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Abstract

The liver stage of Plasmodium’s life cycle is the first, obligatory step in malaria infection. Decreasing the hepatic burden of
Plasmodium infection decreases the severity of disease and constitutes a promising strategy for malaria prophylaxis. The
efficacy of the gamma-secretase and signal peptide peptidase inhibitor LY411,575 in targeting Plasmodium liver stages was
evaluated both in human hepatoma cell lines and in mouse primary hepatocytes. LY411,575 was found to prevent
Plasmodium’s normal development in the liver, with an IC50 of approximately 80 nM, without affecting hepatocyte invasion
by the parasite. In vivo results with a rodent model of malaria showed that LY411,575 decreases the parasite load in the liver
and increases by 55% the resistance of mice to cerebral malaria, one of the most severe malaria-associated syndromes. Our
data show that LY411,575 does not exert its effect via the Notch signaling pathway suggesting that it may interfere with
Plasmodium development through an inhibition of the parasite’s signal peptide peptidase. We therefore propose that
selective signal peptide peptidase inhibitors could be potentially used for preventive treatment of malaria in humans.
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Introduction

Malaria is a devastating parasitic disease accounting for 1 to 2

million deaths per year, mostly among children in Sub-Saharan

Africa, Asia, Central and South America. During the last two

decades, the incidence of malaria has been increasing, largely due

to an emergence of parasite variants resistant to the two most

widely used drugs, chloroquine and sulphadoxine/pyrimethamine.

This fact, taken together with the largely unsuccessful attempts for

antimalarial vaccination, makes the development of new drugs

against this disease critically important [1].

Malaria is caused by protozoan parasites from the Plasmodium

genus. Plasmodium sporozoites are transmitted to the mammalian

host by a mosquito bite and transported with the blood stream to

the liver. Once in the liver, the parasites cross the sinusoidal wall,

presumably through Kupffer cells, and migrate through several

hepatocytes before infecting a final cell, which they enter with

formation of a parasitophorous vacuole [2–4]. Within the vacuole,

the sporozoites develop and produce thousands of merozoites,

which are released into the bloodstream and infect erythrocytes

[5,6]. The liver stage of the disease is clinically silent while all

pathological manifestations develop during the blood stage [7,8].

All currently used antimalarial agents, with the exception of

primaquine, target blood stage parasites. Drugs against liver stage

malaria would block the development of the parasites and prevent

pathology. It is therefore crucial to develop novel agents against

this stage of infection.

One of the emerging strategies for treatment of malaria is the

use of enzymatic inhibitors. A number of enzymes essential for

parasite metabolism have been recognized as attractive targets for

novel drug development. Inhibitors of the plasmepsin family of

aspartyl proteases are already established as potential agents

against blood stage malaria through extensive data generated in

cell culture and mouse models [9–11]. Inhibitors targeting the

falcipains, a family of P. falciparum cysteine proteases involved in

hemoglobin degradation and erythrocyte invasion, have demon-

strated potent antimalarial effects and their testing and optimiza-

tion as antimalarials is under way (reviewed in [12]). Additionally,

HIV protease inhibitors already in clinical use were also shown to

inhibit growth of P. falciparum in culture P. berghei in mice [13,14].

Here we show that the gamma-secretase and signal peptide

peptidase (SPP) inhibitor LY411,575, but not the selective gamma-

secretase inhibitor (GSI) DAPT, impairs development of P. berghei

in vitro in hepatoma cells as well as in vivo in mouse liver. These data

indicate that Plasmodium SPP is a potential therapeutic target for

malaria, and provide rationale for development of selective

PLoS ONE | www.plosone.org 1 April 2009 | Volume 4 | Issue 4 | e5078



Plasmodium SPP inhibitors, perhaps based on the LY411,575

scaffold as novel treatments for malaria.

Results

LY411,575 reduces the load of P. berghei ANKA in hepatic
cells in a dose-dependent manner

In order to measure the influence of LY411,575 on P. berghei

development monolayers of human hepatoma Huh7 cells cultured

in 24-well tissue culture plates, were treated with concentrations of

the inhibitor ranging from 100 to 750 nM. Control cells were

incubated with medium contaning 0.01% DMSO. Cells were

infected with P. berghei ANKA sporozoites immediately after

addition of the inhibitor. Twenty-four h after infection cells were

either fixed with PFA and stained for P. berghei HSP70 or lysed in

RLT buffer (Qiagen RNeasy Micro Kit) and used for RNA

isolation. Infection was quantified by counting the number of

infected cells (exo-erythrocytic forms, EEFs) per well, by qRT-

PCR or by FACS. The inhibitor blocked the development of the

parasites in a dose-dependent manner. Concentrations as low as

100 nM reduced the number of EEF-containing cells, as detected

and counted by microscopy, by 45%. At concentrations above

500 nM no EEFs could be detected by microscopy (Fig. 1A). The

IC50 of LY411,575 calculated on the basis on infection

measurement by qRT-PCR (Fig. 1B) was ,80 nM.

The inhibitor did not only reduce the number of EEFs but also

their size (Fig. 1 C,D,E). After 48 h treatment with LY411,575 the

average size of the EEFs in cells treated with the drug was 5 to 6

times smaller than in control cells (Fig 1C,D). Furthermore, cells

treated with 250 nM LY411,575 and analyzed 30 h after

sporozoite addition by FACS showed a greatly reduced average

GFP fluorescence intensity per EEF, compared to controls (Fig 1E).

Since GFP in these parasites is expressed under the control of the

P. berghei house keeping gene (EF1a) promoter region, the results

are consistent with the presence of smaller and less developed

EEFs in the presence of LY411,575. In addition, the infection load

in mouse primary hepatocytes treated with the same amount of

LY411,575 and analyzed 48 h after sporozoite addition by qRT-

PCR was ,80% lower than that of control cells (Fig 1F), showing

that the compound inhibits infection ex vivo as well as in vitro.

LY411,575 acts on the early developmental stages of the
parasites but does not affect their entry in cells

Hepatocyte infection by Plasmodium may be conceptually

divided into two consecutive steps: hepatocyte invasion and

intracellular parasite development. In our in vitro infection model,

over 95% of the infective sporozoites have completed the

migration and invasion steps at 2 h after addition to the cells

[15]. The overall effect of LY411,575 on infection observed above

could be due to an interference of the drug with invasion of the

host cells by the sporozoites, with the subsequent parasite

development or with both these processes. The experimental

design used above could not allow us to distinguish between these

possibilities. To determine whether LY411,575 was affecting

sporozoite invasion, we treated cells with 100 to 500 nM of

LY411,575 1 h prior to and during the initial 2 h of infection with

GFP-expressing P. berghei sporozoites. Cells were then collected 2 h

after sporozoite addition and the infection level was analyzed by

FACS. The percentage of infected cells in the treated samples was

similar to that found in control cells, indicating that the compound

does not interfere with the invasion process (Fig. 2A). Thus, the

LY411,575-mediated decrease on infection depicted in Fig. 1

results solely from an interference of the drug with the intracellular

development of the parasite, an effect that is clearly visible when

infection was monitored 30 or 48 h after sporozoite addition (see

Fig. 1 C,D,E). To test the influence of LY411,575 on the different

stages of development of P. berghei ANKA Huh7 cells were treated

with LY411,575 for periods of 6 h and infection level was

measured by microscopy 24 h after sporozoite addition (Fig. 2B).

The observed decrease in the number of EEFs in the samples

treated during the initial period of infection clearly suggests that

LY411,575 affects the P. berghei growth during the early

developmental stages.

The effect of LY411,575 on Plasmodium development is
not due to an interference with the cellular Notch
signaling pathway

The effect of LY411,575 on parasite development could be due

to inhibition of the function of one or more of its known targets.

Well-established targets of this inhibitor are the cellular gamma-

secretase complex [16,17] (and, subsequently, the downstream

Notch signaling pathway) and the cellular signal peptide peptidase

(SPP) [18]. Importantly, LY411,575 was recently shown to

effectively block the activity of the P. falciparum SPP homologue

in in vitro activity assays [19]. Furthermore, our analysis of the

Plasmodium SPP homologous sequences listed in PlasmoDB showed

that all Plasmodium species, including P. berghei, contain a single SPP

homologue.

In order to distinguish whether the observed effect of

LY411,575 was exerted on the host cell or on the parasite, target

cells were treated during the time periods shown on Fig. 3A. As

can be seen on this figure, pretreatment of the cells with

LY411,575 was not sufficient to block parasite development.

The effect of the inhibitor was only detected when the compound

was present in the culture medium during the process of

development. We therefore concluded that the effect of the

inhibitor is most likely on the parasite itself and not due to

influence on cellular signaling through gamma-secretase or on

cellular SPP.

Additional evidence for the independence of the LY411,575

effect on Plasmodium development from the cellular Notch signaling

pathway was obtained by experiments with the gamma-secretase

inhibitor DAPT. DAPT was previously shown to specifically block

gamma-secretase but not SPP [18]. It is well established that 1 mM

DAPT is sufficient to completely block the activity of the gamma-

secretase in cellular assays [20]. Incubation of Huh7 cells with

10 mM DAPT for various periods did not affect the number of

cells containing EEFs detectable by microscopy (Fig. 3B). Ten mM

DAPT also had no effect on infection of primary hepatocytes by P.

berghei ANKA measured by qRT-PCR (Fig. 3C). When cells

treated with DAPT were analyzed by FACS at 2 h (Fig. 3D) and

30 h (Fig. 3E) after addition of GFP-expressing sporozoites, no

significant differences were observed in the percentage of GFP-

positive cells or in GFP intensity, respectively, relative to controls.

We therefore concluded that the Plasmodium growth inhibition

caused by LY411,575 is not due to inhibtion of host gamma-

secretase activity.

LY411,575 reduces development of P. berghei ANKA in
mouse livers

In order to analyze the in vivo effect of LY411,575, C57BL/6

mice were treated by intraperitoneal (i.p.) injection of the inhibitor

in doses ranging from 1 to 10 mg/kg body weight and infected

with 20000 P. berghei ANKA sporozoites. The mice received two

injections of 100 ml, at 2 h before infection and 24 h later. Control

animals were treated with an equivalent amount of DMSO. Forty

h after infection the animals were sacrificed, their livers were

Plasmodium SPP Inhibition
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collected and total parasite load in the livers was measured by

qRT-PCR (Fig. 4A). The results clearly show that treatment with

LY411,575 leads to a dose-dependent reduction in liver parasite

load. We therefore hypothesized that the reduced Plasmodium liver

load in LY411,575-treated mice might have a positive influence on

the further development of disease in these animals. To test this

hypothesis, C57BL/6 mice were treated with 10 mg/kg body

weight of the inhibitor, infected with 1000 P. berghei ANKA

Figure 1. LY411,575 decreases infection of hepatic cells by P. berghei ANKA sporozoites. (A, B) Dose-dependent effect of LY411,575 on
infection of Huh7 cells, measured by immunofluorescence microscopy (A) or qRT-PCR (B). Control cells were treated with an amount of DMSO
equivalent to that of the highest drug concentration and infection was measured 24 h after addition of 20000 P. berghei ANKA sporozoites.
Experiments were conducted in triplicates. Results are plotted as percentages of the mean value of the control samples (A) (*: p,0.02, **: p,0.01, ***:
p,0.001) or as parasite-specific 18S rRNA as measured by qRT PCR (B) (Black circles represent the mean of P. berghei ANKA18S rRNA expression in
each condition, n = 3). (C) Representative images of EEFs in Huh7 cells treated for 48 h with 100 nM LY411,575 and solvent-treated control cells. EEFs
were stained for P. berghei HSP70 (green) and nuclei were stained with DAPI (blue). (D) Size distribution of EEFs in Huh7 cells treated for 48 h with
100 nM LY411,575 and solvent-treated control cells. Pictures of 50 EEFs were taken from each coverslip and the size of the EEFs was measured using
the ImageJ software. (E) Representative lines of GFP intensity of Huh7 cells treated with 250 nM LY411,575 and solvent-treated control cells 30 h after
addition of 20000 GFP-expressing P. berghei ANKA sporozoites, analyzed by FACS. (F) Effect of LY411,575 on infection of mouse primary hepatocytes,
measured by qRT-PCR 48 h after addition of 25000 P. berghei ANKA sporozoites. Control cells were treated with an equivalent amount of DMSO.
Experiments were conducted in triplicates. Results are plotted as percentages of the mean value of the control samples. *: p,0.02.
doi:10.1371/journal.pone.0005078.g001
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sporozoites and disease progression was followed. The animals

received two injections of LY411,575, as previously described, and

were monitored daily for symptoms of CM and death. Blood

parasitemia (percentage of infected red blood cells) was measured

from day 5 after infection by FACS. LY411,575-treated mice

developed significantly lower levels of blood parasitemia when

compared to control animals, very evident during the days before

development of severe symptoms (Fig. 4B). The drug treatment

also influenced significantly the incidence of CM, with

LY411,575-treated mice displaying 55% increase in CM survival

when compared to control animals (Fig. 4C). To determine

whether the observed effect on CM was due to direct influence of

LY411,575 on development of P. berghei ANKA blood stages or

instead just due to the decreased caused in liver infection, C57BL/

6 mice were treated with 10 mg/kg body weight of the inhibitor,

infected with 56104 P. berghei-infected red blood cells (iRBCs) and

disease progression was followed. The animals received three i.p.

injections of 50 ml, at 2 h before infection with iRBC and at days 2

and day 4 after infection. Control animals were treated with the

equivalent amounts of DMSO. Mice were monitored daily for

symptoms of CM and death. Blood parasitemia was measured

from day 3 after infection by FACS. Treated mice displayed

slightly lower parasitemia levels (Fig. 4D). This small difference

was not sufficient to influence the development of CM with both

groups of mice showing similar survival curves (Fig. 4E).

Altogether these data suggest that LY411,575 alters the course

of the blood stage of infection by reducing significantly Plasmodium

liver stage development.

Discussion

Despite the attempts for its eradication, malaria is still among

the most deadly diseases in the world. During the last 20 to 30

years Plasmodium parasites, the causative agent of the disease, have

developed resistance to the major groups of antimalarial drugs

currently in use. Therefore new antimalarials with novel

mechanisms of action are urgently needed.

A few families of Plasmodium proteases have emerged during the

last couple of years as new potential targets for treatment of

malaria, the best characterized among these being the plasmepsins

and falcipains. Different classes of inhibitors of these proteases

have been developed that show promising results in both

Plasmodium culture and mouse models [9–12]. HIV protease

inhibitors currently in clinical use also show antimalarial activity

[13,14].

Here we report that LY411,575 reduces development of P.

berghei ANKA in human hepatoma cells, primary hepatocytes and

mouse livers. Though developed as a potent GSI, LY411,575 also

blocks the activity of all human SPP homologues and P. falciparum

SPP with reasonable potency [18,19]. LY411575 is not unique and

one of many compounds developed as potential therapeutic agents

for the treatment of Alzheimer’s disease (AD) that appear capable

of blocking GSI and SPP activity. Indeed, at least two GSIs are

currently being tested as in the clinic [21,22].

SPP, the prototypic member of the human SPP family of

aspartyl proteases catalyzes intramembrane proteolysis of some

signal peptides after they have been cleaved from a preprotein and

also of several viral preproteins [23–25]. SPPL2a and SPPL2b

were recently shown to promote intramembrane cleavage of TNF-

alpha in activated dendritic cells [26]. Little is known about the

functions of SPP homologues in other organisms but there is

increasing suggestive evidence that these molecules play critical

role in development in a number of species. Caenorhabditis elegans

deficient for the SPP homologue ce-imp2 shows a very severe

developmental phenotype [27]. In Drosophila, deficiency for

CG11840, one of the two SPP homologues present in this

organism, leads to death during larval stage due to problems

Figure 2. LY411,575 affects development, but not invasion, of
P. berghei parasites. (A) Effect of the incubation of Huh7 cells with
various amounts of LY411,575 on the percentage of GFP-positive cells
collected 2 h after addition of 20000 GFP-expressing P. berghei ANKA
sporozoites and analysed by FACS. Control cells were treated with an
amount of DMSO equivalent to that of the highest drug concentration.
Experiments were conducted in triplicates. Results are plotted as
percentages of the mean value of the control samples. (B) Effect of the
incubation of Huh7 cells with 100 nM LY411,575 during various 6 hour
intervals and for 24 h. Infection was measured by immunofluorescence
microscopy 24 h after addition of 20000 P. berghei ANKA sporozoites.
Control cells were treated with equivalent amounts of DMSO.
Experiments were conducted in triplicates. Results are plotted as
percentages of the mean value of the control samples. *: p,0.02,
**: p,0.01, ***: p,0.001.
doi:10.1371/journal.pone.0005078.g002
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during tracheal development [28]. In Danio rerio, knock down of

either SPP or SPPL3 homologues results in cell death in the

central nervous system; knock down of SPPL2b in the same

organism leads to caudal vein enlargement [29].

We hypothesized that the Plasmodium SPP homologue could be

required for development of the parasite in the host cell and

inhibitors of this protease could block the developmental process.

Consistent with previous studies [19] analysis of the SPP

homologous sequences present in PlasmoDB showed that a single

SPP-like protein is present in each of the Plasmodium species

including the rodent parasite P. berghei (acc. numbers PF14_0543,

PB001192.00.0 and PY06507 for P. falciparum, P. berghei and P.

yoelii, respectively). Moreover, relative expression profiles show

that P. yoelii and P. berghei SPP is equally expressed in both in liver

and blood stages (http://plasmodb.org/plasmo/ and our own

data not shown, respectively). As selective SPP inhibitors have not

been developed for in vivo use, we tested our hypothesis using

LY411,575, a compound developed as a gamma-secretase

inhibitor that also inhibits SPPs including P. falciparum SPP [19].

We could clearly show that LY411,575 efficiently blocked the

development of P. berghei ANKA in hepatic cells in a dose-

dependent manner with an IC50 of ,80 nM (Fig. 1). Our detailed

analysis of the LY411,575 effect on Plasmodium showed that the

inhibitor blocked the early stages of parasite development (Fig. 2B).

The effect of LY411,575 on Plasmodium development could be due

to inhibition of SPP activity but also potentially to an interference

with cellular host Notch signaling as a result of inhibition of the

cellular gamma-secretase complex. We excluded the latter

Figure 3. Plasmodium growth inhibition is not due to an interference with the cellular Notch signaling pathway. (A) Effect of the
incubation of Huh7 cells with 100 nM LY411,575 for different periods relative to sporozoite addition. Infection was measured by immunofluorescence
microscopy 48 h after addition of 20000 P. berghei ANKA sporozoites. Control cells were treated with an equivalent amount of DMSO. Experiments
were conducted in triplicates. Results are plotted as percentages of the mean value of the control samples. *: p,0.05. (B, C) Effect of 10 mM DAPT on
infection of Huh7 cells, measured by immunofluorescence microscopy (B) or qRT-PCR (C) 30 h after addition of 20000 P. berghei ANKA sporozoites.
Control cells were treated with an equivalent amount of DMSO. Experiments were conducted in triplicates. Results are plotted as percentages of the
mean value of the control samples. (D) Effect of the incubation of Huh7 cells with 10 mM DAPT on the percentage of GFP-positive cells collected 2 h
after addition of 20000 GFP-expressing P. berghei ANKA sporozoites and analysed by FACS. Control cells were treated with an amount of DMSO
equivalent to that of the highest drug concentration. Experiments were conducted in triplicates. Results are plotted as percentages of the mean value
of the control samples. (E) Representative lines of GFP intensity of Huh7 cells treated with 10 mM DAPT and solvent-treated control cells 30 h after
addition of 20000 GFP-expressing P. berghei ANKA sporozoites and analysed by FACS.
doi:10.1371/journal.pone.0005078.g003
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possibility by treating cells with the gamma-secretase specific

inhibitor DAPT, which had no effect on P. berghei ANKA

development (Fig. 3B, C, D, E). Furthermore, pretreatment of

cells with LY411,575 did not affect the development of the

parasites (Fig. 3A). The drug inhibited development only when

present throughout the process. These data seem to suggest that

the effect of LY411,575 on Plasmodium development is probably

due to an effect on the parasite itself and not on the host cell.

We could not detect any effect of LY411,575 on invasion of

hepatocytes by P. berghei sporozoites. This seems surprising

considering the recently published results from Li et al. [30],

which show that a SPP antibody generated by them blocks RBC

Figure 4. LY411,575 decreases liver P. berghei infection in vivo and increases CM survival. (A) Dose-dependent effect of LY411,575 on liver
parasite load, measured by qRT-PCR. Control mice were treated with an equivalent amount of DMSO and infection was measured on livers collected
40 h after injection of 20000 P. berghei ANKA sporozoites (n = 12 for each group). **: p,0.01, ***: p,0.001. (B) Effect of i.p. injection of 10 mg/kg
body weight LY411,575 on blood parasitemia of mice infected with 1000 P. berghei ANKA sporozoites. Control mice were treated with an equivalent
amount of DMSO and mice were monitored daily for parasite levels in the blood and disease symptoms. (n = 13 for each group). Parasitemias on each
assessed day are significantly different between the two experimental groups (p,0.001). (C) Survival curves of mice treated by i.p. injection of 10 mg/
kg body weight LY411,575 and solvent-treated, control mice, infected with 1000 P. berghei ANKA sporozoites. The shaded area represents the time-
window for death with CM symptoms. The two survival curves are significantly different (p,0.01). (D) Effect of i.p. injection of 10 mg/kg body weight
LY411,575 on blood parasitemia of C57BL/6 mice infected with 50000 iRBC. Control mice were treated with an equivalent amount of DMSO and mice
(n = 15 for each group) were monitored daily for parasite levels in the blood and disease symptoms. Parasitemias were not found to be significantly
different: p = 0,5375 (day 4); p = 0,0345 (day 5); p = 0,03065 (day 6); p = 0,1446 (day 7). (E) Survival curves of mice treated by i.p. injection of 10 mg/kg
body weight LY411,575 and solvent-treated, control mice, infected with 50000 iRBC sporozoites. The shaded area represents the time-window for
death with CM symptoms. The two survival curves are not significantly different (p = 0.4474).
doi:10.1371/journal.pone.0005078.g004
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invasion by P. falciparum in vitro. However, we consider that our

results are difficult to compare to that study because of the

differences in the systems used. Nevertheless, we can state that

doses of LY411,575 sufficient to partially or completely block P.

berghei development have no effect on invasion of hepatocytes by

the parasite. At the current stage of this study we cannot yet prove

that SPP is the only Plasmodium target responsible for the observed

LY411,575 effect. It is possible that the mechanism underlying the

effect of LY411,575 on parasite development is complex and

involves inhibition of more than one aspartyl protease. Further

experiments will be needed to clarify this issue.

Notably, LY411,575 also showed promising results against

Plasmodium liver stage development in mice treated with this

compound. LY411,575-treated C57BL/6 mice displayed a

decrease in Plasmodium liver load, which later manifested in lower

blood parasitemia levels. In addition, the drug treatment

significantly influenced the development of CM, with a 55%

higher mortality in the control group of animals compared to the

LY411,575-treated ones. The LY411,575 treatment scheme used

in this study provided only partial protection of mice against P.

berghei infection. Nevertheless, because the effect of the drug is

clearly dose-dependent in both cells and mice, we expect that

higher doses or longer treatment would lead to even greater

reduction in liver load and parasitemia and possibly to destruction

of all parasites by the drug in the liver. Notably, even such partial

decrease of liver load and blood parasitemia led to a significant

reduction of incidence of development of severe symptoms (CM) in

the treated group of animals. The effect of LY411,575 on the

development of P. berghei blood stages was much less pronounced.

However, the relatively small influence of LY411,575 on P. berghei

blood stages does not diminish the importance of our results.

Indeed, this may only reflect the availability of the drug in the liver

versus in circulation after i.p. administration of this specific dosage.

Nevertheless, we can conclude that LY411,575 is a potent

inhibitor of development of P. berghei in the liver.

For nearly a decade there has been a substantive effort to

develop GSIs which would reduce the production of the amyloid

b peptide that accumulates in the AD patient’s brain [31,32].

Although toxicity (largely due to inhibition of Notch signaling)

has constituted an obstacle to the clinical development of GSIs

for AD, one compound remains in a phase III human trial for

AD, and other compounds are being tested as anti-cancer agents.

In the latter case, the rationale is that several cancers have been

shown to be dependent on Notch signaling. Thus, a large array

of LY411,575-related and other non structurally related GSIs

already exists, many of which also inhibit SPP. A very promising

approach to the development novel anti-malarial agents would

be to leverage the GSI drug-discovery to find compounds that

are drug-like and inhibit SPP selectively or even more

preferentially Plasmodium SPP. Indeed, the fact that LY411,575

inhibits both SPP and GS limits the current study in terms of

efficacy. Higher doses, which might be more effective against

blood-stages, are not well tolerated due to GS toxicity related to

the GSI activity.

Materials and Methods

Mice, cells and parasites
Male C57BL/6 mice were bred and housed in the specific

pathogen free facilities of the Instituto Gulbenkian de Ciência

(IGC) according to the guidelines of the Animal Care Committee

of the IGC. All mice used were 6 to 8 weeks old.

Human hepatoma Huh7 cells (ATCC CCL-185) were cultured

in RPMI medium supplemented with 10% FCS, 1 mM glutamine,

1% non-essential aminoacids, 1% penicillin/streptomycin, 10 mM

Hepes buffer.

Green fluorescent protein (GFP)-expressing P. berghei ANKA

(parasite line 259cl2, which shows similar virulence to wild-type P.

berghei) [33] sporozoites were obtained from dissection of infected

Anopheles stephensi mosquito salivary glands at day 21–25 post-

infection, which were produced and maintained at IMM insectary.

Isolation of murine primary hepatocytes
Mouse primary hepatocytes were isolated from C57BL/6 mice

as previously described [34]. Briefly, cells were obtained by

perfusion of mouse liver lobules with liver perfusion and liver

digest medium (Gibco) at 37uC. Hepatocytes were then purified

using 1.12 g/ml, 1.08 g/ml and 1.06 g/ml Percoll gradients. Cells

were cultured in William’s E medium (Gibco) containing 4% FCS,

1% penicillin/streptomycin in 24-well plates coated with 0.2%

Gelatin in PBS.

LY411,575 and DAPT treatment and infection in vitro
LY411,575 was synthesized as previously described [35]. The

compound was reconstituted in DMSO to obtain a 10 mM stock

solution. DAPT (N-[N-(3,5-Difluorophenacetyl-L-alanyl)]-S-phe-

nylglycine t-Butyl Ester; gamma-secretase inhibitor IX) was

purchased from Calbiochem (Darmstadt, Germany) as a 25 mM

solution in DMSO.

Huh7 human hepatoma cells were treated with LY411,575 or

DAPT diluted in culture medium as described in the text. Control

cells were incubated with medium containing 0.01% or 0.04%

DMSO, respectively. Twenty thousand P. berghei ANKA sporozo-

ites were added to monolayers of 1.56105 Huh7 cells cultured on

glass coverslips or directly in 24-well tissue culture plates and

centrifuged for 5 min at 3000 rpm. Cells used for immunofluo-

rescence staining were fixed 24 or 48 h after infection and stained

for P. berghei HSP70. Infection was quantified by counting the

number of infected cells (exoerythrocytic forms, EEFs) per

coverslip. Huh 7 cells and primary hepatocytes used for qRT-

PCR were lysed in RLT buffer (Qiagen RNeasy Micro Kit) at 24

and 48 h after infection, respectively, and processed according to

manufacturer’s guidelines. Huh7 cells used for fluorescence

activated cell sorting (FACS) analysis were collected at 2 and

30 h after sporozoite infection.

LY411,575 treatment and infection in vivo
C57BL/6 mice were injected intraperitoneally (i.p.) with 1 to

10 mg/kg body weight (average body weight 20 mg) LY411,575

in 100 ml DMSO. Control animals were treated with the same

amount of DMSO. All mice received two injections, the first one

2 h before infection with P. berghei ANKA sporozoites and the

second one 24 h later. Mice were infected by intravenous (i.v.)

injection of 20000 (for parasite liver load measurement) or 1000

(for survival assessment) P. berghei ANKA sporozoites. Parasite load

in the liver was measured 40 h after infection by qRT PCR.

Mice monitored for survival after infected blood (iRBC)

challenge were injected i.p. with 10 mg/kg body weight

LY411,575 in 50 ml DMSO. Control animals were treated with

the same amount of DMSO. All mice received three injections, the

first one 2 h before infection with iRBC and the second and third

ones at day 2 and day 4 after infection, respectively. Mice were

infected by intraperitoneal injection of 50000 iRBC.

During survival experiments, mice were monitored every day

for disease symptoms and time of death. Parasitemias (percentage

of infected red blood cells) were measured daily by Flow

Cytometry on FACSCalibur.
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Immunofluorescence
Huh7 cells were fixed with 4% paraformaldehyde (PFA) in PBS

for 20 min and incubated in blocking buffer (3% BSA, 10% FCS,

100 mM glycine, 0.1% saponin in PBS) for 1 h followed by

incubation with monoclonal antibody 2E6 against P. berghei HSP70

[36] diluted in the same buffer. Cells were then washed with 0.1%

saponin in PBS and incubated with a secondary antibody diluted

in blocking buffer (Anti-Mouse Alexa488, Molecular Probes) for

30 min. Nuclei were stained with DAPI. Images were acquired

with a Leica DM5000B fluorescence microscope and processed

using Adobe Photoshop.

Infection quantification by qRT-PCR
For infection determination in vivo or ex vivo, total RNA was

isolated from livers or primary hepatocytes using Qiagen’s RNeasy

Mini or Micro kits, respectively, following the manufacturer’s

instructions. The assessment of liver parasite load in vivo, was

performed according to the method developed for P. yoelii

infections [37]. Livers were collected and homogenized in

denaturing solution (4 M guanidine thiocyanate, 25 mM sodium

citrate pH 7, 0.5% sarcosyl and 0.7% b-Mercaptoethanol in

DEPC-treated water) 40 h after sporozoite injection. Total RNA

was extracted using Qiagen’s RNeasy Mini kit. RNA for infection

measurements was converted into cDNA using Transcriptor First

Strand cDNA Synthesis kit from Roche. The qRT-PCR reactions

used Applied Biosystems’ Power SYBR Green PCR Master Mix

and were performed on an ABI Prism 7000 system (Applied

Biosystems). Amplification reactions were carried out in a

total reaction volume of 25 ml, containing 0.8 pmol/ml or

0.16 pmol/ml of PbA 18 S- or mouse Hypoxanthine Guanine

Phosphoribosyltransferase (HPRT) specific primers, respectively.

Relative amount of PbA mRNA was normalized against the

HPRT level in each sample. PbA 18 S- and mouse HPRT-specific

primer sequences were 59- AAG CAT TAA ATA AAG CGA

ATA CAT CCT TAC - 39 and 59 - GGA GAT TGG TTT

TGA CGT TTA TGT G - 39and 59 - TGC TCG AGA TGT

GAT GAA GG - 39 and 59 - TCC CCT GTT GAC TGG TCA

TT - 39, respectively.

Fluorescence Activated Cell Sorting (FACS) analysis
FACS analysis was performed to determine the percentage of

parasite-containing cells at 2 and 30 h after sporozoite addition as

described in [15]. Briefly, cells were washed with PBS, detached by

trypsin treatment and collected in 400 ul 10% FCS in PBS at the

selected time points after sporozoite addition. Cells were then

centrifuged at 0.1 rcf for 3 min at 4uC, resuspended in 150 ul 2%

FCS in PBS and analyzed on a Becton Dickinson FACScalibur.

Data acquisition and analysis were carried out using CELLQuest

(version 3.2.1fl1, Becton Dickinson) and FlowJo (version 6.3.4,

FlowJo) software.

Acknowledgments

The authors are extremely grateful to Domingos Henrique for valuable

discussions and for critically reviewing the manuscript.

Author Contributions

Conceived and designed the experiments: IP MMM. Performed the

experiments: IP SE MP. Analyzed the data: IP SE MP MMM.

Contributed reagents/materials/analysis tools: AF TG. Wrote the paper:

IP MP MMM.

References

1. Cunha-Rodrigues M, Prudencio M, Mota MM, Haas W (2006) Antimalarial
drugs - host targets (re)visited. Biotechnol J 1: 321–332.

2. Frevert U, Engelmann S, Zougbede S, Stange J, Ng B, et al. (2005) Intravital obser-

vation of Plasmodium berghei sporozoite infection of the liver. PLoS Biol 3: e192.
3. Mota MM, Pradel G, Vanderberg JP, Hafalla JC, Frevert U, et al. (2001)

Migration of Plasmodium sporozoites through cells before infection. Science
291: 141–144.

4. Mota MM, Rodriguez A (2002) Invasion of mammalian host cells by
Plasmodium sporozoites. Bioessays 24: 149–156.

5. Baer K, Klotz C, Kappe SH, Schnieder T, Frevert U (2007) Release of hepatic

Plasmodium yoelii merozoites into the pulmonary microvasculature. PLoS
Pathog 3: e171.

6. Sturm A, Amino R, van de Sand C, Regen T, Retzlaff S, et al. (2006)
Manipulation of host hepatocytes by the malaria parasite for delivery into liver

sinusoids. Science 313: 1287–1290.

7. Haldar K, Murphy SC, Milner DA, Taylor TE (2007) Malaria: mechanisms of
erythrocytic infection and pathological correlates of severe disease. Annu Rev

Pathol 2: 217–249.
8. Prudencio M, Rodriguez A, Mota MM (2006) The silent path to thousands of

merozoites: the Plasmodium liver stage. Nat Rev Microbiol 4: 849–856.
9. Bailly E, Jambou R, Savel J, Jaureguiberry G (1992) Plasmodium falciparum:

differential sensitivity in vitro to E-64 (cysteine protease inhibitor) and Pepstatin

A (aspartyl protease inhibitor). J Protozool 39: 593–599.
10. Ersmark K, Samuelsson B, Hallberg A (2006) Plasmepsins as potential targets for

new antimalarial therapy. Med Res Rev 26: 626–666.
11. Francis SE, Gluzman IY, Oksman A, Knickerbocker A, Mueller R, et al. (1994)

Molecular characterization and inhibition of a Plasmodium falciparum aspartic

hemoglobinase. Embo J 13: 306–317.
12. Rosenthal PJ, Sijwali PS, Singh A, Shenai BR (2002) Cysteine proteases of

malaria parasites: targets for chemotherapy. Curr Pharm Des 8: 1659–1672.
13. Andrews KT, Fairlie DP, Madala PK, Ray J, Wyatt DM, et al. (2006) Potencies

of human immunodeficiency virus protease inhibitors in vitro against
Plasmodium falciparum and in vivo against murine malaria. Antimicrob Agents

Chemother 50: 639–648.

14. Hobbs CV, Voza T, Coppi A, Kirmse B, Marsh K, et al. (2009) HIV protease
inhibitors inhibit the development of preerythrocytic-stage plasmodium

parasites. J Infect Dis 199: 134–141.
15. Prudencio M, Rodrigues CD, Ataide R, Mota MM (2008) Dissecting in vitro

host cell infection by Plasmodium sporozoites using flow cytometry. Cell

Microbiol 10: 218–224.

16. Fuwa H, Takahashi Y, Konno Y, Watanabe N, Miyashita H, et al. (2007)
Divergent synthesis of multifunctional molecular probes to elucidate the enzyme

specificity of dipeptidic gamma-secretase inhibitors. ACS Chem Biol 2: 408–418.

17. Seiffert D, Bradley JD, Rominger CM, Rominger DH, Yang F, et al. (2000)
Presenilin-1 and -2 are molecular targets for gamma-secretase inhibitors. J Biol

Chem 275: 34086–34091.
18. Weihofen A, Lemberg MK, Friedmann E, Rueeger H, Schmitz A, et al. (2003)

Targeting presenilin-type aspartic protease signal peptide peptidase with
gamma-secretase inhibitors. J Biol Chem 278: 16528–16533.

19. Nyborg AC, Ladd TB, Jansen K, Kukar T, Golde TE (2006) Intramembrane

proteolytic cleavage by human signal peptide peptidase like 3 and malaria signal
peptide peptidase. Faseb J 20: 1671–1679.

20. Dovey HF, John V, Anderson JP, Chen LZ, de Saint Andrieu P, et al. (2001)
Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in

brain. J Neurochem 76: 173–181.

21. Siemers E, Skinner M, Dean RA, Gonzales C, Satterwhite J, et al. (2005) Safety,
tolerability, and changes in amyloid beta concentrations after administration of a

gamma-secretase inhibitor in volunteers. Clin Neuropharmacol 28: 126–132.
22. Siemers ER, Quinn JF, Kaye J, Farlow MR, Porsteinsson A, et al. (2006) Effects

of a gamma-secretase inhibitor in a randomized study of patients with Alzheimer
disease. Neurology 66: 602–604.

23. Heimann M, Roman-Sosa G, Martoglio B, Thiel HJ, Rumenapf T (2006) Core

protein of pestiviruses is processed at the C terminus by signal peptide peptidase.
J Virol 80: 1915–1921.

24. McLauchlan J, Lemberg MK, Hope G, Martoglio B (2002) Intramembrane
proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets.

Embo J 21: 3980–3988.

25. Weihofen A, Binns K, Lemberg MK, Ashman K, Martoglio B (2002)
Identification of signal peptide peptidase, a presenilin-type aspartic protease.

Science 296: 2215–2218.
26. Friedmann E, Hauben E, Maylandt K, Schleeger S, Vreugde S, et al. (2006)

SPPL2a and SPPL2b promote intramembrane proteolysis of TNFalpha in
activated dendritic cells to trigger IL-12 production. Nat Cell Biol 8: 843–848.

27. Grigorenko AP, Moliaka YK, Soto MC, Mello CC, Rogaev EI (2004) The

Caenorhabditis elegans IMPAS gene, imp-2, is essential for development and is
functionally distinct from related presenilins. Proc Natl Acad Sci U S A 101:

14955–14960.
28. Casso DJ, Tanda S, Biehs B, Martoglio B, Kornberg TB (2005) Drosophila

signal peptide peptidase is an essential protease for larval development. Genetics

170: 139–148.

Plasmodium SPP Inhibition

PLoS ONE | www.plosone.org 8 April 2009 | Volume 4 | Issue 4 | e5078



29. Krawitz P, Haffner C, Fluhrer R, Steiner H, Schmid B, et al. (2005) Differential

localization and identification of a critical aspartate suggest non-redundant
proteolytic functions of the presenilin homologues SPPL2b and SPPL3. J Biol

Chem 280: 39515–39523.

30. Li X, Chen H, Oh SS, Chishti AH (2008) A Presenilin-like protease associated
with Plasmodium falciparum micronemes is involved in erythrocyte invasion.

Mol Biochem Parasitol 158: 22–31.
31. Golde TE (2003) Alzheimer disease therapy: can the amyloid cascade be halted?

J Clin Invest 111: 11–18.

32. Golde TE (2006) Disease modifying therapy for AD? J Neurochem 99: 689–707.
33. Franke-Fayard B, Trueman H, Ramesar J, Mendoza J, van der Keur M, et al.

(2004) A Plasmodium berghei reference line that constitutively expresses GFP at
a high level throughout the complete life cycle. Mol Biochem Parasitol 137:

23–33.

34. Goncalves LA, Vigario AM, Penha-Goncalves C (2007) Improved isolation of

murine hepatocytes for in vitro malaria liver stage studies. Malar J 6: 169.

35. Fauq AH, Simpson K, Maharvi GM, Golde T, Das P (2007) A multigram

chemical synthesis of the gamma-secretase inhibitor LY411575 and its

diastereoisomers. Bioorg Med Chem Lett 17: 6392–6395.

36. Tsuji M, Mattei D, Nussenzweig RS, Eichinger D, Zavala F (1994)

Demonstration of heat-shock protein 70 in the sporozoite stage of malaria

parasites. Parasitol Res 80: 16–21.

37. Bruna-Romero O, Hafalla JC, Gonzalez-Aseguinolaza G, Sano G, Tsuji M, et

al. (2001) Detection of malaria liver-stages in mice infected through the bite of a

single Anopheles mosquito using a highly sensitive real-time PCR. Int J Parasitol

31: 1499–1502.

Plasmodium SPP Inhibition

PLoS ONE | www.plosone.org 9 April 2009 | Volume 4 | Issue 4 | e5078


