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Abstract

Trophic structure, or the distribution of biomass among producers and consumers, determines key ecosystem values, such
as the abundance of infectious, harvestable or conservation target species, and the storage and cycling of carbon and
nutrients. There has been much debate on what controls ecosystem trophic structure, yet the answer is still elusive. Here we
show that the nutritional quality of primary producers controls the trophic structure of ecosystems. By increasing the
efficiency of trophic transfer, higher producer nutritional quality results in steeper ecosystem trophic structure, and those
changes are more pronounced in terrestrial than in aquatic ecosystems probably due to the more stringent nutritional
limitation of terrestrial herbivores. These results explain why ecosystems composed of highly nutritional primary producers
feature high consumer productivity, fast energy recycling, and reduced carbon accumulation. Anthropogenic changes in
producer nutritional quality, via changes in trophic structure, may alter the values and functions of ecosystems, and those
alterations may be more important in terrestrial ecosystems.
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Introduction

The distribution of biomass among producers and consumers,

or trophic structure, determines important ecosystem properties

such as dynamical stability [1,2], the abundance of infectious,

harvestable or conservation target species [3], and carbon and

nutrient recycling and accumulation [4,5]. For instance, ecosys-

tems with steep trophic pyramids (i.e. high ratios of herbivore-to-

producer biomass) maintain high consumer productivity, recycle

carbon and nutrients quickly, and accumulate less refractory

carbon [3–5]. Thus, elucidating the mechanisms that regulate the

trophic structure of ecosystems is essential for an understanding of

their functions and values, such as the production of food, fiber

and biofuel, as well as how anthropogenic environmental

perturbations alter those functions and values [5,6].

Ecologists have long noted that aquatic and terrestrial

ecosystems differ greatly in trophic structure. Aquatic ecosystems

support larger biomass of herbivores that consume a greater

fraction of primary productivity, have smaller biomass of

producers, and steeper trophic pyramids than terrestrial ecosys-

tems [5–7]. Some authors have proposed that these differences

stem from the contrasting nutritional quality of aquatic and

terrestrial producers [8–11]. Aquatic producers have higher

internal concentrations of nutrient-rich compounds and lower

concentrations of lignin and other hardy structural compounds.

Due to the higher nutritional quality of their diet, aquatic

herbivores have faster growth rates and accumulate larger

biomass, which leads to higher herbivory rates, smaller producer

biomass, and higher herbivore-to-producer biomass ratios in

aquatic ecosystems. Higher producer nutritional quality could,

through enhanced efficiency of trophic transfer, also lead to the

longer food chains typically found in aquatic ecosystems (i.e.

higher prominence of secondary and tertiary predators), which in

turn could further contribute to higher herbivore-to-producer

biomass ratios through alleviation of predation of herbivores by

primary carnivores [12,13].

It remains unknown whether producer nutritional quality is a

general control of ecosystem trophic structure and whether it can

explain differences in trophic structure within aquatic and

terrestrial ecosystems. If this is the case, ecosystems with higher

producer nutritional quality should, regardless of whether they are

aquatic or terrestrial, feature larger herbivore biomass, higher

herbivory rates, smaller producer biomass and steeper trophic

structure (i.e. higher herbivore-to-producer biomass ratios). We

have already shown that aquatic or terrestrial ecosystems with

higher producer nutritional quality support higher rates of
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herbivory (quantified as % of primary productivity consumed by

herbivores; [10,11]). To test the other predictions, we compiled an

unparalleled data set from the literature and other sources that

includes measures of aboveground producer biomass, herbivore

biomass, and producer nutritional quality expressed as nitrogen

and phosphorus content in aboveground producer biomass (i.e. %

of producer dry weight) for a broad range of aquatic and terrestrial

ecosystems. The data compiled correspond to mean values that

integrate the whole ecosystem over at least one year of

observations. Our results show that the nutritional quality of

primary producers regulates the trophic structure of aquatic and

terrestrial ecosystems.

Results and Discussion

The ratio of herbivore-to-producer biomass increased with

higher producer nutritional quality both across aquatic and

terrestrial ecosystems (Figs. 1A and B). The relationships were

significant regardless of whether producer nutritional quality was

expressed as nitrogen or phosphorus content. These results

demonstrate the herbivore-to-producer biomass ratio in ecosys-

tems is associated with the nutritional quality of primary

producers. Because producer nutrient content and primary

productivity (quantified as photosynthetic net carbon (C) fixation

per square meter per year) are unrelated when a wide range of

aquatic or terrestrial ecosystems are compared (i.e. ecosystems

with nutritionally-poor producers can be little or very productive,

and the same is true for ecosystems with nutritionally-rich

producers [10,11]), herbivore-to-producer biomass ratios are

unrelated to primary productivity across the wide range of aquatic

and terrestrial ecosystems examined here (supporting information

(SI) Fig. S1). Thus, in contrast to what some authors have

previously suggested based on more restricted data sets [14,15],

primary productivity is not a strong indicator of differences in

trophic structure across aquatic and terrestrial ecosystems.

Producer biomass decreased as producer nutritional quality

increased across aquatic and terrestrial ecosystems (Figs. 1D and

F). Our prior work indicates this trend is partially due to higher

herbivory rates (quantified as % of primary productivity consumed

by herbivores) in ecosystems with higher producer nutritional

quality [10,16], with the rest of the decrease in producer biomass

being attributable to higher rates of producer natural mortality

[17]. Herbivore biomass did not increase with higher producer

nutritional quality across aquatic and terrestrial ecosystems

(Figs. 1C and E). The reason for this resides on the large

variability in primary productivity that occurs for any given

producer nutrient content both across aquatic and terrestrial

ecosystems [10,11]. That variability overwhelms the increasing

trend in the percent consumed with higher producer nutrient

content, such that absolute consumption (which corresponds to the

product between primary productivity and the fraction consumed

and it is expressed in g C consumed per square meter per year)

also varies largely for any given producer nutrient content [10,11].

Large variability in absolute consumption for any given producer

nutrient content implies large variability in the absolute transfer of

producer biomass to herbivores, which overrides any increases in

herbivore biomass that may result from higher growth rates in

ecosystems with higher producer nutritional quality. This leads to

the independence between herbivore biomass and producer

nutrient content across the broad range of ecosystems compared.

Our results also show that the shift in trophic structure as

producer nutrient quality increases is more pronounced for

terrestrial than for aquatic ecosystems. The increase in the

percentage of primary productivity consumed [11], the decrease

in producer biomass, and the increase in the ratio of herbivore-to-

producer biomass with higher producer nutritional quality are all

faster in terrestrial than in aquatic ecosystems (Fig. 1). This

suggests that terrestrial herbivores suffer more severe nutritional

limitation than their aquatic counterparts, which is consistent with

the larger imbalance between herbivore nutritional requirements

and diet nutrient availability in terrestrial than in aquatic

ecosystems [18,19]. Therefore, increases in producer nutrient

content should relieve the nutritional limitation of herbivores,

stimulate their metabolic and growth rates, and, as observed with

our results, increase herbivory rates, reduce producer biomass and

increase the ratio of herbivore-to-producer biomass to a greater

extent in terrestrial than in aquatic ecosystems. Indeed, the steep

increase in the ratio of herbivore-to-producer biomass observed

from woody (i.e. dominated by shrubs and trees) to herbaceous (i.e.

dominated by grasses and forbs) ecosystems points to stringent

nutritional limitation of herbivores in the former due to low

nutrient contents in the structural compounds of the producers.

To offer further support for more severe nutritional limitation of

herbivores in terrestrial than in aquatic ecosystems, we compared

the ratio of herbivore-to-producer biomass expressed in units of

carbon, nitrogen or phosphorus. Modeling and empirical studies

suggest that herbivores that are more severely limited by the

nutritional quality of their diet tend to retain nutrients in their

bodies to a greater extent [19–22]. Thus, ratios of herbivore- to-

producer biomass in terrestrial ecosystems should be higher when

expressed in nitrogen or phosphorus units than when expressed in

carbon units, whereas such differences should be less pronounced

in aquatic ecosystems. We compiled values of body nutrient

content (i.e., nitrogen or phosphorus as % body dry weight) for the

herbivores in a subset of the studies compiled ( Data Sets S1) and

plotted the ratios of herbivore-to-producer biomass in units of

carbon, nitrogen and phosphorus for diverse aquatic and

terrestrial ecosystems (Fig. 2). As expected, ratios in terrestrial

ecosystems tended to be higher in terms of nitrogen and

phosphorus than carbon units, but this was not the case for

aquatic ecosystems. This supports that terrestrial herbivores are

more severely limited by the nutritional quality of their diet than

aquatic herbivores.

Our findings suggest that the alleviation of nutritional limitation

of herbivores with higher producer nutrient content seems to be a

major factor controlling the efficiency of trophic transfer in aquatic

and terrestrial ecosystems. Higher producer nutrient contents, most

likely by stimulating the metabolic and growth rates of herbivores,

increase the intensity of herbivory, which leads to reduced producer

biomass, higher ratios of herbivore-to-producer biomass, and

steeper ecosystem trophic structure, with these changes being more

pronounced in terrestrial than in aquatic ecosystems. Thus,

producer nutritional quality is an important determinant of the

functions and values of ecosystems through its impacts on trophic

structure. Our results explain why ecosystems with higher producer

nutritional quality often feature higher consumer productivity [23],

faster recycling of energy and materials through the food web

[10,24], and smaller accumulation of refractory carbon [25].

Anthropogenic activities are altering the nutritional quality of

producers in ecosystems worldwide [26,27]. Such changes may

propagate upward through the trophic structure of ecosystems to

alter their functions and values, and those alterations may be more

severe in terrestrial than in aquatic ecosystems.

Materials and Methods

We searched the literature extensively to compile studies that

represented a wide range of aquatic (from pelagic to sediment flats

Ecosystem Trophic Structure
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Figure 1. The relationship between trophic structure and producer nutrient content. (A, B) The relationships between the ratio of
herbivore-to-producer biomass (H:P, in g C m22 : g C m22) and producer nitrogen and phosphorus contents. (C, E) The relationships between
herbivore biomass (HB, in g C m22) and producer nitrogen and phosphorus contents. (D, F) The relationships between producer biomass (PB, in g C
m22) and producer nitrogen and phosphorus contents. Solid symbols denote aquatic systems: triangles, pelagic systems (phytoplankton as dominant
producer); circles, sediment flats (benthic microalgae as dominant producer); squares, macroalgal beds; diamonds, submerged grass meadows
(seagrasses or freshwater macrophytes as dominant producer). Open symbols denote terrestrial systems: triangles, marshlands; circles, grasslands;
squares, tundra heathlands; diamonds, shrublands and forests. Solid and dashed lines depict the associations for aquatic and terrestrial systems
respectively. Analyses were done with the Mixed Model ANOVA: log y = m+b1 producer nutrient content+b2 system cluster+b3 producer nutrient content

Ecosystem Trophic Structure
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to submerged macrophyte beds) and terrestrial (from marshlands

to grasslands to forests) systems. Some systems have been studied

more than others and were better represented in the literature, but

even the values obtained for the less studied systems, albeit not

numerous, covered a wide spread. Thus our compilation (Data

Sets S1) reflects the availability of information in the scientific

record and the inclusion of more values for the less studied

systems, had they existed, would likely leave our conclusions

unaltered.

We only included studies that met three conditions. First, the

system was not deliberately impacted by human activities and,

thus, was mostly representative of natural conditions. Second,

since our analysis compares systems, and not populations or

individuals, we only considered studies that included all, or at least

the most abundant, producers and herbivores in the system. Third,

to eliminate any effects of seasonality on our results, we only

accepted studies that provided data for an entire year or at least

the entire growing season for annual producers.

Within-study variability was only known for a small fraction of

the studies culled and, thus, we could not weight the final mean

values compiled by the inverse of their variance as it is

recommended for meta-analyses [28]. However, all the mean

values compiled integrate whole systems over at least one year and,

thus, should have high and similar reliability. Furthermore, our

results, being based on a large number of mean values, have high

statistical power. Therefore, our conclusions are robust despite not

accounting for within-study variability [11,28].

Supporting Information

Figure S1 The relationship between the ratio of herbivore-to-

producer biomass (H:P, in g C m22 : g C m22) and primary

productivity. Solid symbols denote types of aquatic systems:

triangles, pelagic systems (phytoplankton as dominant producer);

circles, sediment flats (benthic microalgae as dominant producer);

squares, macroalgal beds; diamonds, submerged grass meadows

(seagrasses or freshwater macrophytes as dominant producer).

Open symbols denote types of terrestrial systems: triangles,

marshlands; circles, grasslands; squares, tundra heathlands;

diamonds, shrublands and forests. The solid and dashed lines

represent the mean ratios for aquatic and terrestrial systems

respectively. The analysis was done with the mixed Model

ANOVA: log H:P = m+b1 primary productivity+b2 system clus-

ter+b3 primary productivity x system cluster+b4 system type+e,
where m is a constant term, primary productivity is a continuous

fixed factor, system cluster (aquatic or terrestrial) is a categorical

fixed factor, primary productivity x system cluster denotes the

interaction between these two factors, system type (four types

within aquatic systems and four types within terrestrial systems,

with each type corresponding to a different symbol) is a categorical

Figure 2. The ratio (mean6SD) of herbivore-to-producer
biomass (H:P, in g element m22 : g element m22) in aquatic
and terrestrial systems. Gray, white and black circles correspond to
carbon, nitrogen and phosphorus units, respectively. Ratios were
analyzed with a two way ANOVA with element (carbon, nitrogen and
phosphorus) and system type as the two factors after log-transforma-
tion to comply with the assumptions of ANOVA. Ratios varied among
elements (P,0.001) and also among system types (P,0.001). Most
importantly, the differences among elements depended on the system
type considered (P,0.05 for the interaction between element and
system type) indicating that, for terrestrial systems, ratios expressed in
carbon units tended to be lower than ratios expressed in nitrogen or
phosphorus units, but not for aquatic systems.
doi:10.1371/journal.pone.0004929.g002

x system cluster+b4 system type+e, where y is the given dependent variable, m is a constant term, producer nutrient content is a continuous fixed factor
and corresponds to either nitrogen (Figs. 1 A, C, D) or phosphorus (Figs. 1 B, E, F), system cluster (aquatic or terrestrial) is a categorical fixed factor,
producer nutrient content x system cluster denotes the interaction between these two factors, system type (four types within aquatic systems and four
types within terrestrial systems, with each type corresponding to a different symbol) is a categorical random factor, and e represents unexplained
variance. The parameters of the Mixed Model ANOVA were estimated with maximum likelihood. The dependent variable was log transformed to
comply with the assumptions of ANOVA. The variable producer nutrient content has measurement error, but that error is much smaller than the
measurement error in any of the dependent variables, thereby allowing for the use of the model [5,29]. We tested for the significance of producer
nutrient content, system cluster and their interaction after accounting for the effect of system type. The ratio of herbivore-to-producer biomass (H:P, in
g C m22 : g C m22) increased with higher producer nutrient content (P,0.001 for producer nitrogen content; P,0.001 for producer phosphorus content),
and the rate of increase was faster for terrestrial than for aquatic systems (P,0.05 for the interaction between producer nitrogen content and system
cluster; P,0.05 for the interaction between producer phosphorus content and system cluster). Herbivore biomass (HB, in g C m22) was unrelated to
producer nutrient content (P = 0.68 for producer nitrogen content; P = 0.64 for producer phosphorus content) within aquatic or terrestrial systems
(P = 0.83 for the interaction between producer nitrogen content and system cluster; P = 0.45 for the interaction between producer phosphorus content
and system cluster). Producer biomass (PB, in g C m22) decreased with higher producer nutrient content (P,0.001 for producer nitrogen content;
P,0.01 for producer phosphorus content). The rate of decrease in producer biomass with higher producer nitrogen content was faster, albeit only
marginally, for terrestrial than for aquatic systems (P = 0.06 for the interaction between producer nitrogen content and system cluster). Producer
biomass also decreased faster with higher producer phosphorus content in terrestrial than in aquatic systems, but that difference was driven by the
confined distribution of grasslands at the low end of the association for terrestrial systems. In fact, the interaction between producer phosphorus
content and system cluster was significant (P,0.05) when the effect of system type was not accounted for in the Mixed Model ANOVA, but not so
(P = 0.84) when that effect was accounted for. As such, we do not depict the association lines in Fig. 1F since the lines represent significant differences
in slope between system clusters after accounting for the effect of system type, which is not the case here.
doi:10.1371/journal.pone.0004929.g001
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random factor, and e represents unexplained variance. The

parameters of the Mixed Model ANOVA were estimated with

maximum likelihood. The dependent variable (i.e. H:P) was log

transformed to comply with the assumptions of ANOVA. The

variable primary productivity has measurement error but this

model is adequate because that measurement error is much

smaller than the measurement error in the dependent variable

[5,29]. We tested for the significance of primary productivity,

system cluster and their interaction after accounting for the effect

of system type. The ratio was unrelated to primary productivity

(P = 0.60 for primary productivity) regardless of what system

cluster was considered (P = 0.26 for the interaction).

Found at: doi:10.1371/journal.pone.0004929.s001 (8.43 MB TIF)

Data Sets S1 Data Sets for Figures 1 and 2 in Main Text and

Figure S1.

Found at: doi:10.1371/journal.pone.0004929.s002 (0.49 MB

PDF)
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