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Abstract

The study of Parkinson’s disease (PD), like other complex neurodegenerative disorders, is limited by access to brain tissue
from patients with a confirmed diagnosis. Alternatively the study of peripheral tissues may offer some insight into the
molecular basis of disease susceptibility and progression, but this approach still relies on brain tissue to benchmark relevant
molecular changes against. Several studies have reported whole-genome expression profiling in post-mortem brain but
reported concordance between these analyses is lacking. Here we apply a standardised pathway analysis to seven
independent case-control studies, and demonstrate increased concordance between data sets. Moreover data convergence
increased when the analysis was limited to the five substantia nigra (SN) data sets; this highlighted the down regulation of
dopamine receptor signaling and insulin-like growth factor 1 (IGF1) signaling pathways. We also show that case-control
comparisons of affected post mortem brain tissue are more likely to reflect terminal cytoarchitectural differences rather than
primary pathogenic mechanisms. The implementation of a correction factor for dopaminergic neuronal loss predictably
resulted in the loss of significance of the dopamine signaling pathway while axon guidance pathways increased in
significance. Interestingly the IGF1 signaling pathway was also over-represented when data from non-SN areas, unaffected
or only terminally affected in PD, were considered. Our findings suggest that there is greater concordance in PD whole-
genome expression profiling when standardised pathway membership rather than ranked gene list is used for comparison.
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Introduction

Parkinson’s disease (PD, OMIM: #168600) is a uniquely

human disease that is clinically characterised by cardinal motor

symptoms such as postural instability, bradykinesia and resting

tremor [1]. In the PD brain there is pathognomonic loss of more

than 50% of the dopaminergic neurons in the substantia nigra pars

compacta (SNc) located in the midbrain [2,3]. However, the

disease is also characterised by non-motor symptoms such as sleep

disorders, depression, hyposmia and autonomic dysfunction [4–7].

Accordingly, pathology in PD is not just restricted to the SNc but

also affects the olfactory pathway, spinal cord and dorsal cranial

nuclei of the medulla [8–11].

High throughput discovery platforms, such as microarrays, that

assume no a priori aetiological hypotheses, promise much in

elucidating the pathogenesis of complex diseases such as PD.

Moreover, one would hope that these microarray data would

reveal clues previously inaccessible via other means. Several

microarray-based studies have used human tissue to look for

differentially expressed genes in Parkinson’s disease [12–21]. The

majority of these used post-mortem whole brain tissue from the

substantia nigra (SN) [14–17] and although most authors

emphasised differential expression in the ubiquitin-proteasome

system or cellular energy pathways, their published gene lists

appeared quite discordant. Others extended their studies to

include pathologically normal brain regions [12,18,20,21] and

these highlighted other biological mechanisms such as G-Protein-

coupled receptor signaling and transcriptional regulation.

One study assayed SNc dopaminergic neurons only, following

isolation by laser capture microscopy (LCM) [13]. Here gender

differences were more pronounced than PD versus control

differences. Uniquely, one study compared the transcriptomes of

whole blood samples [19] and reported expression differences in a

number of unrelated genes.

Given an apparent lack of concordance in published data sets

one might ask what relevance these transcriptional approaches can

have to PD pathogenesis. Certainly the utilisation of post mortem

brain tissue appears to represent the best opportunity for finding

PD-specific changes in gene expression. Furthermore such

‘benchmarks’ facilitate the evaluation of clinical samples and

model systems for their utility in PD research. However the

approaches to generating and analysing microarray data are not

standardised and therefore could account for much of the

apparent discrepancy between reported gene lists.
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Here we apply a common analytical approach to the available

human transcriptomic data in an attempt to find greater data

convergence and generate new insight into the pathways

systematically altered during PD pathogenesis. We have also

generated an online search tool and extend an invitation to other

researchers to explore the data themselves http://ncascr.griffith.

edu.au/pdreview/2008/.

Results

Demographics of microarray studies using PD case-
control tissue

Ten published transcriptomic studies met the initial criterion of

comparing primary tissues derived from PD patients and controls

(Table 1). Of these, seven were included because they used the

same common gene expression array. These seven studies

provided 13 case-control data sets comparing tissue from 119

PD cases and 74 controls (Table 2). Three studies did not meet the

inclusion criteria: (1) Grunblatt et al. [15] who used a Focus array

(Affymetrix) with limited gene coverage; (2) Miller et al [22] who

used the CodelinkTM bioarray platform and (3) Bossers et al. [12]

who used Agilent technology. We were also unable to source raw

data from the study of Papapetropoulos and colleagues [18].

Although the raw data from these latter experiments was not

included in our combined re-analysis, their published gene lists

were used when initially evaluating data convergence between all

studies.

Lack of convergence of pathways between studies from
published ranked gene lists

We postulated, as others had done previously, that genes and

pathways that appear consistently as differentially expressed in

multiple studies and different source tissues are likely to be

important in PD [20]. To look for such convergence we compared

the published lists of differentially expressed genes using the

Ingenuity Pathways Analysis (IPA) package. There was little

overlap between published ranked gene lists and there were no

genes consistently identified in more than three datasets (Table S1

). We then asked whether we would see greater convergence using

pathway analysis of the originally reported ranked gene lists. The

ERK/MAPK was the most highly represented pathway, although

it was over-represented in only four of the 11 data sets (Table 3).

Application of common data analysis methodology
Our common analysis method was applied to the 13 datasets

(from seven studies) that met our platform inclusion criteria, and

new ranked probe lists were produced. These are listed in Table

S2, while the number of differentially-expressed probes is shown in

Table 2. Additionally these data can be viewed online http://

ncascr.griffith.edu.au/pdreview/2008/. This improved the con-

vergence of the genes between the datasets with 20 genes now

consistently differently regulated across six of 13 datasets (data not

shown). Ranked IPA pathways from these gene lists can be found

in Table S3.

Pathway analysis of SN data sets reveals a common
dysregulation of dopamine signaling

Dopaminergic neuron loss in the SNc is the prominent

neuropathological entity in PD so we initially focused on the SN

data sets for their convergence and reproducibility. Over-

representation of the dopamine receptor signaling pathway was

consistently and significantly observed in all SN data sets (p-values

.0.003–0.026) suggesting that not only can PD-related pathways
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be dissected out of complex transcriptomic data but that these

changes are robustly reproducible between comparable studies

(Table 4 and Table S2 A–E for full ranked pathway lists).

Neuronal loss in PD is more severe in the lateral SN compared

to the medial SN [23–25] while areas such as the superior frontal

gyrus (SFG) are largely unaffected. A comparison of these three

anatomical areas from the data in Moran et al. (LSN v MSN v

SFG) showed a direct correlation between fold changes in genes of

dopamine receptor signaling pathway and the severity of PD

neuronal loss [14]. Therefore, the prominence of this pathway

appeared to represent the disparate numbers of residual

dopaminergic neurons in PD compared to control brains.

Correcting for dopaminergic neuronal loss changes
ranked pathways

In order to bias our analysis towards underlying pathogenic

mechanisms rather than terminal pathology, we devised a

correction paradigm based on Moran’s observations on neuronal

loss. Our rationale is described in detail in Table S4. 217 genes with

fold changes LSN.MSN.SFG from the Moran et al. data sets were

defined as potentially ‘‘neuronal-loss-associated’’, as these were the

genes whose differential expression most likely resulted from relative

loss of dopaminergic neurons from the brain regions sampled,

rather than transcriptomic differences in residual cells. However

eight of these genes could be shown to be differentially expressed in

residual dopaminergic neurons (Cantuti-Castelvetri et al. study)[13]

and so were retained in the analysis. The removal of 209 genes

(Table S5) from the SN ranked lists resulted in two alternative

pathways gaining prominence: ephrin receptor signaling (p-values

,0.003–0.04) and the axonal guidance pathway (p-values ,0.004–

0.049) (Table 4 and Table S6 A–E for full ranked pathway lists).

Assessment of glial contribution to the neuronal-loss
corrected datasets

Given the loss of dopaminergic cells in the PD SN the major

contribution to the expression profile in the SN PD samples would

presumably now come from the non-dopaminergic cells. Further-

more neuropathology in the PD SN is characterised by a reactive

gliosis or ‘‘glial inflammation’’ (reviewed by Orr et al., 2002) [26].

Therefore glial markers and in particular reactive microglia

markers such as CD68 and ICAM-1 might be expected to be

upregulated in the SN data sets [26,27]. However these genes and

those of glial markers in general were largely indifferent between

PD and controls. This potential anomaly is illustrated further using

a selection of PD-related glial markers (Table S7).

Analysis of non-SN brain tissue highlights growth factor
signaling pathways

We also analysed non-SN tissues as they are not subject to

cytoarchitectural changes seen in the SN or are only affected late in

the disease. Five IPA pathways were overrepresented in three out of

Table 2. Summary of each data set used in the re-analysis and the number of differentially expressed probes before and after
neuronal correction.

Studies

Number of PD patients
used in microarray
analysis

Number of controls used
in microarray analysis

RNA tissue
source

Number of differentially
expressed probes #0.01

Number of differentially
expressed probes #0.01
after neuronal correction*

Substantia nigra Data Sets

Hauser 6 5 SN 159 152

Zhang 11 18 SN 1014 951

Moran 15 6 LSN 1975 1779

Moran 15 6 MSN 2149 1924

Lesnick 16 9 SN 2030 1993

Other Non-SN Brain Regions Data Sets

Zhang 14 19 BA9 2373 -

Zhang 15 15 PT 197 -

Moran 15 6 SFG 598 -

Vogt 4 4 OCTX 1727 -

Vogt 3 3 PT 155 -

Vogt 4 4 CB 174 -

Other Data Sets

Castelvetri 8 8 LCM DA-SN 491 -

Scherzer 55 22 Blood 208 -

*no probes were removed from the non-SN brain regions data sets.
doi:10.1371/journal.pone.0004955.t002

Table 3. Summary of over-represented IPA pathways from
the published array data.

IPA Pathway category

Number of studies with over-
represented pathways at #0.05 in all
published lists (11)

ERK/MAPK Signaling 4

G-Protein Coupled Receptor
Signaling

3

Huntington’s Disease Signaling 3

a-Adrenergic Signaling 3

Synaptic Long Term Potentiation 3

PPARa/RXRa Activation 3

doi:10.1371/journal.pone.0004955.t003

Analysis of Parkinsons Disease
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five non-SN data sets (Table 5). Of these, IGF-1 and VEGF signaling

were also found to be dysregulated in two of the neuronal loss-

corrected SN datasets. Whereas, the four pathways (PTEN signaling,

JAK/STAT signaling, ephrin receptor signaling, axonal guidance

signaling) found to be significance in three or more of the corrected

SN datasets were only significance in two of the non-SN datasets.

Differential expression in whole blood
Finally, given its clinical accessibility, we also re-analysed a

whole blood dataset [19]. Our analysis revealed that the inositol

phosphate metabolism and VEGF signaling pathways were the

most differentially expressed in this dataset. The prominence of

these pathways was quite distinct from SN tissues but commonality

with non-SN tissues was observed with the VEGF signaling

pathway (Table S2 L).

Discussion

Microarrays promise much in elucidating the pathogenesis of

complex diseases such as PD but the lack of concordance in

published data sets to date certainly questions their relevance.

Here we have shown that a standardised approach to analysing

PD-related microarray data can account for a considerable

proportion of the discordance. We used a common analytical

approach which improved data convergence and uncovered new

leads for PD pathogenesis. We also recognised a potential

anatomical bias in the datasets derived from brain regions with

high neuronal loss. Our approach therefore provided an improved

comparative analysis between existing datasets and further

considered ‘tissue-of-origin’ effects.

Pathway analysis may uncover concordance between
datasets not found in gene lists

Complex phenotypes, by their very nature, are aetiologically

heterogeneous. This implies that single gene signatures may not be

shared by all affected individuals. However, the identification of

particularly relevant genetic pathways, have a higher probability of

being revealed as convergent across multiple individuals and

multiple studies than individual genes per se. Moreover, the

differences reflected in a pathway or network of genes may be

robust enough to overcome the effects of experimental noise and

inter-study variability prone to bias single gene expression values.

Therefore, this approach results in an increase in sensitivity to

detect interesting and novel patterns in gene expression between

multiple samples of cases and controls.

Common data analysis highlights dopamine signaling
pathway in SN

Context is very important in gene expression studies and as

expected the analysis of SN tissue-derived data sets further

improved our concordance and highlighted the ‘dopamine

receptor signaling’ pathway. However rather than representing a

primary pathogenic effect the extensive down regulation of genes

such as DOPA decarboxylase (DDC), dopamine receptor 2

(DRD2), dopamine transporter (SLC6A3 or DAT) and tyrosine

hydroxylase (TH) was probably entirely due to a disproportionate

number of SN dopaminergic neurons between cases and controls.

On a positive note, the microarray data was providing accurate

molecular fingerprints of the comparative tissue being examined; a

Table 4. Summary of over-represented IPA pathways in the
SN data sets before and after neuronal correction.

IPA Pathway category

Number of
studies with
over-represented
pathways at
#0.05 in SN
data sets (n = 5)

Number of
studies with
over-represented
pathways at
#0.05 in SN data
sets (n = 5) after
neuronal correction

Dopamine Receptor
Signaling

5 1

IGF-1 Signaling 3 2

PTEN Signaling 3 3

JAK/Stat Signaling 3 3

Glucocorticoid Receptor
Signaling

3 3

Huntington’s Disease
Signaling

3 3

PPAR Signaling 3 3

Ephrin Receptor Signaling 2 4

VEGF Signaling 2 2

Axonal Guidance Signaling 2 3

PI3K/AKT Signaling 2 2

Insulin Receptor Signaling 2 2

BMP signaling pathway 2 2

Synaptic Long Term
Depression

2 2

Synaptic Long Term
Potentiation

2 0

PDGF Signaling 2 1

B Cell Receptor Signaling 2 2

Lysine Degradation 2 2

Estrogen Receptor Signaling 2 2

G-Protein Coupled Receptor
Signaling

2 0

Inositol Phosphate
Metabolism

2 1

IL-2 Signaling 2 1

doi:10.1371/journal.pone.0004955.t004

Table 5. Comparison of over-represented IPA pathways in
non-SN data sets and neuronal-loss corrected SN data sets.

IPA Pathway category

Number of
studies with
over-represented
pathways at
#0.05 in non-SN
data sets (n = 6)

Number of
studies with
over-represented
pathways at #0.05
in SN data sets
(n = 5) after
neuronal correction

IGF-1 Signaling 3 2

VEGF Signaling 3 2

Synaptic Long Term
Potentiation

3 0

Calcium Signaling 3 0

ERK/MAPK Signaling 3 0

PTEN Signaling 2 3

JAK/Stat Signaling 2 3

Ephrin Receptor Signaling 2 4

Axonal Guidance Signaling 2 3

doi:10.1371/journal.pone.0004955.t005

Analysis of Parkinsons Disease
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modern pixelated analogy to the histological section. However the

relative neuronal loss in the SN also reduced our signal to noise

ratio for pathogenic relevance.

Accordingly we pursued two alternative approaches to maxi-

mise potentially useful information on the underlying biological

processes. First, the implementation of a correction factor for

dopaminergic neuronal loss in the SN data sets and second, the

analysis of non-SN or unaffected tissues for data convergence. The

purpose of the correction factor was not to magically recreate the

early disease landscape but to remove ‘red herrings’ that solely

reflected the relative numbers of neurons between cases and

controls. The retention of genes differentially regulated in the

residual dopaminergic neuron data set should have improved the

overall specificity of this approach.

Following our ‘neuronal loss’ correction, two alternative

pathways gained prominence: ephrin receptor signaling and the

axonal guidance pathway. The latter is consistent with the findings

of recent studies [12,28] including one that combined gene

expression data with genotype data from two genome-wide

association studies [28]. There is actually considerable overlap

between the axon guidance and ephrin signaling pathways with

ephrins along with netrins, slits and semaphorins being the main

families of guidance molecules in the developing nervous system

[29]. It remains to be clarified whether the differential expression

of axon guidance genes in PD represent neurodevelopmental

manifestations, compensatory attempts at rewiring, or dysregulat-

ed expression patterns induced by a devastated environment.

As discussed above microarray data is very powerful in

illustrating cytoarchitectural differences between cases and con-

trols such as dopaminergic neuron loss. Given the considerable

literature supporting the involvement of glia in PD pathogenesis

[26,27,30,31] we might have expected glial markers to inversely

differentiated in the SN data sets. The absence of significant fold

changes in activated microglial markers in particular argues

against a substantial glial component to neurodegeneration in the

terminal PD brain.

Growth factor signaling pathways are prominent in non-
SN tissues

The distinct gene expression pattern of brain areas that are not

overtly affected by PD pathology may be less confounded than the

SN with respect to the cell death associated with PD. It could be

argued that the transcriptomes of unaffected tissues might be too

divergent from those of predilection sites such as the SN, such that

they provide very little informative data. Our analysis, which has

highlighted consistent differences in growth-factor signaling in

non-SN datasets, argues that areas affected late in the disease, such

as the prefrontal cortex [8] could at the time of post mortem

exhibit similar mechanisms of degeneration as initially occurred in

the SN. Our approach highlights the differential expression of

IGF-1 and VEGF signaling pathways. Importantly the IGF1

signaling pathway was also over-represented in two ‘corrected’ SN

datasets (Table 5).

This pathway has been largely unexamined for associations with

PD although IGF1 signaling is reported to have neuroprotective

effects on dopaminergic neurons [32,33] and it has recently been

suggested that excessive IGF1 signaling accelerates ageing through

deleteriously effects on protective mechanisms against proteotoxi-

city such as Lewy body formation in PD [34]. Furthermore we

have recently showed that a polymorphism in the 39 untranslated

region of the IGF2 gene, a homologue of IGF1 was protective

against PD [35].

Similarly VEGF is known to promote the growth and survival of

dopaminergic neurons [36–38] Interestingly both IGF1 and

insulin enhance VEGF expression in vitro [39,40] providing a

plausible mechanism that might underlie the co-prominence of

these signaling pathways in our re-analysis.

Challenges and Future Directions
Case-control expression analysis in a degenerative disease like PD

poses difficult issues when attempting to uncover pathways

contributing to disease initiation. It would be advantageous to

target tissues that express the proteins that are fundamental to the

disease process and are different in individuals who are at risk of the

disease. At the same time we need to account for any influences of

the pathological process on these profiles. Microarray data of

predilection sites such as the SN illustrates cytoarchitectural

differences between cases and controls but to understand some of

the early pathogenic processes, we would ideally want to assay a

brain region very similar to SN but that is only belatedly affected.

An additional consideration is the ability of the pathway

approach, used in our analyses, to provide adequate specificity for

PD over other neurodegenerative conditions. This issue remains to

be clarified, and requires further investigation. It is important to

recognise that there may be genetic expression patterns common

to neurodegenerative diseases, generally. These may reflect

common pathological changes (such as cell death, markers of

oxidative stress or neuro-inflammation etc) or shared risk factors

influencing neurodegeneration.

There are still inherent difficulties in obtaining reproducible

gene expression data from post mortem brain, even if an optimal

region of the brain could be assayed [41–44]. Furthermore this

information can only be used retrospectively for the potential

benefit of future PD patients. Therefore there is considerable

interest in developing strategies to obtain human RNA from more

accessible sources such as blood or neuronal-like cell lines. The

finding of down regulation of a-synuclein in microarray analysis of

whole blood samples from PD patients versus controls is exciting

because it implies that PD-specific changes can be found ante

mortem in readily accessible tissues [19]. It is also of note that these

tissues also revealed differential expression of the VEGF signaling

pathway (observed in other non-SN tissue samples). However,

there is a real risk that peripheral tissues, such as whole blood

examined here, may express few proteins fundamental to the

disease process and therefore be of limited ability to demonstrate

case - control differences relevant to nervous system disorders [45].

The lack of available gene expression data from multiple tissues in

PD patients at various stages of the disease prevents such an

analysis but highlights the need for ongoing research efforts in this

area.

Interestingly one peripherally accessible neural tissue, the

olfactory mucosa, has been used to demonstrate significant

differences in functional assays and gene expression between

schizophrenics, bipolar affective disorder and controls [46]. Such

cells from PD patients and controls may yet provide an

opportunity to interrogate neuronal mechanisms without relying

on post mortem tissue [47].

In this paper we have presented a summary of the available

microarray data from PD case-control studies and have suggested

some potential strategies for uncovering primary pathogenic

mechanisms. For others who wish to use and explore these data

we have constructed an online database which enables rapid

evaluation on a single gene or pathway basis.

Materials and Methods

We conducted literature searches in National Center for

Biotechnology Information (NCBI) PubMed and dataset searches
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in NCBI gene expression omnibus and ArrayExpress (EBI) [48,49]

to identify all reported microarray studies that explored differential

gene expression in Parkinson disease. Studies satisfied the inclusion

criteria if they: 1) compared tissues from PD patients and controls;

2) assessed transcripts on a genome-wide basis; and 3) used

Affymetrix gene expression arrays. For the selected studies we

obtained raw microarray data (CEL files) from public microarrays

repositories [13,14,19] or from the study authors [16, Vogt, 2006

#1529,21,]. In one case the data was publicly available from the

follow up study [28] rather than the primary study [18].

Meta-analysis data summarisation, normalisation and
analysis of variance

All studies used Affymetrix arrays, the probes on the arrays and

the experimentally chosen fluorescence thresholds varied. Conse-

quently, the data could not be simply combined without avoiding

study bias and the effects of probe-level sequence information [50].

To overcome this problem, the raw data (as CEL files) for each

dataset were imported individually into GeneSpringH TM

7.3.1(Agilent) and the probes sets were summarised and normal-

ised by the Robust Multichip Average (RMA) algorithm[51].

Some studies included non-PD disease controls but our analysis

was performed on PD and control patients only (Table 1). For

studies which used multiple brain regions, each area was treated as

a separate data set. Differentially expressed genes between PD and

controls were determined by an analysis of variances (ANOVA)

using a Welch t-test with a p-value cut-off of #0.01.

Pathway over-representation analysis
The ranked genes lists for each study were assessed by integrating

the data at a pathway level. Each ranked list was imported into the

Ingenuity Pathways Analysis 6.3 (IPA, from IngenuityH Systems,

www.ingenuity.com) which incorporates an extensive literature-

derived knowledge base from which to assign pathway affiliation.

The significance value for pathway over-representation was

calculated using a right-tailed Fisher’s exact test. Each pathway

was ranked by assessing the number of studies that were statistically

over-represented (p-value #0.05). This pathway over-representa-

tion ranking was performed individually on data sets utilising

substantia nigra (SN) (Hauser, Moran LSN+MSN, Zhang,

Lesnick)[14,16,21,28] and non-SN tissues (Zhang-Putamen,

Zhang-BA9, Moran-SFG, Vogt-OCT, Vogt-Putamen, Vogt-

CB)[14,20,21]. Additionally this analysis was performed indepen-

dently on data sets derived from whole blood (Scherzer)[19] and

dopaminergic neurons (Cantuti-Castelvetri)[13].

Correction for dopaminergic neuronal loss
The substantia nigra pars compacta of PD patients is

characterised by the loss of neuromelanin-containing dopaminer-

gic neurons [2,3]. Furthermore neurons are lost in a particular

pattern; severity decreasing from ventrolateral to dorsomedial [23–

25]. In an attempt to correct for the effects on expression arising

directly from the neuronal loss associated with PD, we devised the

following correction paradigm. We first used data from the Moran

et al. study[14] which compared gene expression profiles in three

brain regions, lateral SN (LSN), medial SN (MSN) and superior

frontal gyrus (SFG), from the same patients. The actual neuronal

loss in PD is known to be greater in LSN compared to MSN, with

the SFG relatively spared. Therefore significant probes (p#0.01)

with fold changes in LSN.MSN.SFG were defined as

potentially ‘‘neuronal-loss-associated’’. For example the tyrosine

hydroxylase (TH) gene showed a fold change pattern of 214.5

(LSN), 24.9 (MSN) and no change (SFG). Any probes which were

defined as ‘‘neuronal-loss-associated’’ and were not differentially

expressed in residual laser-captured dopaminergic neurons

(Cantuti-Castelvetri et al. study)[13] were removed from the

subsequent analyses of all SN data sets.

Online Database
The differentially expressed gene list generated for each study

by this re-analysis can be found with their respective p-values and

fold changes can be found at http://ncascr.griffith.edu.au/pdre-

view/2008/. A search can be performed individually using Entrez

gene ID, gene symbol, or collectively by publicly available lists/

pathways.

Accession Numbers
The National Center for Biotechnology Information Entrez

Gene website (http://www.ncbi.nlm.nih.gov/sites/entrez?db = -

gene) accession numbers (GeneIDs) for the genes named in the

paper include: DDC(1644), DRD2(1813), SLC6A3(6531), TH(7054),

IGF2(3481).

Supporting Information

Table S1 Comparison of overlap in genes between PD-related

transcriptomic studies. The enclosed table illustrates the increase

in data convergence between PD-related transcriptomic studies

following the implementation of our common analysis methodol-

ogy.

Found at: doi:10.1371/journal.pone.0004955.s001 (0.02 MB

PDF)

Table S2 The differentially expressed probes generated by

common analysis for each study. Ranked probe lists for each study

generated by common analysis method with fold change and p-

value.

Found at: doi:10.1371/journal.pone.0004955.s002 (1.08 MB

XLS)

Table S3 Over-represented pathway categories from IPA

analysis. Over-represented pathway categories from IPA analysis

of the differentally expressed probes of PD patients compared to

controls: A- SN - Hauser study; B- SN - Zhang study; C- lateral

SN - Moran study; D- medial SN - Moran study; E- SN - Lesnick

study; F- Brodmann Area 9 - Zhang study; G- Putamen - Zhang

study; H- Superior Frontal Gyrus - Moran study; I- Occipital

Cortex - Vogt study; J- Putamen - Vogt study; K- Cerebellum -

Vogt study; L- Whole Blood - Scherzer study; M- Laser Captured

SN dopaminergic neurons - Castelvetri study.

Found at: doi:10.1371/journal.pone.0004955.s003 (0.07 MB

XLS)

Table S4 Selection of neuronal loss-associated genes. A work

flow diagram and hypothetical examples illustrate the selection of

neuronal loss-associated genes that were removed from the SN

datasets prior to pathway analysis.

Found at: doi:10.1371/journal.pone.0004955.s004 (0.12 MB

PDF)

Table S5 ‘Neuronal-loss’ associated genes removed by correc-

tion paradigm. Identified probes with fold change’s for the three

brain regions in the Moran study that followed the pattern,

LSN.MSN.SFG.

Found at: doi:10.1371/journal.pone.0004955.s005 (0.05 MB

XLS)

Table S6 Identified probes with fold change’s for the three brain

regions in the Moran study that followed the pattern,

LSN.MSN.SFG. Over-represented pathway categories from
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IPA analysis after neuronal correction of the differentally

expressed probes from SN tissue: A- Hauser study; B- Zhang

study; C- lateral SN; Moran study; D- medial SN Moran study; E-

Lesnick study.

Found at: doi:10.1371/journal.pone.0004955.s006 (0.04 MB

XLS)

Table S7 Fold changes in PD-related glial markers. The lack of

differential expression of PD-related glial markers is illustrated in

the enclosed table.

Found at: doi:10.1371/journal.pone.0004955.s007 (0.07 MB

PDF)
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