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Abstract

High intraindividual performance variability is one of the most robust findings to emerge in cognitive-experimental research
of attention deficit hyperactivity disorder (ADHD). Evidences from studies incorporating structural or functional human brain
mapping methods indicate that this increased intraindividual variability is not simply a sequel of general brain dysfunction,
but is likely related to the functioning of neural circuits that engage the prefrontal cortex, particularly the dorsolateral areas
(dlPFC). In order to examine further the anatomical and pharmacological substrate responsible for this high intraindividual
variability disorder, we injected GABAA antagonist (bicuculline) or GABAA agonist (muscimol) in the dlPFC of monkeys
performing a reflexive oculomotor task. Here we show that, whereas GABAA agonist injection induced no or minimal
impairments, injection of GABAA antagonist dramatically increased the intraindividual variability of saccade response time
and of saccade spatial accuracy (amplitude and direction). Overall, this study demonstrates that the balance between
excitatory/inhibitory activities in the dlPFC is fragile but crucial, since local micro-injection of GABAA antagonist can induce
marked behavioural effects. It also reveals that higher cognitive areas such as the dlPFC are markedly capable to influence
the productions and metrics of reflexive movements. Altogether, this study provides promising perspectives for the
development of new therapeutic strategies for the treatment of diseases in which high intravariability disorders are a
prominent feature.

Citation: Pouget P, Wattiez N, Rivaud-Péchoux S, Gaymard B (2009) A Fragile Balance: Perturbation of GABA Mediated Circuit in Prefrontal Cortex Generates High
Intraindividual Performance Variability. PLoS ONE 4(4): e5208. doi:10.1371/journal.pone.0005208

Editor: Georges Chapouthier, L’université Pierre et Marie Curie, France
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Introduction

Significant and reliable differences in the speed and the

variability of responses have been documented between ADHD

and typically developing children (TDC) across a wide variety of

neuropsychological tasks [1,2]. Increased variability, that is

hypothesized to reflect underlying unstable attentional resources,

is seen in tasks requiring continual responses to rapid stimuli as

well as basic reaction time (RT) tasks [3]. Children with ADHD

display are often found to respond more slowly and less accurately

than the typically developing peers. However and importantly,

response variability correlates more strongly and reliably with

ratings of ADHD symptoms than commission errors or other

outcome measures [4]. Evidences from studies incorporating

structural or functional human brain mapping methods indicate

that this intraindividual variability may not simply be a sequel of

general brain dysfunction, but may likely be related to the

functioning of neural circuits that, among other brain areas,

engage the prefrontal cortex, particularly the dorsolateral areas

(dlPFC) [5,6–14]. In order to examine further the anatomical and

pharmacological substrate of this high intraindividual variability

disorder, we injected a GABAA antagonist (bicuculline) or a

GABAA agonist (muscimol) in the dlPFC of monkeys performing a

reflexive oculomotor task (see supplementary information). Here,

we show that specific and focal perturbation of GABA-mediated

circuit in the dlPFC is capable to generate high intraindividual

performance variability.

Results

As shown in Figure 1, in a representative injected site within the

dlPFC, the variability of simple RTs dramatically increased after

GABAA antagonist injection (Figure 1A), but not after GABAA

agonist injection (Figure 1B). This result was confirmed across all

injected sites (100%; 15/15 and 11/11sites; respectively 9 and 6

for monkey A and 6 and 5 for monkey B). Statistically and

compared to pre-injection periods, GABAA antagonist but not

GABAA agonist injections significantly increased RT variability

(Figure 2A and 2B) (U(15,11) = 152, p,0.001; and U(15,11) = 11,

p.0.05). Similar effects were observed when complete control

experiments or saline injections were compared to GABAA

injections (see Text S1). This effect was bilateral in both monkeys

(see Figure S2 and Text S1). Injection of GABAA antagonist did

also affect important metric properties of the movements, since

variability of both saccade gain and direction were markedly

affected (see Text S1 and Figure S3, S4). Specificity of dlPFC
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perturbation was further tested in a third animal with a series of

injections in the supplementary eye fields and Pre-SMA (Figure

S6). For both SEF and Pre-SMA, the variability in response times

did not significantly vary following GABAA agonist or antagonist

(p&0.5).

Two methods were used to further examine the sequences of

collected RTs. First, distinct serial correlations of RTs were

calculated for each experimental block of trials (preceding or

following the micro-injection of GABAA antagonist, GABAA

agonist or saline). The correlations were then averaged across

sessions and monkeys. Figure 3 shows the average serial

correlations obtained for GABAA antagonist, GABAA agonist

and saline injections at lags of up to 15 trials. Across monkeys and

injection sites, the serial correlations obtained after GABAA

antagonist injections is lower than GABAA agonist injections at

lags up to 6 trials (U(15,11) = 336, p = .03 ). These results are

consistent with the noticeable noise observed following GABAA

antagonist injection as shown in Figure 1.

Then, a series of Lomb-Scargle periodograms were calculated

for the different subsequences of trials following the injections. The

resultant power spectra were averaged across monkeys and

sessions. Similar to what has been reported previously in the

literature, the power of RTs oscillations following injection of

GABAA agonist is centered in the lowest part of frequencies

Figure 1. Response time sequences. (A) Response time sequences
in simple pro-saccade task following GABAA antagonist (bicuculline)
injection. These sequences were taken from 4 consecutive blocks of
trials for monkey A. (B) Same convention as A when GABAA agonist was
injected in the same site. Note the marked increased scatter of both
parameters after bicuculline injection, with interleaved normal and
markedly impaired values. Each dot corresponds to a saccade. Empty
dots: pre-injection trials. Filled dots: post-injection trials.
doi:10.1371/journal.pone.0005208.g001

Figure 2. Comparison of GABAA antagonist (bicuculline) and
GABAA agonist (muscimol) injections on response times
variability (ms). Note the marked effect of GABAA agonist injections
and the null effect of GABAA agonist on the variability of simple
response times.
doi:10.1371/journal.pone.0005208.g002

Figure 3. Serial correlations between response times (RTs).
Average of correlations for 16 sites of monkeys A and B. The different
correlations estimated from sequences preceding (thin line) or
following injections (thick line) of GABAA agonist (blue line) and
antagonist (orange line) are plotted separately. The correlations
between RTs and past RTs are presented at lags up to 15 trials.
doi:10.1371/journal.pone.0005208.g003
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spectrum (Figure 4) c. In contrast, the power of RTs oscillations

following the GABAA antagonist injections are more similar to

white noise power spectrum traduced by an overall increase the

power spectrum distribution (Figure 4). Again, these results are

consistent with the noticeable noise and the smaller lag observed in

serial correlations for GABAA antagonist sequences as shown in

Figures 1 and 3 (see also Figure S5). Functionally, the presence of

white noise within the sequences of RTs following GABAA

antagonist injections is also consistent with the view that these

sequences were generated by a more unstable and more chaotic

process in which short or long term memory are less or not

expressed.

Discussion

It is well established that simply instructing human or non-

human primate subjects to focus attention is not sufficient to

prevent them from distractibility [1,2]. In the primate brain, the

dlPFC is a frontal cortical region known to be engaged in these

attentional, memory and high level executive functions [15,16].

Our results show here that focal pharmacological perturbations of

the dlPFC are also capable to impair a basic motor task with a low

cognitive load [15–17]. These results are important for at least two

reasons. First, they indicate that the classical boundaries

delimitating the highest cognitive processes and the levels of

motor encoding stages is less tight than previously thought.

Second, these results open a novel route to explore long-term

pharmacological treatments for the numerous patients suffering

from attentional disorders.

In human, recent studies comparing TDC with ADHD

children has shown increased of intraindividual variability at all

parts of the spectrum of RTs, even in tasks with the lowest

cognitive loads [1,2,10]. These measures of variability appeared

to be so robust that intraindividual variability in RTs is now

viewed as a valid endophenotype with the potential ability to

index genetic vulnerability to ADHD reflecting attentional

lapses on some but not all responses [2]. Before these recent

findings, poorer performances in neuropsychological tasks of

ADHD children were typically interpreted as evidence for high

level executive function deficits. This interpretation was

partially supported by the fact that ADHD children produce

on average slower and less accurate responses than TDC.

However, it has subsequently been shown that intraindividual

variability of these RT sequences often correlates better with the

behavioural symptoms of ADHD than the mean values.

Consistent with the possibility that the dlPFC is implicated in

the pathology of ADHD, we show here that minimal local

micro-injections of GABAA antagonist but not GABAA agonist

in the dlPFC exert a profound effect on intraindividual

variability during sequences of a simple response task. This

variability was observed in the RTs as well as the direction and

the amplitude of the movement.

In our study, only Bicuculline (GABAA antagonist) affected the

monkey’s behavior. This result may be considered as circum-

stantial to our simple response task but is not trivial. In V1,

micro-injection of GABAA antagonist (bicuculline) was found to

exert a much weaker effect on neuronal responses compared to

GABAA agonist (muscimol) [18]. However, and importantly, it

was noticed that both administrations of GABAA antogonist and

GABAA agonist in visual cortex resulted in improved visual

function [19,20]. In other subcortical and cortical regions

implicated in visual target selection and saccade programming,

it has been shown that the application of GABAA (bicuculline)

greatly facilitates saccade production, whereas injection of

GABAA agonist (muscimol) inhibits saccade generation [18–

21]. The increased intrasubject variability observed in the

present study appears therefore to be specifically related to

dlPFC dysfunction. Altogether these results let us speculate that,

rather than the absolute activity of the GABA-mediated circuits

in dlPFC, what might be more crucial to the behavioural

expression depends on the fragile balance between activation or

inhibition of the GABA-mediated circuits. Depending on the

task, on the environmental constraints and/or the level of

activity of other GABAergic circuits, a modest variation can lead

to dramatic behavioural changes. In our experiment, using a

simple saccadic reflexive task, a GABAA antagonist action

appeared to be the solely route to affect the balance and the

subsequent behaviour.

The reaction time variability is one of the strongest findings

that recently emerge in cognitive-experimental research on

ADHD. However, it is important to notice that the symptoms of

ADHD are heterogeneous and often accompanied by multiple

comorbid psychiatric disorders. If our finding among others offer

a new route for potential pharmacotherapies capable to

influence the activity of GABAA receptors, further researches

would be needed in order to understand better the principles and

rules that govern the variations of the most simple of our

behavioural responses.

Materials and Methods

Two adult male green monkeys (Caercopitheca aethiops) were

used. The maintenance of the monkeys, all surgical procedures

and the experimental protocols were carried out in strict

accordance with the National Institutes of Health (NIH)

guidelines (1996) and the recommendations of the EEC (86/

609) and the French National Committee (87/848). Before

training, each monkey underwent a surgical procedure for the

implantation of a scleral search coil on each eye and an acrylic

head holder. At the end of the training period, a recording

chamber was implanted above the principal sulcus (PS), on each

side. Heart rate and body temperature were monitored during

Figure 4. Log–log plot of average Lomb–Scargill power
spectrum estimates, for response times sequences following
GABAA agonist (blue line) and GABAA agonist (orange line)
injections. Frequency f is cycles-per-block.
doi:10.1371/journal.pone.0005208.g004
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surgery. Antibiotics and analgesic were given during the 10

following days.

Behavioural tasks
Monkeys were trained to look at a central green fixation

stimulus for 700–1,200 msec. After a 200 ms blank period (gap), a

2 deg62 deg green target appeared 16 degrees from the fixation

target at one of six possible radial locations (0u, 45u, 135u, 180u,
225u, or 315u), during 1,000 ms. After the saccade, the monkey

received a reward if the saccade fell within a 5u65u window

centered on the target. Failure to enter a 3u63u window around

the fixation stimulus or to trigger a saccade within 2000 ms after

target onset cancelled the trial. Each task consisted in blocks of 24

trials each in which each radial location was presented semi-

randomly. Eye movements were recorded with the search coil

technique, as described previously [10].

Localization of the principal sulcus
The Figure S1 shows the injected sites. The PS was localized

by electrophysiological recordings performed with tungsten

microelectrodes (FHC, 8–9 MV at 1 kHz). Electrical stimula-

tion (80 ms of biphasic pulses at 350 Hz, current up to 150 mA)

was used to delineate the frontal eye field and confirmed that

no saccade could be elicited from the posterior sites of this

area.

Localization of SEF and pre-SMA. In a third control case,

injections were made in the SEF and in the pre-SMA. The SEF

and pre-SMA were classically localized by electrophysiological

recordings performed with tungsten microelectrodes (FHC, 8–

9 MV measured at 1 kHz). Electrical stimulation (80 ms of

biphasic pulses at 350 Hz, current up to 150 mA) was used to

delineate SEF and confirmed by elicitation of saccade with current

as low as 50 mA. The pre-SMA was delineated centro-caudal from

the posterior sites of SEF area and rostral to the orofacial region of

the SMA.

Micro-injection procedure
Bicuculline, a GABAA antagonist, or muscimol (Sigma), a

GABAA agonist, were injected through a 30-gauge stainless steel

cannula lowered into the brain with a transdural guide tube. Once

the tip of the cannula was at the desired level, 2.5 ml of bicuculline

(5 mg/ml) or 4 ml of muscimol (5 mg/ml) were injected with a 10 ml

Hamilton syringe during 16 minutes. In monkey A, 10 sites were

injected with bicuculline, four of them being injected with

muscimol. In monkey B, bicuculline was injected at 6 sites, all

these sites being also injected with muscimol.

Data analysis
Saccades were identified offline and controlled visually. In

each experiment, we analyzed primary saccade latency, gain

and direction. Saccade gain was defined as the ratio of primary

saccade amplitude and target eccentricity. Saccade direction

was determined in degrees (positive values: from 0u to 180u
counterclockwise, negative values: from 0u to 180u clockwise).

For each saccade, we determined its directional accuracy by

calculating a directional error in degrees. Thus, a +5u
directional error corresponds to a saccade with a slightly

counterclockwise deviated direction. The directional error was

obtained by subtracting saccade direction from target direction,

i.e. the ideal vector that would have been required to acquire

the target.

Statistical analyses
Differences between groups were assessed using the rank sum

test, also referred as Mann-Whitney test (Matlab2008b, Math-

works). This test was used so that the normality of the populations

was not assumed. Level of significance was set to p = 0.05.

Correlations were calculated using Spearman rank order test.

Supporting Information

Text S1

Found at: doi:10.1371/journal.pone.0005208.s001 (0.02 MB

DOC)

Figure S1 Injection sites. (A) Injection sites in the region of dlPFC

for monkey A. Orange dots represent sites at which GABAA

antagonist (bicuculline) was injected. Blue circled dot represent sites

at which GABAA agonist (muscimol) was injected. PS: principal

sulcus. AS: arcuate sulcus. (B) Same conventions for monkey B.

Found at: doi:10.1371/journal.pone.0005208.s002 (0.65 MB

DOC)

Figure S2 Variability of response time. (A) Variability of

response times as function of experimental session types for

monkey A When the eye movement is produced ipsilaterally (full

line box) or contralaterally (dotted line box) to the injection site.

Blue circled dots represent sites at which both bicuculline and

muscimol were injected. (B) Same conventions for monkey B.

Found at: doi:10.1371/journal.pone.0005208.s003 (0.37 MB

DOC)

Figure S3 Variability of saccade amplitude gain as function of

experimental and control sessions types. Grey background areas

correspond to pre-injection sessions; white background areas to

post-injection sessions.

Found at: doi:10.1371/journal.pone.0005208.s004 (0.26 MB

DOC)

Figure S4 Variability of relative saccade direction as a function

of the experimental and control session type. Grey background

areas correspond to pre-injection sessions; white background areas

to post-injection sessions.

Found at: doi:10.1371/journal.pone.0005208.s005 (0.26 MB

DOC)

Figure S5 Log-log plot. (A) Log-log plot of average Lomb-

Scargill power spectrum estimates, for response times sequences

following GABAA agonist (thick orange line) and GABAA agonist

(thin blue line) injections for Monkey A. Frequency f is cycles-per-

block. (B) Same convention for monkey B.

Found at: doi:10.1371/journal.pone.0005208.s006 (0.91 MB

DOC)

Figure S6 Variability of response time. (A) Variability of

response times as function of experimental session types for

monkey C after injection in the right SEF. When the eye

movement is produced ipsilaterally (full line box) or contralaterally

(dotted line box) to the injection site. (B) same convention as A

after injection in the left SEF. (C) same convention as A and B

after injection in the Pre-SMA.

Found at: doi:10.1371/journal.pone.0005208.s007 (0.39 MB

DOC)
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