10.1371/journal.pone.0005225.s002 (0.06 MB

DOC)

Figure S1 The number of genes biologically relevant to

addiction that require varying amounts supplementary coverage

for the Illumina 610 Quad microarray. Here we consider our

primary set of 910 genes. The horizontal axis shows the

percentage of SNPs in the gene not tagged by the array in the

corresponding population. For example, in the African population,

there are 35 genes (3.97%) where at least 90% of the SNPs in those

genes are not tagged by this array with r2$0.8 (the rightmost bar

in the histogram).

Found at: doi:10.1371/journal.pone.0005225.s003 (0.12 MB

DOC)

Figure S2 The distribution of the prioritization scores S from

the genomic information network (GIN) for addiction. We

considered all known SNPs using dbSNP build 128. The score is

a cumulative measure of biological relevance based on several

factors: our expert nomination process for genes related to

addiction, SNP/gene functional properties, human/mouse evolu-

tionary conservation, and mouse QTL mapping methods. For

example, SNPs with a score of 0 are not in genes, and are not in

LD with a gene or human/mouse evolutionary conserved region

with 500 Kb. SNPs in genes have a score of at least 1. The score

increases if the gene is biologically relevant to addiction, and

increases further depending on the number of mouse QTLs for

that gene, and also the functional properties of SNP, such being

nonsynonymous or being in a promoter region.

Found at: doi:10.1371/journal.pone.0005225.s004 (0.05 MB

DOC)

Figure S3 The genomic information network (GIN) model for

addiction. The network represents the process of determining a

numeric prioritization score for a SNP. The scores are a

cumulative measure of biological relevance using SNP/gene

functional properties (the Gene node), evolutionary conserved

regions (the ECR node), genes biologically relevant to addiction

(the Addiction Systems node), and mouse QTL mapping results.

The overall GIN prioritization scores can be used to prioritize

SNPs when supplementing commercial microarrays for addiction.

Found at: doi:10.1371/journal.pone.0005225.s005 (0.05 MB

DOC)

File S1 This workbook contains two sheets: (1) an annotated

sheet with the primary set of 910 genes used for analysis (2) a list of

column descriptions
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Found at: doi:10.1371/journal.pone.0005225.s006 (0.95 MB

XLS)

File S2 This workbook contains two sheets: (1) an annotated

sheet with the top 5,000 SNPs ranked by prioritization score (2) a

list of column descriptions

Found at: doi:10.1371/journal.pone.0005225.s007 (3.76 MB

XLS)
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