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Abstract

Background: Reserves are the principal means to conserve forests and biodiversity, but the question of whether reserves
work is still debated. In the Amazon, fires are closely linked to deforestation, and thus can be used as a proxy for reserve
effectiveness in protecting forest cover. We ask whether reserves in the Brazilian Amazon provide effective protection
against deforestation and consequently fires, whether that protection is because of their location or their legal status, and
whether some reserve types are more effective than others.

Methodology/Principal Findings: Previous work has shown that most Amazonian fires occur close to roads and are more
frequent in El Niño years. We quantified these relationships for reserves and unprotected areas by examining satellite-
detected hot pixels regressed against road distance across the entire Brazilian Amazon and for a decade with 2 El Niño-
related droughts. Deforestation fires, as measured by hot pixels, declined exponentially with increasing distance from roads
in all areas. Fewer deforestation fires occurred within protected areas than outside and the difference between protected
and unprotected areas was greatest near roads. Thus, reserves were especially effective at preventing these fires where they
are known to be most likely to burn; but they did not provide absolute protection. Even within reserves, at a given distance
from roads, there were more deforestation fires in regions with high human impact than in those with low impact. The
effect of El Niño on deforestation fires was greatest outside of reserves and near roads. Indigenous reserves, limited-use
reserves, and fully protected reserves all had fewer fires than outside areas and did not appear to differ in their effectiveness.

Conclusions/Significance: Taking time, regional factors, and climate into account, our results show that reserves are an
effective tool for curbing destructive burning in the Amazon.
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Introduction

Tropical moist forests hold the majority of species and are

shrinking by more than 1 million km2/decade [1]. Reserves —

broadly defined — are the principal means to conserve these

forests and the biodiversity within them [2]. Do reserves actually

protect natural ecosystems and their biodiversity? This may not

have a simple answer, for there are many confounding factors.

Even if reserves do work, are they simply protected de facto by their

isolation or terrain, or de jure, because protected status does indeed

provide added benefit?

We accept that reserves may be in suboptimal places to protect

biodiversity [3], may not prevent hunting [4], and may be too

small to maintain viable populations of many species [1]. That

said, reserves that protect forest cover are a necessary, if not

sufficient, criterion for protecting biodiversity. Credible, global

assessments of reserve effectiveness are few [5]. Recently, we

showed that for the Amazon and Congo basins, (which retain large

areas of forests) and West Africa and the coastal forests of Brazil

(which do not), reserves retain substantial natural forest cover [6].

For the Amazon and the Congo, so do most areas outside of the

reserves.

More detailed regional studies suggest that reserves range in

effectiveness — from those that do not work at all [7,8] to those

that work well [9]. In the Brazilian Amazon (a legally defined

area), reserves have less deforestation [10] and fire [11] than do

unprotected areas. For this region, the answer, then, is apparently

that reserves do work. We will argue that these questions need a

more detailed analysis than is presently available.

Whether reserves work is a question of considerable importance,

regionally and internationally. A history of massive deforestation

linked to large-scale infrastructure projects (notably roads) in the

Brazilian Amazon, and government plans for more such projects,

has spawned debate about ways to avoid repeating past trends

[12–14]. Global concern about climate change and substantial

carbon released from forest cutting and burning has added

international impetus, including new funding mechanisms.

Recently, Brazilian president Luiz Inácio Lula da Silva, created

an international Amazon fund, which is hoped will raise up to 21

billion dollars, to allow countries, companies and non-govern-

mental organizations to help pay for conservation, sustainable

development, and scientific research in the Amazon [15]. The

plan to repave Brazil’s highway BR-319 from Manaus to Porto
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Velho, which would link the relatively intact central Amazon with

centers of deforestation in the south, is another pressing issue with

important implications for forest preservation. Reserve creation

around BR-319 is part of the ongoing discussion about how to

avoid massive land grabbing and deforestation that has accom-

panied other roads [16,17].

The Amazon, deforestation, and fires
In the Amazon, deforestation and fire are inextricably linked.

Satellite-detected ‘‘hot pixels’’ are a good proxy for deforestation

fires, and can thus effectively tell us whether reserves are

protecting forest cover. In addition to biodiversity concerns,

deforestation fires indicate that biomass has rapidly been released

as carbon to the atmosphere, another important measure of

reserve effectiveness. Our analyses concentrate on fires as a

measure of human impact and on the ability of reserves to mitigate

it.

Studies that have looked at fire in the Amazon [11,18–21] are

an important start. Nepstad et al. [21] did assert that reserves

inhibit deforestation and fires at their borders. However, they did

not examine the number or spatial arrangement of fires

throughout reserves. They used the ratio of fire density in 20 km

wide buffers inside and outside reserve borders to gauge protection

inside a reserve against disturbance just outside. Although these

methods indicate that fire stops at reserve borders, they tell us

nothing about what is going on inside of a reserve (if, for example,

a reserve has a road through it). They used a limited sample of

reserves, as they did not include state protected areas, and they

examined 4 km2 resolution GOES (Geostationary Operational

Environmental Satellites) hot pixels for 1998 only. Finally, because

Nepstad et al. [21] used only hot pixels detected at mid-day, they

included pasture/agricultural fires that take place on deforested

land. Nepstad et al. also did not explicitly consider distance from

road, region, any climatic factors, or year to year variation. This

and other studies (mentioned above) are generally geographically

or temporally restricted and none has explicitly looked at fire

patterns inside reserves.

We start by considering the factors that affect fire incidence.

Because there is large year-to-year variation in climate and in fires

[18], we examined fires over a decade, using remote-sensing

products that mainly register deforestation fires. To account for

the substantial gradient of rainfall and human impact [22] that

influences pressures on reserves across the Amazon, we designated

two distinct regions, which we examined separately. Because roads

are so important [11,20,23–25], we modeled deforestation fires

with increasing distance to roads across the entire area of reserves,

not just at their borders.

In short, we ask three key questions: (1) Do reserves actually

protect Amazonian forests from deforestation and consequently

fires? (2) Is protection de facto, a consequence of reserve location (in

remote places, for example), or de jure, because legal protections are

respected? (3) Are some reserve types more effective than others in

preventing deforestation fires? We recognize that there will be

confounding factors: (a) Given that severe droughts remove

moisture limitations and thus promote the spread of fires, do

different kinds of reserves offer varying levels of protection in El

Niño Southern Oscillation (ENSO) years? (b) Do reserves prevent

deforestation fires even when human access is possible through

road networks? (c) Finally, given these other factors, do the

answers vary from place to place across the Amazon?

The effects of roads and reserves
In the Amazon, roads are the major conduits for deforestation

and accompanying fires [12,23,25,26]. Because of the access they

provide, roads may cause deforestation to increase even in

neighboring roadless areas [12,24]. Disturbed or fragmented

forests near roads are vulnerable to both ‘‘leaked fires’’ used in

land management and to accidental fires resulting from increased

ignition sources [18]. Whatever the cause, the higher fuel loads

and an open canopy in a forest already subject to understory fire

greatly increase the chances for a hot deforestation fire [27], such

as those visible in satellite imagery.

Theoretically, reserves may halt fire because of restrictions on

land use (forests are less disturbed and fire is not used for

management) or because of restricted access (fewer roads and

fewer ignition sources). Different types of reserves in Brazil allow

different land uses [28]. Strictly protected parks allow no

habitation or clearing. Limited-use areas may allow selective

logging, extraction of forest products, agriculture, and even private

property within reserve boundaries. Indigenous people of many

languages, cultures, and values control indigenous lands and

sometimes protect them from logging, mining and illegal hunting

[29].

Whatever the mechanism, reserves clearly limit road building,

deforestation and fire in many highly affected areas [21,30].

However, reserves may have fewer deforestation fires because they

have fewer roads bisecting them then do adjacent unprotected

areas. Whether reserves that do have roads also prevent

deforestation and fire along those roads, and whether some

reserve types do this better than others, have not been examined.

In addition to reserve type, political and economic factors,

including road paving, infrastructure projects, and beef and soy

prices influence the likelihood of deforestation fires differently in

different regions [11,13]. Finally, drought may drive fire patterns

[31] regardless of a reserve’s status.

Regional and year-to-year differences in climate
Climate patterns produce different spatial and temporal

patterns of drought in different regions of the Amazon [19,22].

ENSO commonly causes drought in the tropics [32]. ENSO-

related droughts [22] and temperature changes [33] are strongest

in the northern Amazon; however, these areas are also protected

from fire by high background rainfall (up to 4000 mm annually)

[34] and remoteness (fewer roads and people result in fewer

ignitions) [19].

The leading edge of development in the Brazilian Amazon

forms an arc from the southwestern to the southeastern Amazon.

Here, seasonally dry forests (1500–2000 mm of rain annually) [34]

become vulnerable to fires when drought further lengthens the dry

season [22]. Both ENSO and the Atlantic Multidecadal Oscilla-

tion [35] can increase dry-season length in the southwest Amazon,

as occurred in both the 1997–1998 ENSO-related drought [36]

and the 2005 Amazon drought (which resulted in many fires) [37].

This area is more accessible from the populated south and is

conducive to farming and cattle ranching, increasing incentives to

clear land [22,38]. Fire used in agriculture results in more

potential ignitions [39]. Dry-season severity also increases fire

frequency [31], as ‘‘leaked’’ understory fires escape into drought-

stressed forests with higher fuel loads (from disturbed canopies or

dead organic matter) [19]. Deforestation fires, while probably

exacerbated by drought, are driven by policy and economic factors

[40]. Finally, drought exacerbates positive feedbacks in which fires

reduce rainfall and increase the chance of future fires [31]. Some

climate models predict increased warming and decreasing soil

water in the eastern Amazon over the next century [41]. Such

changes could greatly increase fire risk across huge areas of the

Amazon [19,31].

Reserves, Fires, in the Amazon
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Because processes affecting fire differ between these regions, we

divided the Amazon using relevant political and geographical

boundaries and analyzed forest areas in the two regions separately.

Materials and Methods

Data sources
We used 3 remotely-sensed data sources to track fires. The first

provided the most years of data. The others ran for fewer years,

detected more fires, and allowed us to test whether data source

affected our results.

We tracked fire patterns with monthly composites of nighttime

1-km2 resolution hot pixels from the European Space Agency’s

Ionia World Fire Atlas (WFA) [42]. The WFA provides the longest

running data set of global, active fire observations [43]. For 1996–

2002, hot pixels are from the Along Track Scanning Radiometer

(ATSR; ERS-2 satellite), and for 2003–2006, they are from the

Advanced Along Track Scanning Radiometer (AATSR; Envisat

satellite). The WFA sensors use 2 distinct temperature-threshold-

based algorithms to detect hot pixels. We used hot pixels detected

with the more sensitive Algorithm 2. It purports to detect a fire of

0.1 ha if it is hotter than 327uC. Because understory fires are

rarely detected by satellites, and savanna and agricultural fires

generally reach their hottest temperatures during the afternoon,

we can safely assume that these nighttime detections represent hot

deforestation fires. The overpass interval at the equator is 3 days

and geo-location errors generally average 2–3 km [43].

Detecting fire from space remains challenging and each sensor

has advantages and disadvantages. Detection algorithm, overpass

time and frequency, spatial resolution, land cover, and type of fire

all affect which fires are detected [20]. Stolle et al. [44] compared 8

different hot pixel data sets over the same area and time period. The

datasets largely detected different fires and they were not

complementary. Given these difficulties, we chose a long-running

dataset, which provides one systematic look at patterns of

deforestation fires over large spatial and temporal scales. To register

the greatest number of fires possible, while avoiding commission

errors, we used screened data from Mota et al. [43]. They removed

errors caused by hot surfaces, gas flares, volcanoes, and sensor

irregularities from Algorithm 2 of the WFA data. Omission errors

are still a cause for concern. The satellite passes at night, so short-

duration afternoon fires, such as burning pastures are not registered.

The WFA data pick up the nighttime remains of hot deforestation

fires, but miss fires burning beneath a forest canopy. Even if the

sensor registered all fires, the overpass interval of 3 days ensures that

many are missed. Because we use yearly composites, seasonal

variation in cloud cover (which may also prevent fire detection) is

not a major concern. The resulting data provide a systematic

sample, albeit an underestimate, of Amazon fires.

To confirm the general pattern of our results, we also analyzed

3-year data sets released by the Large-Scale Biosphere-Atmo-

sphere Experiment (LBA) in Amazônia [45]. The data are 2001–

2003 hot pixels from 2 sensors: the Advanced Very High

Resolution Radiometer (AVHRR) on NOAA-12 [46] and the

Moderate Resolution Imaging Spectroradiometer (MODIS) on

the Terra satellite. Like the WFA, these data have a resolution of

1 km2, but these satellites have daytime and more frequent

overpass times. They detect more fires than the WFA. In addition

to analyzing the full ten years of WFA data, we also separated

2001–2003 WFA data (denoted ATSR hereafter, although 2003 is

from the AATSR sensor) and directly compared those years with

the AVHRR and MODIS data.

Because of rapid change in land cover over the large spatial and

temporal scale of our study, we did not include detailed land cover

data. Instead, we assigned designations of forest or savanna

vegetation derived from ecoregions [47]. Our forest designation

included humid tropical forest, flooded forest (varzea and igapó),

seasonal dry forest, and white-sand areas (campinas and

campinaranas). We excluded the cerrado of the southwestern

Amazon, lavrado of Roraima, savannas of Pará and Amapá, and a

small area of Pantanal in Mato Grosso. Reserves with portions of

these ecoregions within their borders were clipped to exclude

them.

Social and economic drivers of fire and deforestation, as well as

environmental variables, vary across the Amazon [26,33]. State

lines broadly reflect these differences. We used states and a

geographic feature (the Xingu river) to divide the Legal Amazon

into 2 regions, high-human-impact and low-human-impact

(hereafter referred to as high-impact –HI– and low-impact –LI–,

respectively), which we analyzed separately. The forests of Acre,

Amazonas, Roraima, and Amapá are among the least disturbed in

Brazil, with approximately 12%, 2%, 5%, and 2% deforestation,

respectively, as of 2006. We designated these states as low-impact

areas. Rondônia, Mato Grosso, Tocantins, and Maranhão had

approximately 38%, 38%, 74% and 45% deforestation, respec-

tively, in 2006. We designated these states as high-impact areas

(area deforested and remaining forest in 2006 from http://www.

dpi.inpe.br/prodesdigital/prodesmunicipal.php, accessed January

31, 2008). Pará had approximately 19% deforestation in 2006, but

the majority of that deforestation occurred east of the Xingu

River. Therefore, areas in Pará east of the Xingu River we

classified as high-impact and the areas north and west of the Xingu

River we considered low-impact.

We grouped reserves into fully protected parks (e.g., biological

or ecological reserves, state and national parks), limited-use areas

(e.g., national forests, extractive reserves, sustainable development

reserves, state forests, and state environmental protection areas),

and indigenous lands, on the basis of activities that they allow.

World Wide Fund for Nature-Brazil compiled the shape files of

reserves. The original sources were FUNAI (Fundação Nacional

do Índio; Indigenous reserves), IBAMA (Instituto Brasileiro do

Meio Ambiente e dos Recursos Naturais Renováveis; federally

protected areas), and the state secretaries of the environment (state

protected areas). We excluded marine and mangrove reserves. To

avoid co-registration errors, we excluded reserves of ,100 km2

unless they were adjacent to another reserve of the same type. To

avoid double-counting areas that had two different designations,

we excluded limited-use areas and protected parks that overlapped

by more than half of their area with indigenous lands. Altogether,

we included the forest ecoregion portions of 53 parks, 109 limited-

use reserves, and 238 indigenous reserves, totaling 180,125 km2,

409,984 km2, and 936,819 km2, respectively. The combined area

was 1,526,928 km2 or approximately 37% of the forest ecoregion

area of the Brazilian Amazon. We used road data and the Legal

Amazon boundary from IBAMA (http://siscom.ibama.gov.br/

shapes/; modified February 6, 2007, accessed April 30, 2007).

Road data include state and federal roads, and some private roads,

but omit many unofficial roads that are visible in Landsat Images.

As the vast majority of hot pixels detected (,90%) were #10 km

of roads in our dataset, this omission should not significantly affect

our results.

Data analyses
For each 1-km2 pixel in forest ecoregions, we recorded the

distance to the nearest road and whether the pixel had burned in a

given year. We used analysis of covariance to assess patterns of hot

pixel frequency in different reserve types, land designations (inside

and outside reserves, high- and low-impact areas) and distance to

Reserves, Fires, in the Amazon
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roads (binned to 10 km wide classes). We measured ENSO

severity with the Multivariate ENSO Index (MEI) [48] and

compared numbers of hot pixels in a given year with that year’s

average MEI value.

The statistical analyses raise the issue of the independence of

individual fires. Treating fires as independent observations would

result in huge sample sizes. The sensors detect distinct fires — or

clusters of fires — to the resolution of a 1-km2 pixel. However, hot

pixels are typically clustered at a scale of a few square kilometers

(possibly the scale at which individual ranches set fires). In any

case, individual hot pixels were not independent observations.

Consequently, we used regression analysis on the average number

of hot pixels/100 km2, in each road distance class, and for each

category (e.g., high-impact or low-impact, inside or outside of

reserves). Here, the sample sizes were far smaller, but only the

residuals about the model needed to be independent. At this scale,

there is no reason to think that the residuals would be correlated.

We restricted analyses to distance classes for which the total

combined number of hot pixels in the 2 classes being compared

(e.g., inside and outside reserves) was .50. Classes with ,50 hot

pixels were generally either very far from roads (very few hot pixels

in huge remote areas) or had very little land area (high impact

classes that covered almost no area and thus registered few pixels).

Results

As expected based on state deforestation statistics, the majority

(88%) of hot pixels detected in forest ecoregions with a decade of

WFA data were in high-impact forest (Fig. 1) Only 12% of these

deforestation fires were in low-impact forest. Almost 90% were

#10 km from roads. (A few roads had no hot pixels, such as the

unpaved and frequently impassable BR-319.) In both low- and

high-impact forests (LI and HI), inside and outside reserves (Res

and Out), there were compelling exponential declines in hot pixel

frequency with increasing distance from roads (Fig. 2, 3). (That is,

log fire incidences decreased linearly with distance and the linear

relationships were good fits.) Although AVHRR and MODIS

detect many more hot pixels than the WFA sensors, the

exponential patterns of decline with distance from roads for

AVHRR and MODIS were similar to the WFA data for the same

years (Fig. 3; WFA 2001–2003 data denoted as ASTR). The

relationships were significant at p,.05 for all sensors, inside and

outside reserves, and in high- and low-impact areas (Tables 1, 2,

row 1). Prior hypotheses expected declines, so the appropriate tests

were one-tailed.

There were far fewer fires inside reserves than outside for both

low- and high-impact forests (significant at p#.05 for all sensors

and areas except MODIS 2001–2003 high-impact; Table 1, row

2). Prior hypotheses also expected these differences, so the

appropriate test was one-tailed.

The differences between reserves and outside reserves were

generally greatest closest to roads. We tested this by examining

whether a model with two regression slopes (inside versus outside)

improved the statistical fit over a model with a common slope. We

expected that at large distances from roads, it should matter less

whether or not forest was inside a reserve; so again, the test was

one-tailed. These results were mixed: two results were significant

at p,.05, two more were close, but all differences were in the

expected direction (Table 1; row 3).

Converging regression lines imply that there is some distance

from roads beyond which there is no difference in fire frequencies

between areas inside and outside of reserves. Treating each

distance class as a separate variable in an ANOVA allowed us to

ask at what distance from roads were fire frequencies statistically

different inside versus outside reserves. For the eight sets of results

in Table 1, those distances were 10 km (once), 20 km (5 times),

and 30 km (twice). These are somewhat smaller distances than

those where the regression lines intersect, but estimates of that

intersection have very large confidence intervals.

In addition, there were more fires (inside and outside of reserves)

in high-impact than in low-impact forests (Figs. 2, 3) and these

differences were significant for all but 2 sensors and areas (Table 2,

row 2). The differences between high- and low-impact areas with

increasing road distance were significant in only 2 cases (Table 2,

row 3). This may reflect small sample sizes, especially in high-

impact forest, where there is little land .30 km from roads.

There were generally more hot pixels in years with high ENSO

indices than in years with lower ones. This was true both close

(,10 km) and far (.10 km) from roads and inside and outside

reserves (inside and close: p,0.004, inside and far: p,0.004,

outside and close: p,0.02, only outside and far is not significant:

p = 0.17; Fig. 4). As expected, there were more hot pixels near

roads than far from them and more outside reserves than inside.

These data were for both low- and high-impact forests analyzed

together. There were too few data in each group to present low-

impact forests separately. There was a numerically small, but

statistically significant, increase in hot pixels inside reserves at

.10 km from roads in high ENSO index years. This suggests that

drought-stress may increase the likelihood of (probably already

disturbed) forests being ignited, even far from roads. Close to roads

and outside reserves, hot pixels increased dramatically with the

drier conditions of a high ENSO index.

Reserve type had no significant effect. Most reserves (70–90%)

had no hot pixels in any given year. In reserves with hot pixels, the

average number/100 km2 generally varied together in all three

types, with more hot pixels in ENSO years (Fig. 5). A slightly

larger fraction of limited-use areas had fires (Fig. 5, bottom data

series). Paradoxically, for reserves that did have fires, limited-use

areas had slightly fewer fires/100 km2 (Fig. 5, top data series).

There was a slight increasing trend in average hot pixels/100 km2

in all reserves over the ten-year period. The extent to which

reserves of different types prevented fire depended largely on

regional factors (Fig. 6) as we will discuss later.

Discussion

Reserves prevent fires, but it depends on where they are
Our first question was whether reserves actually protect

Amazonian forests from deforestation fires. Our analysis clearly

shows that they do. There are caveats, however, that relate to the

second question of whether that protection is de facto or de jure.

Reserves had many fewer fires than areas outside, but

protection differed between high- and low-impact areas. Overall,

there are roughly 3 times more deforestation fires in high- than in

low-impact areas. These regional differences have been obvious

since at least the early-1970s [49,50]. Inside reserves, fires were 4

times more frequent in high- than in low-impact areas. In addition

to regional factors mentioned earlier (e.g., dry season length,

agricultural practices, forest fragmentation, human density), this

was likely due to the amount of reserve area close to roads. In low-

impact forest, only about 5% of reserve area was #10 km from

roads, compared with 20% of the area outside of reserves. In high-

impact forests, 30% of reserve area was #10 km from roads,

compared with 85% of the area outside reserves.

These differences illustrate the differences in pressure on

reserves in high-impact areas. Even correcting for greater area

outside reserves, there were always consistently more hot pixels

close to roads outside reserves than inside, in both low- and high-

Reserves, Fires, in the Amazon

PLoS ONE | www.plosone.org 4 April 2009 | Volume 4 | Issue 4 | e5014



Figure 1. Fire and deforestation in the Brazilian Amazon. A) The Legal Brazilian Amazon showing reserves and World Fire Atlas hot pixels from
1996–2006. The high-impact forest is to the southeast and low-impact forest is to the northwest of the yellow boundary line. Roads mentioned in the
text are labeled. B) PRODES deforestation polygons through 2005 against the background of annual rainfall from the WorldClim dataset. High-impact
areas include the states of Rondônia [RO], Mato Grosso [MT], Tocantins [TO], Maranhão [MA] and the portion of Pará [PA] east of the Xingu River. Low-
impact areas include the states of Acre [AC], Amazonas [AM], Roraima [RR], Amapá [AP] and the portion of Pará north and west of the Xingu river.
doi:10.1371/journal.pone.0005014.g001

Reserves, Fires, in the Amazon
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impact areas. This difference diminished with increasing road

distance. Because hot pixels are a proxy for deforestation, fewer

fires close to roads inside reserves may relate to a lack of available

infrastructure or to protected status that discourages land uses

conducive to deforestation and fire along roads. This suggests that

reserves provide the greatest protection from fires where the

likelihood of burning would otherwise be greatest, that is, close to

roads. On the other hand, the difference between fire occurrence

in high- and low-impact reserves also indicates that reserves may

not always provide sufficient protection when the pressure on them

becomes very great. In addition, reserves that do not suffer

deforestation fires may be subject to less detectable disturbance

such as illegal logging or understory fire [51]. For example, some

reserves in Acre that are known to have up to 6% of their area

deforested [52] did not appear to have fires based on our data.

Reserve type appears not to matter
There is no simple answer to our third question of whether

some types of reserves are universally more effective. At the scale

of the Brazilian Amazon, reserve type did not significantly affect

fire frequency for a given distance to roads and region.

Statistical issues made it difficult to deny any effect of reserve

type, however. First, only ,20% of reserves had any hot pixels in

most years (Fig. 5). In high fire years, this rose to 30%, still a small

Figure 2. Relationship between 1996–2006 hot pixels/100 km2 and their distance to roads. A) low-impact and B) high-impact forests
(low- and high- impact areas as shown in Fig. 1). Data are separated by whether fires are inside (grey) or outside (black) reserves. Fire rates were
calculated on the basis of distance classes, but data points are offset from the class number for clarity (e.g., x values of 9 and 10 for class 10).
doi:10.1371/journal.pone.0005014.g002

Reserves, Fires, in the Amazon
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Figure 3. Relationship between 2001–2003 hot pixels/100 km2 and their distance to roads for 3 different sensors, ATSR/AATSR,
AVHRR, and MODIS. A–C) low-impact and D–F) high-impact forests (low- and high- impact areas as shown in Fig. 1). Data are separated by
whether fires are inside (grey) or outside (black) reserves. Fire rates were calculated on the basis of distance classes, but data points are offset from
the class number for clarity (e.g., x values of 9 and 10 for class 10). All sensors detect at a 1-km2 resolution, but differ in detection algorithms and
overpass times.
doi:10.1371/journal.pone.0005014.g003

Reserves, Fires, in the Amazon
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sample, once other variables were considered. The overall incidence

of deforestation fires per area did not differ consistently among

reserve types in different years. Second, local factors and the

geographical arrangement of reserves made comparison of reserve

types difficult. For example, most limited-use reserves are in remote

regions with few fires (Fig. 6a). This explains why the average fire

per area in limited-uses reserves appears low in Fig. 5. In high-

impact areas, limited-use reserves tend to be small, with many fires.

Regional factors are important
To illustrate regional differences, we examined 3 places

(Rondônia, along the BR-174 highway in Amazonas, and an area

in the eastern Amazon – Maranhão and Pará) where all the factors

discussed were roughly equal, but where all 3 kinds of reserves

were adjacent to each other (Fig. 6). This would seem to offer the

best chance of detecting effects of reserve type.

In Rondônia, a massively deforested area, the contrast between

fires inside and outside reserves was striking (Fig. 6b). In the

centrally located indigenous reserve, the few hot pixels occurred in

naturally dry ecosystems (nonforest, visible as light spots on the

image). Protected parks here also suffered few fires, but this was

likely because indigenous reserves surrounded them. In the north,

there were many fires within a limited-use area. This suggests that

limited-use reserves are less effective than those ‘‘policed’’ by

indigenous peoples. This finding was confirmed by Ribeiro et al.

[53] who found that deforestation in indigenous lands in Rondônia

remained close to zero between 1997 and 2004, but raised concern

about state sustainable use areas subject to high deforestation rates.

Of the ten most deforested reserves (.20% deforested), seven are no

longer considered as protected areas by the state governments (and

thus are not included in our dataset). According to Ribeiro et al.,

there has been no specific law, changing the status of these areas,

illustrating the vulnerability of state protected areas to the

vagrancies of local governments. Using similar methods as Nepstad

[21], we also analyzed hot pixel rates in 10-km wide inner and outer

buffers at reserve borders in Rondônia. All reserve types protected

against fires at their borders. Fire incidence outside reserves was 4–9

hot pixels/100 km2. Inside it was generally ,2 hot pixels/km2.

Along the BR-174 in Amazonas, large areas (likely trees killed by

the flooding of Balbina reservoir) burned in 1997 (Fig. 6c). These

fires affected all adjacent reserves. One, the Waimiri-Atroari

Indigenous Land, was mostly fire free, except for this spillover.

Increased deforestation since repaving of the BR-174 highway in

1997 has not affected fire frequencies along this stretch because the

inhabitants have strict rules about outsider use of the road.

In the eastern Amazon, in an area with many fires, no reserve

has successfully kept fires at bay (Fig. 6d). For example, the Gurupi

Biological reserve, a protected park, has not stopped logging,

agriculture, and accompanying fires from spilling over from

surrounding areas [54]. Adjacent indigenous lands and limited-use

areas also burn frequently.

These examples illustrate the importance of local factors to the

success of any reserve in protecting forest [21,55]. As Nepstad et

al. [21] also noted, the lack of obvious differences among reserve

types is important, and demonstrates the usefulness of any reserve

as protection against fire and deforestation. Lack of law

enforcement and land thievery of ‘‘empty’’ government lands in

the Amazon is a huge challenge [12,26]. A reserve provides one

Table 1. Significance values for analysis of covariance tests of the patterns of decline in hot pixels with road distance inside and
outside of reserves in Fig. 2 (WFA) and Fig. 3 (sensor comparison).

Data setb

Testa WFA LI WFA HI ATSR LI ATSR HI AVHRR LI AVHRR HI MODIS LI MODIS HI

Distance ,0.0001* ,0.002* ,0.0001* ,0.02* ,0.0001* ,0.001* ,0.0001* ,0.0001*

Difference Res/Out ,0.01* ,0.004* 0.05* ,0.01* 0.0002* ,0.02* ,0.003* 0.17

Interaction Dist/Diff 0.17 ,0.06 ,0.1 0.33 ,0.02* ,0.07 0.42 ,0.01*

aTests are: the decline of hot pixels with distance from roads (Distance), the difference between the numbers of hot pixels inside and outside reserves (Difference Res/
Out) and the interaction between these 2 factors (Interaction Dist/Diff).

bHot pixels are grouped into high-impact forest (HI) and low-impact forest (LI) and are from the following data sets: World Fire Atlas (ATSR/AATSR sensors) 1996–2006
(WFA), the World Fire Atlas (ATSR/AATSR sensors) for 2001–2003 (ATSR), and the Vegetation Fire Dynamics data set, including NOAA12 AVHRR 2001–2003 (AVHRR) and
MODIS Terra 2001–2003 (MODIS). Values of one-tailed tests are marked with an asterisk (*) at a significance level of p,.05.

doi:10.1371/journal.pone.0005014.t001

Table 2. Significance values for analysis of covariance tests of the differences between high-impact and low-impact forests (e.g.,
reserves in high-impact vs. reserves in low-impact) shown in Fig. 2 (WFA) and Fig. 3 (sensor comparison).

Data setb

Testsa WFA Res WFA Out ATSR Res ATSR Out AVHRR Res AVHRR Out MODIS Res MODIS Out

Distance 0.0007* ,0.0001* 0.004* 0.0008* ,0.0001* ,0.0001* ,0.0001* ,0.0001*

Difference LI /HI ,0.003* ,0.0001* 0.11 ,0.003* 0.0004* 0.0003* 0.0003* 0.44

Interaction Dist/Diff 0.17 0.15 0.26 0.30 0.22 0.04* 0.21 ,0.002*

aTests are: the decline of hot pixels with distance from roads (Distance), the difference between the numbers of hot pixels in low- and high-impact areas (Difference HI /
LI) and the interaction between these two factors (Interaction Dist/Diff).

bHot pixels are grouped into those inside (Res) and outside (Out) of reserves and are from the following data sets: World Fire Atlas (ATSR/AATSR sensors) 1996–2006
(WFA), the World Fire Atlas (ATSR/AATSR sensors) 2001–2003 (ATSR), and the Vegetation Fire Dynamics data set, including NOAA12 AVHRR 2001–2003 (AVHRR) and
MODIS Terra 2001–2003 (MODIS). Values of one-tailed tests are marked with an asterisk (*) at a significance level of p,.05.

doi:10.1371/journal.pone.0005014.t002
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important protection – especially if there is local enforcement,

such as indigenous peoples with legal tenure [29]. Smallholders

may also benefit from the enforcement and protection provided by

a reserve, as seen recently in Pará [55].

Our results imply that the prevalently-held view that uninhab-

ited reserves are the best kind for conservation may not be so clear

cut, especially in the context of rapid infrastructure development

and deforestation in the Brazilian Amazon. The fact that there is

not a significant difference in deforestation fires in inhabited versus

uninhabited reserves provides an immediate policy implication.

Indigenous lands contain 5 times the land area of fully protected

parks and form the majority of protected land in highly contested

areas [30]. Some limited-use areas, such as Acre’s extractive

reserves, are managed to preserve forest cover and provide local

jobs [56]. Both these types of reserves have, in many cases, been

designated because of fierce grassroots pressure from local people,

a process still underway in some areas. In the state of Roraima, the

still fiercely contested indigenous reserve Raposa Serra do Sol is a

current example of indigenous inhabitants advocating reserve

creation to safeguard their land and resources from powerful

economic interests, with benefits for biodiversity conservation [57].

Inhabited reserves thus might provide effective and (in some cases)

politically feasible alternatives to more destructive land uses along

new and existing roads, especially in contested areas.

Conclusions: Roads, Fire, and Policy
Debate about the Amazon’s future has rightly focused on roads

as one of the most important drivers of deforestation [12,25].

Roads provide access and raise land values [24], but specific

economic and political circumstances are also tightly coupled with

deforestation [40]. In the last decade, rising global demand for

pasture-fed beef and soy and changes in the value of the Brazilian

Real have, respectively, raised and lowered deforestation rates in

the Amazon [13] and have also been correlated with fire [11].

Although previous work has found correlations between ENSO

and understory fires [18], an important result of our work is the

strong correlation between ENSO and deforestation fires at these

spatial and temporal scales. Deforestation fires, such as those we

are detecting, are all human-ignited. The implication is that either

people are burning more in dry ENSO years, or that fires are

more likely to escape in these years (or a combination of these

factors). Reports of landowners sustaining large losses from

escaped fires during periods of drought [58], suggests that people

might not knowingly choose to burn during severely dry years.

Indeed, the work of Moran et al. [59] suggests that many

landowners in the Amazon have very little access to reliable

weather information, and rely mainly on memory and experience

to determine whether conditions are safe for burning. If this is the

case, improved access to information, fire safety training for rural

land owners, and strictly enforced burn-bans during dry periods

might make a significant difference in the number of deforestation

Figure 4. Relationship of the Multivariate ENSO Index (MEI)
and the incidence of hot pixels/100 km2. Panels show (WFA,
1996–2005) hot pixels per year and the average yearly MEI A) within
10 km of roads (close) and B) more than 10 km from roads (far). Data
are separated by whether fires are inside (grey) or outside (black)
reserves. Significance values for analysis of covariance tests are as
follows: inside reserves, close to roads: p,0.004; inside reserves, far
from roads: p,0.004; outside reserves, close to roads: p,0.02; outside
reserves, far from roads: p = 0.17.
doi:10.1371/journal.pone.0005014.g004

Figure 5. Differences in fire frequencies between fully protect-
ed parks, indigenous lands, and limited-use areas in the
Brazilian Amazon. Solid lines (right axis) show the percentage of
each reserve type (each year) with at least 1 hot pixel. Dashed lines (left
axis) show the average number of hot pixels/100 km2 in those reserves
that do have at least 1 hot pixel. Grey stripes indicate ENSO years.
doi:10.1371/journal.pone.0005014.g005
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fires occurring [59]. Many Brazilian institutions, both govern-

mental and nongovernmental, have taken steps in this direction

[60]. Efforts to monitor and disseminate information about

drought and fire conditions in Acre in 2005 [61] provide an

example. Predictable inter-annual and geographic variation in

climate clearly influences fire occurrence and provides a basis for

year-to-year fire protection planning in different locations.

Most deforestation and fires have occurred in drier parts of the

Amazon, but these processes already accompany roads built into

more humid forests (notably BR-163). Even along roads within their

borders, and even during ENSO-related drought, reserves of all

types reduced fires that closely accompany roads throughout the

Amazon. New and existing reserves should thus be an integral part of

the planning process to mitigate the environmental impacts of roads

[11,12]. Plans to build or pave roads should also consider novel

reserve forms, such as the ‘‘road park’’ (estrada parque) used in the

Pantanal [62]. When reserves are designed in conjunction with local

people and their needs, they may provide both environmental and

resource protection, while lending the political force necessary to

back reserves when powerful interests target them for exploitation.
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Figure 6. Regional differences in reserve protection against fire. A) Spatial distribution of reserves in the Brazilian Amazon. Close ups of areas
in black squares where all reserve types are in close proximity, left to right: B) Rondônia, C) the BR-174 north of Manaus, and D) eastern Amazon
(Maranhão and Pará). The WFA hot pixels for 1996–2006 are shown as red dots. Line colors denote reserve types: orange, indigenous lands; purple,
limited use areas; green, fully protected parks. The background images are Landsat MrSID images (https://zulu.ssc.nasa.gov/mrsid/), and MODIS Blue
Marble images, from the year 2000.
doi:10.1371/journal.pone.0005014.g006
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11. Arima EY, Simmons CS, Walker RT, Cochrane MA (2007) Fire in the Brazilian
amazon: a spatially explicit model for policy impact analysis. Journal of Regional

Science 47: 541–567.

12. Fearnside PM (2007) Brazil’s Cuiaba-Santarem (BR-163) Highway: the

environmental cost of paving a soybean corridor through the amazon.
Environmental Management 39: 601–614.

13. Nepstad DC, Stickler CM, Almeida OT (2006) Globalization of the Amazon soy
and beef industries: opportunities for conservation. Conservation Biology 20:

1595–1603.

14. Soares-Filho B, Alencar A, Nepstad D, Cerqueira G, Diaz MDV, et al. (2004)

Simulating the response of land-cover changes to road paving and governance
along a major Amazon highway: the Santarem-Cuiaba corridor. Global Change

Biology 10: 745–764.

15. Teixeira G (2008) Presidente Lula e Carlos Minc lançam Fundos Amazônia e

Clima. Ministério do Meio Ambiente. http://www.mma.gov.br/ascom/ultimas/

index.cfm?id = 4266; Accessed August 8, 2008.

16. Fearnside PM, Graça PMLdA (2006) BR-319: Brazil’s Manaus-Porto Velho

Highway and the Potential Impact of Linking the Arc of Deforestation to
Central Amazonia. Environmental Management 38: 705–716.

17. Mesquita RCG, Marinelli CE, Pinheiro PS (2007) Quando a Ciência Ajuda a
Formulação de Politicas de Conservação na Amazônia. In: Rapp Py-Daniel L,
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343–361.

60. Bowman MS, Amacher GS, Merry FD (2008) Fire use and prevention by

traditional households in the Brazilian Amazon. Ecological Economics.

61. Brown IF, Schroeder W, Setzer A, Maldonado MdLR, Pantoja N, et al. (2006)

Monitoring fires in Southwestern Amazonia rain forests. Eos 87: 253–264.
62. Serra MA, Garcia EM, Ortiz RA, Hasenclever L, Moraes GId (2004) A

valoração contigente como ferramenta de economia aplicada à conservação
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