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Abstract

Background: Critical to the development of molecular signatures from microarray and other high-throughput data is
testing the statistical significance of the produced signature in order to ensure its statistical reproducibility. While current
best practices emphasize sufficiently powered univariate tests of differential expression, little is known about the factors
that affect the statistical power of complex multivariate analysis protocols for high-dimensional molecular signature
development.

Methodology/Principal Findings: We show that choices of specific components of the analysis (i.e., error metric, classifier,
error estimator and event balancing) have large and compounding effects on statistical power. The effects are
demonstrated empirically by an analysis of 7 of the largest microarray cancer outcome prediction datasets and
supplementary simulations, and by contrasting them to prior analyses of the same data.

Conclusions/Significance: The findings of the present study have two important practical implications: First, high-
throughput studies by avoiding under-powered data analysis protocols, can achieve substantial economies in sample
required to demonstrate statistical significance of predictive signal. Factors that affect power are identified and studied.
Much less sample than previously thought may be sufficient for exploratory studies as long as these factors are taken into
consideration when designing and executing the analysis. Second, previous highly-cited claims that microarray assays may
not be able to predict disease outcomes better than chance are shown by our experiments to be due to under-powered
data analysis combined with inappropriate statistical tests.

Citation: Aliferis CF, Statnikov A, Tsamardinos I, Schildcrout JS, Shepherd BE, et al. (2009) Factors Influencing the Statistical Power of Complex Data Analysis
Protocols for Molecular Signature Development from Microarray Data. PLoS ONE 4(3): e4922. doi:10.1371/journal.pone.0004922

Editor: Vladimir B. Bajic, University of the Western Cape, South Africa

Received July 18, 2008; Accepted February 5, 2009; Published March 17, 2009

Copyright: � 2009 Aliferis et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The work was in part supported by grant 2R56LM007948-04A1. The funding agencies had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: constantin.aliferis@nyumc.org

Introduction

Microarrays and other high-throughput assaying technologies

have generated immense opportunities for discovery spanning the

spectrum from basic research to clinical studies [1–3]. As the field

moves from simpler analyses (e.g., differential expression of single

genes and clustering) to more complex analyses such as developing

multivariate molecular signatures in supervised fashion, the

interpretation of microarray data involves multifaceted analysis

protocols with many sophisticated and interacting analytic steps

[4]. Developing molecular signatures in particular, is playing an

increasingly important role in a variety of research design

objectives both in basic and translational studies. Such objectives

include, for example, detecting complex and coordinated patterns

of transcriptional response to chemotherapeutic agents on cell lines

and predicting subsequent patient treatment response on the basis

of this information [5], discovery of new drug targets [6], discovery

of biomarkers [7], subtyping diseases [8] and personalizing

treatments [9].

The reproducibility of gene expression microarrays across

laboratories for individual gene expression measurements and

the ability to differentiate between disease subtypes are well

established in recent studies [2,10,11]. Essential to developing

molecular signatures is not only assay reproducibility however, but

also statistical reproducibility. The latter can be directly assessed by

tests of statistical significance of the produced signatures. These

tests are usually permutation based and were introduced in

bioinformatics by [12,13] based on foundational works of [14,15].

Although substantial efforts have been invested in studying the

statistical power of differential gene expression [16,17], much less

is known currently about the power of testing molecular signatures

for statistically significant (hence reproducible, ‘‘real’’) signal. The

present work shows that four specific components of data analysis

(error metric, error estimator, classifier, and event balancing) have
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significant and compounding effects on probability (i.e., statistical

power) to detect true signal in molecular signatures. These findings

can help researchers design data analysis protocols that require

fewer samples; they also shed light on the appropriateness of

microarrays as an assay platform for outcome prediction. The

present report uses theoretical analysis, simulation experiments,

and empirical analysis of 7 human gene expression datasets

[8,9,18–22]. The datasets were chosen so that the comparison to a

previously published highly-cited protocol [23] constitutes a case

study that demonstrates the practical benefits of improved

statistical power on the resource efficiency and validity of analysis.

Results

We start with a theoretical analysis that shows how the choice of

four specific components of data analysis protocols for molecular

signature development and their statistical testing affects the

statistical power to detect predictive signal. We then present a

simulation study that demonstrates that depending on choice of

the above components even strong signals can fail to be detected

with routine sample sizes and that the effects of each component

on statistical power are large and compounded. We subsequently

test the insights and hypotheses generated by the theoretical

analysis and simulation studies with real gene expression data.

Specifically, we analyze 7 datasets [8,9,18–22]. These datasets are

important for two reasons: first, they have been used to derive both

clinically relevant signatures and to investigate underlying

biological processes [8,9,18,20–22,24]. Second, a highly-cited

prior analysis of the same datasets [23] reached the conclusion that

statistically significant signal cannot be detected in 5 out of 7

datasets and thus either microarrays are incapable of predicting

clinical outcomes (and by extension, giving insight into the biology

of disease progression) or that studies with a few hundred samples

are insufficient and only sample sizes in the order of thousands will

lead to statistically reproducible findings [25,26]. Our investigation

into the factors that affect power allows us to test the hypothesis

that these prior results were due in large part to an underpowered

analysis protocol, showing thus the great importance of careful

planning of data analytics with an eye toward sufficient power.

Theoretical analysis
Effects of error metric on power. Fundamental to the

assessment of predictive signal of molecular signatures is the choice

of error metric that is used to quantify predictivity. An unfortunate

frequent practice in the field of bioinformatics to date is to use as

classification performance metric the proportion of

misclassifications. Discontinuous error metrics such as proportion

of misclassifications, sensitivity, and specificity are ‘‘improper

scoring rules’’ however, since they impose arbitrary thresholds on

predictor models and do not capture the uncertainty in the

predictions [27]. The proportion of misclassifications moreover, is

known to yield estimators with low power to detect signals in data

when compared to other metrics such as area under the receiver

operating characteristic (ROC) curve (AUC) [27]. The ROC

curve is the plot of sensitivity versus 1-specificity for a range of

continuous or discrete classification threshold values. AUC is

equivalent to a rank correlation between predicted outcome

probability and the observed outcome, requiring no

categorization. AUC ranges from 0 to 1, with an AUC equal to

0 indicating the worst possible classifier, 0.5 representing a random

(i.e., uninformative) classifier, and 1 representing perfect

classification. Testing whether predictions are unrelated to true

outcomes using AUC is equivalent to the Wilcoxon test, while

testing for proportion of misclassifications is equivalent to using the

Mood median test which has been shown to have poor efficiency

compared to the Wilcoxon test [28]. A broader, non-parametric

justification why AUC is more discriminative than proportion of

misclassifications is provided by [29]. Supporting Information File

S1 provides an example where two signatures have the same

proportions of misclassifications but different predictivity which is

captured by the AUC metric. Although counter-examples do exist,

they are relatively rarer [29]. Hence the AUC is more powerful

than proportion of misclassifications.

Effects of classifier on power. Statistical power is increased

whenever the tested effect size (predictivity in our context) is larger

and the variance is smaller (assuming fixed sample size for

simplicity). Hence using a classifier that produces the most

predictive signature (everything else being equal) directly

translates to improved statistical power for detecting predictive

signal. Statistical machine learning theory proves that different

classifiers have different inductive biases (i.e., preferences for

classes of models), and that a classifier family has to be matched to

the characteristics of the domain in order to achieve optimal

predictivity (and correspondingly optimal power to detect signal)

[30]. Indeed, recent empirical studies with gene expression data

have shown that specific classifiers, such as Support Vector

Machines (SVMs) produce models with stronger predictive ability

(signal) and higher robustness across many high-throughput

datasets compared to several widely-used alternatives [31–33].

Other authors also corroborate the need to choose classifiers

carefully by recommending against some complex classifiers in

order to avoid overfitting [4]. The above results have been

neglected by some authors [23] who claim that ‘‘in principle, there is

no biological or mathematical reason why one particular classification method

should be better than others’’ and do not optimize the choice of

classifier for the data at hand when conducting statistical testing of

microarray gene expression signatures. We will show that this

adversely affects the power of their analyses.

Effects of error estimator on power. Procedures that

estimate the generalization error of a signature are called ‘‘error

estimators’’. A commonly used estimator is the holdout estimator.

The holdout estimator is based on splitting the data in two random

non-overlapping parts, deriving a signature from the first one and

assessing its error in the second one. The holdout estimator is

asymptotically unbiased, that is, with infinite test sample it

produces an estimate that is the true error in the population. In

small samples holdout estimates often deviate from the large-

sample value. This variability is reduced as sample size grows [34].

From standard power-size analysis considerations it follows that

the lowest-variance unbiased estimator has highest power [35].

Unfortunately, the holdout estimator has larger variance com-

pared to several other unbiased estimators used in molecular

signature studies [34], and this naturally leads to reduced statistical

power. We elaborate on the reasons for this behavior by

comparing the holdout to the repeated 10-fold cross-validation estimator

[36]. The latter estimator is a variant of the well-known 10-fold

cross-validation estimator which is calculated by balanced splitting

of the data into 10 non-overlapping sample sets used for testing

(while each complementing set is used for training) and averaging

the test errors. The repeated 10-fold cross-validation estimator is

obtained by running regular 10-fold cross-validation for 100 (or

other sufficient number of) times with different splits of data into

training and testing sets each time and by reporting the average

estimate over all runs.

To see why holdout has higher variance than repeated 10-fold

cross-validation, consider that there are several major sources of

variance of estimators in practical use. These are: sampling variance,

split variance, testing set size, and internal variance. Sampling variance

Power Molecular Signatures
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refers to the uncertainty associated with drawing a random sample

of fixed finite size from a population. Split variance refers to

uncertainty associated with drawing a random split of training and

testing sets from all possible splits of a given sample with fixed

training-testing ratio. Testing set size variance refers to variability

in error estimates due to finite testing dataset size. Finally, internal

variance refers to uncertainty associated with classifier instability

(i.e., different training datasets lead to different signatures) and

increases as training set size decreases [30,36]. The repeated 10-

fold cross-validation essentially eliminates split variance by using

many splits and averaging over them, and furthermore it reduces

internal variance by using more sample for training than holdout

(under typical training-testing split ratios). Both estimators have

the same sampling variance. Finally, while testing set size variance

is larger in the repeated 10-fold estimator than the holdout, the

combination of higher split and internal variance makes overall

the holdout to have higher variance and to be less powerful than

repeated 10-fold cross-validation in many practical situations.

Unfortunately this is often neglected in practical analysis and

therefore using the holdout estimator leads to reduced ability to

establish statistical significance of signatures.

Effects of event balancing on power. When in the context

of error estimation one enforces that both the training and testing

sets have the same proportion of events and non-events as the

original full data, we will call such error estimation ‘‘event

balanced’’. An important and subtle shortcoming of some data

analysis protocols is to not balance the training and testing data,

seriously affecting variance, statistical power (and potentially

biasing error estimates). For example, in [23] the models were

trained on samples with 50% event rates. They were then tested

on samples the event prevalence of which was far below 50% thus

yielding estimates that were less efficient than the standard holdout

estimator in which the data are split at random. The result of this

is evident in Figure 2 from [23] in which as the sampling moves to

larger training sets, this forces the testing sets in addition to being

smaller, to implicitly have a very low event rate and thus large

variance of error estimates. Notice that most classifiers, including

the one used by [23], are designed to work under the assumption

that the training and testing sets are identically distributed [30]. It

is thus unrealistic to expect in general that a classifier that is

trained using data from a distribution where events and non-

events are equally likely will perform well, without adjustments

[37], in a different distribution where this ratio is heavily distorted.

This is especially so when using an error metric that is sensitive to

event priors such as proportion of misclassifications. Supporting

Information File S2 shows via an example that this shift in

distributions can affect the performance of even an optimal

classifier, i.e., one that has learned perfectly the distribution of the

training data, to the point of appearing to be no better than

flipping a coin.

Simulation experiments
A primary purpose of the simulation experiments is to

demonstrate and study the relative importance of the above

factors that are hypothesized on the previous theoretical grounds

to influence power of complex data analysis of high-throughput

data. The simulation uses an idealized analysis in which the data-

generating process is known and the true moderate-strength signal

is present even in small samples. Such analysis is typical in

literature discussing statistical issues surrounding microarray data

because knowing the generative model allows a precise charac-

terization of the strengths and limitations of data analysis

techniques [38]. Details of the simulation are provided in the

Supporting Information File S3. A second goal is to examine the

statistical power of a previously published data analysis protocol

[23] (‘‘Protocol I’’, that employs non-balanced holdout estimator

with proportion of correct classifications and a nearest-centroid

classifier), specifically when varying these four factors. Finally, a

third goal is to test the relative power of the theoretically expected

more powerful protocol (‘‘Protocol II’’, that employs balanced

repeated 10-fold cross-validation estimator with AUC as the error

metric and SVMs as classifier). The best protocol in the

simulations will then be validated in the next sub-section with

real data.

The left part of Figure 1 demonstrates the inability of Protocol I

[23] to detect signal which is detectable by Protocol II. The right

part of this figure shows results of application of Protocol II and

assessment of its statistical significance by permutation testing

(details about statistical significance testing are provided in the

Materials and Methods section). Overall Protocol I has remarkably

small power ranging from less than 0.002 to 0.3 (depending on the

criterion used for rejecting the null hypothesis, please see

Supporting Information File S3). In contrast, Protocol II has

power 0.93. By replacing proportion of misclassifications with

AUC in Protocol I, its power increases to 0.6, and by additionally

adding the use of SVMs, it further increases to 0.75. Conversely, if

we start with Protocol II and replace AUC with proportion of

misclassifications and SVMs with the classifier from [23], these

changes reduce the power from 0.93 to 0.46. These empirical

power estimates do not provide the exact power in real datasets

since the true nature of the corresponding distributions is not

known and varies among datasets. However the simulation

strengthens our hypothesis that the choice of error metric,

classifier, event balancing and error estimator have large impact

on study results and sheds light on the limitations of the analyses

described in prior work [23]. In the next sub-section we test the

Protocol II in real data (where Protocol I was previously

independently applied).

Analysis of real gene expression data
Figure 2 reports the AUC estimates produced with Protocol II

for each one of the 7 real datasets along with p-values for testing

the null hypothesis that the produced signatures are uninformative

(i.e., with no signal). As can be seen in Figure 2, statistically

significant signal (at the 0.05 level) can be detected in 6 out of 7

datasets compared to 2 out of 7 in the prior study that had used

the less powerful Protocol I [23]. The p-values are calculated by a

standard label-permutation procedure (see Materials and Methods

section). The histograms in Figure 2 depict with blue the

distribution of the repeated 10-fold cross-validation AUC

estimates from Protocol II for datasets produced under the null

hypothesis of ‘‘no predictive signal’’ and with red the repeated 10-

fold cross-validation AUC estimates from Protocol II for the

original datasets.

The above repeated 10-fold cross-validation AUC estimates in

the datasets that had statistically significant signal ranged from

0.67 to 0.76, indicating that even signal with weak strength can be

shown in real data to be statistically significant with moderate

sample sizes. The U-statistic based confidence intervals for

repeated 10-fold cross-validation AUC estimates are provided in

the Supporting Information File S4 and they are consistent with

the above conclusions. Notice also that under the null hypothesis

of no predictive signal the distribution of the repeated 10-fold

cross-validation AUC estimates is centered at 0.5, which

corroborates the theoretical expectation that the error estimates

are unbiased and that Protocol II does not overfit (more details in

the Supporting Information File S5).

Power Molecular Signatures
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A note on the choice of null hypothesis for statistical

significance testing. The combined simulated and real data

results show very significant differences in the ability of Protocol I

and II to detect real signal. This prompted us to investigate further

the underlying differences between the two protocols. An

unanticipated finding was that a major discrepancy between the

two protocols exists in the precise null hypothesis tested: Ideally,

one wishes to test the broad null hypothesis ‘‘there is no signal in

the data’’. Rejecting this hypothesis entails that the observed signal

in the sample will generalize in the population where the sample is

drawn from. There exist several reasons why an observed signal

may not be present in the population. First, the available sample

may be non-representative of the population. Another reason is

that a splitting procedure of the sample into training and testing

parts may yield non-representative training or testing datasets (we

will refer to this as ‘‘bad’’ split of the data). The previously

published procedure for statistical significance testing of the

signatures of Protocol I (see Materials and Methods section)

eventually tests for only one source of non-reproducible signal:

‘‘bad’’ split of the sample data (and also conducts a sensitivity

analysis on the training sample size). If this procedure instead was

using sampling with replacement, it would amount to a simple

Bootstrap estimator and thus would test for a non-representative

sample as well. However because the Bootstrap introduces a bias

in the error estimates that is difficult to correct, the above

procedure samples without replacement and tests only for a

restricted null hypothesis (i.e., ‘‘bad’’ data split). In contrast, the

statistical significance procedure utilized by Protocol II (see

Materials and Methods section) uses a repeated split cross-

validation estimator effectively eliminating uncertainty

introduced by non-representative splits. In addition by

permuting labels, Protocol II effectively samples from a

population where the gene expression patterns as well as the

event rate are fixed, and there is no relationship between gene

expression patterns and outcome (hence it is equivalent to the null

hypothesis of no signal in the population). Under this label

permuting any apparent relationship between gene expression

patterns and outcomes is due to sampling variation. Thus Protocol

II tests for a much more informative null hypothesis than the

statistical test in Protocol I. Notice that the four factors affecting

power we identified earlier affect both null hypotheses and have

noteworthy effects on both protocols as shown in the simulation

studies. The null hypothesis tested by the test of significance of

Protocol I is too limited and redundant (i.e., as long as a repeated

split cross-validation estimator is used) and should not be pursued

in practice. However because of the broad implications previously

drawn by applying Protocol I, it was necessary to test it in the

present study in order to precisely identify the reasons why this

protocol failed to establish signal in real microarray datasets.

Discussion

The present work shows that several important components of

data analysis for molecular signature creation have significant and

compounding effects on probability to detect true signal (i.e.,

statistical power). Four factors (choice of error metric, classifier,

error estimator, and event balancing) were investigated by

theoretical assessment, simulation study, and application to 7

human microarray datasets.

Our findings indicate that the choices made in the data analysis

protocol corresponding to the four factors studied can improve

power and by extension research efficiency. Increasing study

sample size (as for example proposed by [26]) increases statistical

power, but also dramatically increases study costs and delays study

completion. In contrast, application of efficient statistical protocols

has the potential to significantly improve the chances of detecting

real signal with modest sample sizes. Conversely, even very large

samples can be ‘‘wasted’’ when analyzed with under-powered (i.e.,

inefficient) data analysis procedures.

Our data also shows clearly that the highly-cited study [23] that

concluded that ‘‘Five of the seven largest published studies addressing cancer

prognosis did not classify patients better than chance’’ reached these

conclusions because of two main reasons: first, the specific null

hypothesis tested was inappropriate and second, because several

Figure 1. Comparison of Protocols I and II in simulated data. Left: Example where the Protocol I [23] applied to simulated data with true
moderate-strength signal fails to detect statistical significance at all training set sizes. Right: a more powerful protocol (Protocol II, based on event
balanced repeated 10-fold cross-validation with SVM classifiers and AUC metric) detects statistically significant predictive signal according to an
outcome-value permutation test. Specifically, the p-value of the null hypothesis of no signal is 0.0025. The blue bars depict the distribution of
repeated 10-fold cross-validation AUC estimates over 400 random datasets produced via outcome value permutation. The red line depicts the value
of repeated 10-fold cross-validation AUC on the original data (i.e., without perturbing the outcome values).
doi:10.1371/journal.pone.0004922.g001
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underpowered analysis components were employed. These two

reasons were inextricably intertwined in the data analysis protocol

employed. The ensuing controversy in the field of disease outcome

prediction using microarrays seems thus to be an artifact of data

analysis and not an intrinsic limitation of this assaying technology.

The present findings therefore have direct positive implications for

the feasibility of related research in new drug development,

personalizing treatments and adapting clinical trials to patient

genomic characteristics. Inappropriate data analysis methodology

can create a climate of distrust about the underlying assay

technology and findings that may lead to wasteful development

processes. For example in our assessment, using a series of datasets

for validation [39–42] likely wastes time and money with no

substantial benefit. Validation using a single independent dataset

from the same population of patients as used for construction of

the signature is sufficient if the protocols used are unbiased and

appropriately powered.

We note that it is possible that gene selection and better

optimization/choice of classifiers could achieve predictivity and

power improvements over the protocol used in the present paper

[33]. For example, gene selection and error estimation using the

more sophisticated but computationally more demanding nested

cross-validation designs [43] was not pursued in order to keep the

computational requirements of running extensive permutation

tests under control.

We finally observe that the factors studied have been the subject

of substantial prior research in biostatistics and bioinformatics.

However their relationship to statistical power for molecular

signature testing has not been systematically investigated previ-

ously. For example, recent work has proposed a much-needed and

comprehensive set of guidelines for the analysis and reporting of

microarray and other ‘‘omics’’ data [4]. However the choice of

classifier is not addressed as of crucial importance, the choice of

error metric and estimator is not linked to statistical power, and

event balancing as a source of bias and low power is not addressed.

These omissions demonstrate the subtle effects of these factors on

statistical power and that these effects have gone largely unnoticed

in the field so far.

In conclusion, factors that affect the statistical power of complex

analysis protocols for molecular signature development from high-

Figure 2. Application of Protocol II to human microarray data. Each histogram is the distribution of the repeated 10-fold cross-validation AUC
estimates for each dataset under the null hypothesis ‘‘there is no signal present in the data’’ (as computed by 400 random outcome value
permutations). The red line in each graph is the observed value of AUC estimated by the repeated 10-fold cross-validation on the original data. AUC
and p-values are shown for each dataset in the embedded table. Bold p-values indicate that the null hypothesis is rejected at the 0.05 level in these
datasets.
doi:10.1371/journal.pone.0004922.g002
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throughput data constitute an important area for study. The

present paper showed that choices of error metric, classifier, error

estimator and event balancing have large and compounding effects

on statistical power. They can further be combined with

inappropriate null hypotheses to yield ineffective analysis proto-

cols. An experimental comparison of data analysis protocols

reveals that previous highly-cited claims that microarray assays

may not be able to predict clinical outcomes better than chance

are byproducts of data analysis limitations. Research designs of

high-throughput studies will benefit by using the most powerful

data analysis protocols available combined with appropriate

statistical tests and doing so leads to substantial economies of

required sample. New data analysis protocols should be tested for

statistical efficiency before deploying for building molecular

signatures. We recommend testing against existing protocols (such

as one presented in this paper) in simulated or real data with

known predictive signal using datasets in which the experimenter

varies sample sizes [44,45].

Materials and Methods

Microarray Datasets
The characteristics of the human datasets analyzed [8,9,18–22]

are summarized in Table 1.

Error / prediction performance metric
The area under the receiver operating characteristic (ROC)

curve (AUC) is calculated by the formula provided in [46].

Proportion of misclassifications is calculated as the ratio:

number of wrong classification divided by total number of

classifications.

Classifiers & gene selection
Protocol I [23] involves selection of 50 genes with the highest

correlation in training data with outcome variable according to

Pearson’s correlation coefficient. Then molecular signatures are

developed based on these genes using a nearest-centroid prediction

method [47].

Protocol II uses the LibSVM implementation of Support Vector

Machines (SVMs) to build molecular signatures with a fixed

misclassification penalty parameter C = 100, and a linear kernel

[48]. Gene selection is not employed to avoid increased

computational costs. We note that SVMs have built-in regulari-

zation however, which means that the learning algorithm

penalizes large weights of predictors thus favoring simpler models

by implicitly selecting genes, without using explicit gene selection

procedures [49,50].

Statistical analysis
Statistical significance of the molecular signatures in Protocol I

replicates the procedure of [23]. Namely, 500 training datasets of

size n are obtained by sampling without replacement the original

dataset (of size N) such that each training set has n/2 subjects with

each outcome. For each training set, the testing set is defined as its

complement (of size N-n). The molecular signatures are then fitted

on the training sets and their classification performance is assessed

on the corresponding testing sets. The above procedure is repeated

for different training set sizes ranging from 10 to a maximum value

which was chosen so that the testing set has at least one subject

representing each outcome. Given a distribution of classification

performances for each training set size, the corresponding 95%

intervals are constructed. The original dataset is considered to

contain predictive signal if the upper 95% interval limit is less than

0.5 proportion of misclassifications. Notice that the published

description of this method [23] does not explicitly state whether

the above condition for significance should hold in at least one

training set size n, or all possible training set sizes, or the majority

of them. Thus we examine all three possibilities in the present

work.

For Protocol II, we use outcome value-permutation to test in

each dataset the null hypothesis of no predictive signal [12,13].

This is also known as a randomization test or a Monte-Carlo

permutation test. We construct the distribution corresponding to

the null hypothesis by randomly permuting the values of the

outcome variable (400 times) and then using SVMs (as described

above) to compute the signature and repeated 10-fold cross-

validation estimate of AUC for each permuted dataset. The

repeated 10-fold cross-validation estimate from the original data is

then compared to this distribution, and p-values correspond to the

proportion of permuted estimators (under the null hypothesis) that

are more extreme than the repeated 10-fold cross-validation

estimate from the original (non-outcome value permuted) data.

Supporting Information

File S1 Comparison of proportion of misclassifications with area

under ROC curve (AUC)

Found at: doi:10.1371/journal.pone.0004922.s001 (0.06 MB

DOC)

File S2 Demonstration of pitfalls of non-balanced data

Found at: doi:10.1371/journal.pone.0004922.s002 (0.10 MB

DOC)

File S3 Details of simulation experiments

Found at: doi:10.1371/journal.pone.0004922.s003 (0.08 MB

DOC)

Table 1. Characteristics of gene expression microarray datasets analyzed in this study.

Dataset authors and
reference

Sample size and number of
events Number of variables (genes) Predicted event (outcome)

Beer et al [18] 86 (24 events) 7129 Lung adenocarcinoma survival

Bhattacharjee et al [19] 62 (31 events) 12600 Lung adenocarcinoma 4-year survival

Iizuka et al [21] 60 (20 events) 7070 Hepatocellular carcinoma 1-year recurrence-free survival

Pomeroy et al [22] 60 (21 events) 7129 Medulloblastoma survival

Rosenwald et al [20] 240 (138 events) 7399 Non-Hodgkin lymphoma survival

Veer et al [9] 97 (46 events) 24188 Breast cancer 5-year metastasis-free survival

Yeoh et al [8] 233 (32 events) 12240 Acute lymphocytic leukemia relapse-free survival

doi:10.1371/journal.pone.0004922.t001
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File S4 Confidence intervals for repeated 10-fold cross-valida-

tion AUC estimates

Found at: doi:10.1371/journal.pone.0004922.s004 (0.08 MB

DOC)

File S5 Demonstration that Protocol II is not biased
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