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Abstract

Protein methylation is one type of reversible post-translational modifications (PTMs), which plays vital roles in many cellular
processes such as transcription activity, DNA repair. Experimental identification of methylation sites on proteins without
prior knowledge is costly and time-consuming. In silico prediction of methylation sites might not only provide researches
with information on the candidate sites for further determination, but also facilitate to perform downstream
characterizations and site-specific investigations. In the present study, a novel approach based on Bi-profile Bayes feature
extraction combined with support vector machines (SVMs) was employed to develop the model for Prediction of Protein
Methylation Sites (BPB-PPMS) from primary sequence. Methylation can occur at many residues including arginine, lysine,
histidine, glutamine, and proline. For the present, BPB-PPMS is only designed to predict the methylation status for lysine
and arginine residues on polypeptides due to the absence of enough experimentally verified data to build and train
prediction models for other residues. The performance of BPB-PPMS is measured with a sensitivity of 74.71%, a specificity of
94.32% and an accuracy of 87.98% for arginine as well as a sensitivity of 70.05%, a specificity of 77.08% and an accuracy of
75.51% for lysine in 5-fold cross validation experiments. Results obtained from cross-validation experiments and test on
independent data sets suggest that BPB-PPMS presented here might facilitate the identification and annotation of protein
methylation. Besides, BPB-PPMS can be extended to build predictors for other types of PTM sites with ease. For public
access, BPB-PPMS is available at http://www.bioinfo.bio.cuhk.edu.hk/bpbppms.
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Introduction

Many proteins experience post-translational modifications

through which they present structural as well as functional diversity

and play important roles in many biological processes. Experimen-

tal identification and characterization of PTMs is labor-intensive

and expensive in the absence of prior knowledge concerning PTMs.

Computational prediction of PTM sites may provide researchers

with information on the candidate PTM sites for further

determination and downstream experimental characterizations.

Recently, protein methylation has attracted more and more

attentions with the identification of an growing number of

methyltransferases such as protein arginine methyltransferases

(PRMTs) [1–3], histone lysine methyltransferases (HKMTs)[4–6].

Two previous works were done for protein methylation site

prediction. Daily et al [7] built a predictor for arginine and lysine

methylation using SVMs based on the hypothesis that PTMs

preferentially occurs intrinsically disordered regions. They collected

positive training datasets (methylated sites) from SWISS-PROT

database (release 45)[8] and negative training datasets (non-

methylated sites) from the same proteins, which include all arginines

and lysines not marked as methylated. Examples in training datasets

were encoded by a set of features including amino acid frequencies,

aromatic content, flexibility scalar, net charge, hydrophobic

moment, beta entropy, disorder information as well as PSI-BLAST

profiles. In another team, Chen et al. [9] constructed the first online

server MeMo for arginine and lysine methylation prediction via

SVMs strategy. Positive training datasets are composed of peptides

including the experimentally verified methylated lysines and

arginines from SWISS-PROT database (release 48) plus manually

curated data from PubMed literatures. Negative training datasets

were collected through the similar way described in previous works

[7,10]. Examples in training datasets were represented by

orthogonal binary coding scheme.

In the present study, a novel approach called Bi-profile Bayes was

theoretically developed to extract features from training datasets,

through which we constructed an online protein methylation

prediction tool BPB-PPMS based on SVMs algorithm. As for

encoding schemes (feature extraction approaches) employed in

works [7,9], each target site was represented in a single feature space

manner (such as either intrinsically disordered regions for

methylated peptide sequence or ordered regions for un-methylated

peptide sequence) or through fixed binary coding scheme (fixed

coding of each residue at any position for both methylated peptide

sequence and un-methylated peptide sequence). Theoretically, each

peptide sequence should exhibit different features in positive and

negative feature spaces, respectively. It would be more informative

to combine peptide sequence features in positive and negative
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feature spaces than single feature space or fixed binary encoding

scheme. Bi-profile Bayes defines positive (methylated) and negati-

ve(un-methylated) feature spaces based on known experimentally

verified data sets and each target site was represented in a bi-feature

space manner, which was encoded by positive and negative feature

vectors (see details in Methods). Results obtained from cross-

validation experiments and test on independent data sets indicate

the effectiveness of Bi-profile Bayes. BPB-PPMS is a novel general

arginine and lysine methylation online tool and can provide

probability information for prediction results other than that

provided by MeMo.

Methods

Data collection
Methylated sites and non-methylated sites were collected as

positive training datasets and negative training datasets, respec-

tively. The sliding window strategy was utilized to extract positive

and negative data from protein sequences as training data, which

were represented by peptide sequences with arginine and lysine

symmetrically surrounded by flanking residues. The positive

training dataset are composed of all the arginines and lysines

which were annotated as experimentally verified methylation on

proteins from SWISS-PROT database (release 56.1). The negative

training datasets include all the arginines and lysines that were not

marked by any methylation information on the same proteins, the

rational of which is that the resulting negative training samples are

more likely to be non-methylation sites than those obtained by

random as these proteins were experimentally investigated.

Candidate proteins for positive training datasets extraction were

retrieved by searching information containing ‘‘Omega-N-meth-

ylated arginine’’, ‘‘symmetric dimethylarginine’’, ‘‘Omega-N-

methylarginine’’ and ‘‘asymmetric dimethylarginine’’ for methyl-

ated arginines as well as ‘‘N6,N6,N6-trimethyllysine’’, ‘‘N6,N6-

dimethyllysine’’, ‘‘N6-mehtylated lysine’’ and ‘‘N6-methyllysine’’

for methylated lysines under the description field in the feature

table of Swiss-prot database. Total 363 candidate proteins

containing methylated arginines and 977 candidate proteins

containing methylated lysines were collected, respectively. Then,

experimentally verified methylated arginines and lysines were

recorded for later positive training datasets extraction by excluding

those annotated by ‘‘By similarity’’, ‘‘Potential’’ or ‘‘Probable’’ in

the description field. In total, this yielded a total of 434 peptide

sequences containing validated methylated arginines and 550

peptide sequences containing validated methylated lysines with

sliding window size 11(the optimal window size for both arginine

and lysine is 11 after several trials of 5, 7, 9, 11, 13, 15, 17 and data

information regarding other sliding window sizes not shown here),

respectively. Negative training datasets (non-methylated sites) for

arginine and lysine were collected from sequences which contain

experimentally validated methylated sites and included all

arginines and lysines which were not annotated by any

methylation information as described in previous studies[7,9,10].

Homology reduction and data refinement
Training datasets obtained through the way introduced in the

data collection section may present the homology and redundancy

to some extent, which will overestimate the performance of the

prediction model. Therefore, homology reduction or redundancy

elimination requires to be performed. The way of redundancy

elimination or homology reduction theoretically depends on the

form of input data during the process of training, which is either

the entire sequence or the peptide sequence. The corresponding

homology reduction should be either sequence-based or window-

based. Otherwise, it will overestimate the performance of the

prediction model as well. Therefore, window-based homology

reduction was applied in our case. Homology reductions within

positive and negative datasets were performed with similarity

threshold 70% between any two peptide sequences. Thus, 216

positives and 1980 negatives for arginine as well as 188 positives

and 2157 negatives for lysine were obtained, respectively.

The size of the refined, non-redundant negative datasets is much

larger than that of positive training datasets, which will result in bias

prediction in favor of negative data. Although many approaches can

be exploited to solve the imbalanced machine learning issues,

under-sampling used in previous works [9,10] was employed to

overcome the imbalance between positive and negative datasets

with the optimal reduction of negative data to 3 times the number of

positive data in present study after trials of different ratios, which

retains the original distribution of negative examples in order to

avoid loosing diversity information as possible. Thus, the final

negative training datasets contain 648 peptide sequences for

arginine and 564 peptide sequences for lysine with peptide sequence

length 11. The resulting negative datasets and positive datasets were

pooled as the final training datasets and randomly split into 5

subsets, which share approximately equal number of items for 5-fold

cross-validation training.

Bi-profile Bayes for feature extraction
Suppose that we have an unlabeled sample

S~ s1,s2,s3, � � � ,snf g which denotes peptide sequence in our case,

where each sj j~0,1, � � � ,nð Þ stands for one amino acid and n

represents the length of peptide sequence, i.e. the size of sliding

window in this study. S belongs to one of two categories C1 or

C{1, where C1 and C{1 represent methylated sites (positive data)

and non-methylated sites (negative data), respectively. According

to Bayes’ rule, the posterior probability of S for these two

categories can be given by

P c1 Sjð Þ~ P S c1jð ÞP c1ð Þ
P Sð Þ ð1Þ

P c{1 Sjð Þ~ P S c{1jð ÞP c{1ð Þ
P Sð Þ ð2Þ

where P c1ð Þ and P c{1ð Þ denote the prior probability for each

category. Assume that sj j~1,2,3, � � � ,nð Þ are mutually indepen-

dent, Formula (1) and (2) can be rewritten as

P S c1jð Þ~ P
n

j~1
P sj c1j
� �

ð3Þ

P S c{1jð Þ~ P
n

j~1
P sj c{1j
� �

ð4Þ

By the above, Formulas (1) and (2) can be reformulated as

log P c1 Sjð Þð Þ~
Xn

j~1

log P sj c1j
� �� �

{log P Sð Þð ÞzC1 ð5Þ

log P c{1 Sjð Þð Þ~
Xn

j~1

log P sj c{1j
� �� �

{log P Sð Þð ÞzC2 ð6Þ
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where C1~log P c1ð Þð Þ and C2~log P c{1ð Þð Þ. Thus, the decision

function can be represented by formula (7)

f Sð Þ~sgn log P c1 Sjð Þð Þ{log P c{1 Sjð Þð Þð Þ ð7Þ

Assume that prior distribution of category is uniform, namely,

P c1ð Þ~P c{1ð Þ, Formula (7) can be rewritten as

f Sð Þ~sgn
Xn

j~1

log P aj c1j
� �� �

{
Xn

j~1

log P aj c{1j
� �� � !

ð8Þ

Formula (8) can further be formulated as

f Sð Þ~sgn ~ww.~ppð Þ ð9Þ

where ~ww~ w1,w1, � � � ,wn,wnz1, � � � ,w2nð Þ is weigh vector,

~pp~ p1,p2, � � � ,pn,pnz1, � � � ,p2nð Þ is the posterior probability vector.

With respect to training sample S, f Sð Þ~1 corresponds to class

C1 and f Sð Þ~{1 to class C{1. In this study, p1,p2, � � � pn

represents the posterior probability of each amino acid at each

position in positive peptide sequence datasets (category C1)

(positive feature space)and pnz1, � � � ,p2n represents that in negative

peptide sequence datasets (category C{1) (negative feature space),

which we call Bi-profile. The posterior probability can be

estimated by the occurrence of each amino acid at each position

in training datasets, which we define as position-specific profile.

Profile generation and coding scheme
Two position-specific profiles for final model training, positive

position-specific profiles and negative position-specific profiles,

were generated through calculating the frequency of each amino

acid at each position in the positive datasets and negative datasets,

respectively. With respect to 5-fold cross-validation, position-

specific profiles were produced based on the above-mentioned

datasets minus the corresponding validation subset in each of five

rounds of training in order to avoid overestimation of the

performance. Through Bi-profile Bayes, each peptide sequence

(positive or negative peptide sequence) can be represented and

encoded by vector ~pp~ p,p2, � � � ,pn,pnz1, � � � ,p2nð Þ, simultaneously

containing positive and negative information, the dimension of

which is two times that of sliding window.

Support vector machines (SVMs) implementation and
parameter optimization

In this contribution, prediction model was trained and built with

LIBSVM package [11]. SVM is based on the structural risk

minimization principle from statistical learning theory [12], which

has been comprehensively applied to classification. With regard to

binary classification, the SVM trains a classifier by mapping the

input samples onto a high-dimensional space through kernel

functions, and then seeking a separating hyperplane that

differentiates the two classes with maximal margin and minimal

error.

Radial basis kernel function K Si,Sj

� �
~exp {c Si{Sj

�� ��2
� �

was selected for our SVM prediction system. Several preliminary

trials were made on input window size for prediction model with 5,

7, 9, 11, 13, 15, 17 (sliding window size) amino acid peptide

sequences centered by arginine and lysine. SVM parameter c and

penalty parameter C were optimized based on 5-fold cross-

validation in a grid-based manner with respect to the above

different length peptide sequences.

Performance assessments
Accuracy (Acc), Specificity (Sp), Sensitivity (Sn), Receiver

Operating Characteristic (ROC) curve, the area under ROC curve

(AUC) and Matthews Correlation Coefficient (MCC) were utilized

to assess the performance of prediction system. Acc denotes the

percentage of both positive instances (methylated sites) and

negative instances (non-methylated sites) correctly predicted.

Sensitivity (true positive rate) and Specificity (true negative rate)

represent the percentage of positive instances (methylated sites)

correctly predicted and that of negative instances (non-methylated

sites) correctly predicted, respectively. Due to the fact that

calculation of Sn and Sp at a single threshold is potentially

misleading, ROC cures is plotted to evaluate performance. A

ROC curve is a plot of Sensitivity versus (1-Specificity) and

generated by shifting the decision threshold. AUC gives a measure

of classifier performance. An AUC of 1.0 indicates perfect classifier

whereas an AUC of classifier no better than random is 0.5. The

MCC is used in machine learning as a measure of the quality of

binary classifications. It takes into account true and false positives

and negatives and is generally regarded as a balanced measure

which can be used even if the classes are of very different sizes. It

returns a value between 21 and +1. A coefficient of +1 represents

a perfect prediction, 0 an average random prediction and 21 the

worst possible prediction. All of the above measurements were

calculated in the case of 5-fold cross-validation and defined as

follows:

Acc~
TPzTN

TPzFPzTNzFN
, Sp~

TN

TNzFP
, Sn~

TP

TPzFN
,

MCC~
TP|TNð Þ{ FN|FPð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPzFNð Þ| TNzFPð Þ| TPzFPð Þ| TNzFNð Þ
p ð10Þ

where TP, TN , FP and FN denotes the number of true positives,

true negatives, false positives and false negatives, respectively.

Results

Performance of BPB-PPMS
The optimal parameters combination used for training model is

shown in Table 1. All of the results were calculated based on the

threshold value 0.5. The pooled datasets of positive training

datasets and negative training datasets were randomly divided into

five subsets with approximately equal number for cross-validation

training. BPB-PPMS achieves the performance with a sensitivity of

74.71%, a specificity of 94.32% and an accuracy of 87.98% for

arginine as well as a sensitivity of 70.05%, a specificity of 77.08%

and an accuracy of 75.51% in the case of 5-fold cross-validation.

To further evaluate the prediction performance, Receiver

operating characteristic (ROC) [13] curves were plotted for the

assessment of the performance of prediction models. The average

AUC is 0.9254 for arginine and 0.8383 for lysine (Red curves in

Figure 1 and Figure 2), respectively.

Comparison with Naı̈ve Bayes and simple SVMs classifiers
Typically, two strategies can be employed to perform standard

comparison between distinct machine learning prediction models

for binary classification problems, either through cross-validation

experiments or test on the independent datasets given the same

threshold value. It is logical for cross-validation performance

comparison only when the training datasets for the prediction

model is identical to each other. With respect to the independent

test, the datasets employed should be not included into training

datasets as well as no homologous to training datasets. As

Predicting Protein Methylation
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described in Methods section, the final training datasets of BPB-

PPMS is not identical to previous works [7,9]. Therefore, cross-

validation performance comparison between BPB-PPMS and

previous works [7,9] under the uniform framework is infeasible

and meaningless. Therefore, in order to evaluate the BPB-PPMS

in the case of cross-validation circumstance, both Naı̈ve Bayes

classifier [14] and simple SVMs classifier s[11] without Bi-profile

Bayes feature extraction were developed to identify potential

protein methylation sites on the same training datasets as that of

BPB-PPMS. Naı̈ve Bayes classifier calculates the probability that a

given example belongs to a certain class, which is based on the

assumption that the features representing the example are

conditionally independent given the class. Given an example S,

described by its feature vector s1,s2,s3, � � � ,snð Þ, we are looking for

a class C that maximizes the likelihood P S Cjð Þ~
P s1,s2,s3, � � � ,sn Cjð Þ. The assumption of conditional indepen-

dence among the features, given the class, allows us to express this

conditional probability P S Cjð Þ as a product of probabilities

P S Cjð Þ~ P
n

i~1
p si Cjð Þ. Naı̈ve Bayes classifier was trained using the

input features produced from positive position-specific profile for

positive training examples and negative position-specific profile for

negative training examples (see Methods section for further details)

through single feature space coding scheme, which was imple-

mented via the package downloaded from http://fuzzy.cs.

uni-magdeburg.de/,borgelt/bayes.html.

The principle of simple SVMs was briefly described in Methods

section. simple SVMs classifier was trained through binary

encoding for training samples and built with RBF kernel in

LIBSVM package[11]. Both classifiers were evaluated via the

same 5-fold cross-validation procedure as BPB-PPMS. All the

performances were assessed under the circumstance of the same

threshold value 0.5 and summarized in Table 2. The ROC

curves for the assessment of the performance of three classifiers

were plotted in Figure 1 and Figure 2. The value of AUC is

larger, the performance of model is better. As shown in Figure 1,

red, blue, and green curve denotes 5-fold cross-validation

prediction performance of Bi-profile Bayes SVM classifier, Simple

SVM classifier and Naı̈ve Bayes classifier for arginine methylation,

respectively, the corresponding average AUC of which is 0.9254,

0.8958 and 0.8909, respectively. Likewise, red, blue, and green

curve in Figure 2 denotes 5-fold cross-validation prediction

performance of Bi-profile Bayes SVM classifier, Simple SVM

Figure 1. ROC curves to assess the prediction performance of
three arginine prediction models. Red, blue, and green curve
denotes 5-fold cross-validation prediction performance of Bi-profile
Bayes SVM classifier, Simple SVM classifier and Naı̈ve Bayes classifier,
respectively. (The corresponding average AUC is 0.9254, 0.8958 and
0.8909, respectively.)
doi:10.1371/journal.pone.0004920.g001

Figure 2. ROC curves to assess the prediction performance of
lysine prediction model. Red, blue, and green curve denotes 5-fold
cross-validation prediction performance of Bi-profile Bayes SVM
classifier, Simple SVM classifier, Naı̈ve Bayes classifier, respectively.
(The corresponding average AUC is 0.8383, 0.7498 and 0.7581,
respectively.)
doi:10.1371/journal.pone.0004920.g002

Table 1. The optimal parameters and performance of BPB-PPMS.

Methylated
residues Optimal parameters Performance

Sliding window
size(a)

Type of
Kernel C

(c)
c

(d)
Sensitivity (%) Specificity (%) Accuracy (%) AUC(e) (%) MCC(f)

Arginine 11 RBF(b) 32 0.5 74.71 94.32 87.98 92.54 0.7729

Lysine 11 RBF 128 8 70.05 77.08 75.51 83.83 0.3400

The optimal parameter combination was determined in a grid-based manner introduced in LIBSVM packages[11].
(a)Here, input window size for SVMs is two times sliding window size.
(b)RBF, Radial Basis Function K Si ,Sj

� �
~exp {c Si{Sj

�� ��2
� �

.
(c)C, the penalty parameter of the error term in objective function.
(d)c, the parameter in Radial Basis Function.
(e)AUC, the area under ROC.
(f)MCC, Matthews Correlation Coefficient.
doi:10.1371/journal.pone.0004920.t001
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classifier, Naı̈ve Bayes classifier for lysine methylation, respectively,

the corresponding average AUC of which is 0.8383, 0.7498 and

0.7581, respectively. All the compared results obtained from

Table 2, Figure1, and Figure 2 suggest that PBK-PPMS

outperformes Simple SVM classifier, Naı̈ve Bayes classifier as well

as Bi-profile encoding scheme is better than single feature space or

binary coding scheme.

Comparison with previous works
Due to the absence of online server for the work done by Daily

et al[7], efforts were just made to compare the performance

between BPB-PPMS and MeMo. As mentioned in previous part,

cross-validation performance comparison between BPB-PPMS

and previous works [7,9] under the uniform framework is

infeasible and meaningless. With respect to independent dataset

comparison, it’s intractable to collect independent test datasets for

both BPB-PPMS and MeMo since there is no any information

regarding training datasets of MeMo for us. Therefore, unbiased

comparison between BPB-PPMS and MeMo is infeasible as well.

However, there is an attempt to further assess the performance of

BPB-PPMS through test on the independent datasets, which were

obtained by randomly choosing proteins with experimentally

verified arginine and lysine methylation as well as non-homolog to

those proteins used for training BPB-PPMS in PubMed literatures.

The final random independent test datasets consist of 21

methylated lysines on 18 proteins as well as 12 methylated

arginines on 11 proteins in the rat lumbar spinal cord[15] plus

three methylated arginines which was most recently found in

p53[16]. All of lysine methylation proteins and arginine methyl-

ation proteins were submitted to BPB-PPMS and MeMo. The

performance based on the prediction results were summarized in

Table 3. As shown in Table 3, the performance of MeMo is

measured with a sensitivity of 20.00%, a specificity of 88.42% for

arginine methylation proteins and a sensitivity of 9.52%, a

specificity of 92.47% for lysine methylation proteins. BPB-PPMS

achieves a sensitivity of 60.00%, with a specificity of 81.74% for

arginine methylation proteins as well as a sensitivity of 71.43%,

with a specificity of 91.51% for lysine methylation proteins at

threshold value 0.5. Performance comparisons were performed at

equivalent sensitivity or specificity value as a result of the absence

of threshold choice on MeMo server. Therefore, attempt was

made to adjust the threshold values of BPB-PPMS in order to

obtain equivalent sensitivity or specificity value of MeMo. As for

lysine methylation proteins, BPB-PPMS achieves a specificity of

98.65% compared to MeMo’s 92.74% specificity at the identical

sensitivity value 9.25% when the threshold value was set at 0.75.

With respect to arginine methylation, BPB-PPMS is measured by

a specificity of 88.56% and a sensitivity of 53.33% in the case of

threshold value 0.80. By comparison, MeMo achives sensitivity

value 20.00% at equivalent specificity of 88.42%.

One important question was advanced whether comparison

results shown in Table 3 could suggest that BPB-PPMS would

outperform MeMo since the independent test datasets is just in

terms of BPB-PPMS. Theoretically, it is logical that the

performance on datasets that are identical or homologous to

training datasets should be better than that on independent

datasets. Therefore, no matter whether independent datasets

collected in present study is independent of training datasets of

MeMo or not, it can be concluded that BPB-PPMS outperforms

MeMo, at least at above equivalent sensitivity or specificity.

Application of BPB-PPMS: a case study
Human immunodeficiency virus type 1 (HIV-1) Tat protein is a

key player in HIV replication by virtue of its ability to dramatically

increase gene transcription efficiency from the 59 long terminal

repeat (LTR) of the viral DNA[17]. The rate of transcription of

Table 2. Comparison among Naı̈ve Bayes classifier, simple SVM classifier and BPB-PPMS classifier in the 5-fold cross-validation
experiment on the same training datasets.

Methods Methylated residues Sensitivity (%) Specificity (%) Accuracy (%) MCC

Naı̈ve Bayes Arginine 67.82 85.35 79.68 0.5379

Lysine 66.31 73.19 71.62 0.2755

simple SVM Arginine 70.11 89.01 82.90 0.6248

Lysine 65.24 71.78 70.32 0.2502

BPB-PPMS Arginine 74.71 92.46 86.80 0.7243

Lysine 70.05 77.08 75.51 0.3400

doi:10.1371/journal.pone.0004920.t002

Table 3. Performance of BPB-PPMS and MeMo on independent test datasets in terms of BPB-PPMS.

Server Methylated residues Threshold* Sensitivity (%) Specificity (%) Accuracy (%)

MeMo Arginine - 20.00 88.42 87.22

Lysine - 9.52 92.47 91.11

BPB-PPMS Arginine 0.5 60.00 81.74 81.36

0.8 53.33 88.56 87.96

Lysine 0.5 71.43 91.51 91.19

0.75 9.52 98.65 97.19

*Prediction threshold value is not avalable in MeMo.
doi:10.1371/journal.pone.0004920.t003
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the HIV-1 viral genome is mediated through the interaction of the

viral protein Tat with the LTR and other transcriptional

machinery [18]. Such specific interactions can be affected by the

state of post-translational modifications on Tat. Tat protein is not

included in our training datasets and can be employed for a case

study

Recent studies[1,19,20] have shown that Tat can be specifically

methylated by protein arginine methyltransferases 6 (PRMT6) on

arginine residues at positions 52 and 53, resulting in a decreased

interaction with TAR and cyclin T1 complex formation, therefore

decreasing HIV-1 transcriptional activation. In order to map the

region of Tat that is methylated by PRMT6, Boulanger et al [19]

obtained three peptides that cover all the arginines of Tat. Tat

peptide 1–14 contains arginine 7, peptide 49–63 contains the

arginine-rich motif, and peptide 69–83 contains arginine 78. The

findings obtained from in vitro methylation assays using these three

Tat peptides demonstrate that Tat is methylated at region 49–63.

Mutational analysis in another work done by Xie et al [1] was

performed specifically on the 49-RKKRR-53 stretch, demonstrat-

ing that both R52 and R53 are targets for methylation. Our BPB-

PPMS server predicts that arginine methylation of Tat can

potentially occur at the site R7,R47,R52 and R53.

Most recently, Duyne et al [20] investigated the methylation of

lysines on the peptide 45-ISYGRKKRRQ-54 of Tat. In vitro

methylation assays show that lysine 50 and lysine 51 can be

methylated by histone methyltransferases SETDB1, the SUV39-

family of SET-domain containing proteins. They proposed that

the methylation of Tat lysine 50 and 51 can result in a decrease in

viral transcription. Our BPB-PPMS server predicts that there are

two potentially methylated lysine sites K50, K51 on Tat with the

probability 0.838290 and 0.8500, respectively. The prediction

results regarding lysine methylation status on Tat are exactly in

agreement with those obtained from experiments done by Duyne

et al [20].

To verify whether these results to some extent reflect the

generalization ability and robustness of BPB-PPMS, we checked

the similarity among the positive training examples and peptide

sequences including four experimentally verified methylated

arginines and lysines. Interestingly, the maximum similarity with

examples in positive training datasets is 40% for ISYGRK(50)

KRRQR, 50% for SYGRKK (51) RRQRR, 70% for

YGRKKR(53) RQRRR and 70% for GRKKRR(54) QRRRP,

respectively. Therefore, it can be concluded that the results from

Tat protein study, to some extent, verify the generalization ability

of BPB-PPMS. The detailed prediction results on Tat protein

through three classifiers are shown in Table 4.

Discussion

In this work, a novel online tool (BPB-PPMS) was developed to

predict arginine and lysine methylation sites from sequences using

Bi-profile Bayes feature extraction combined with SVMs. Results

from cross-validation experiments (Table 2) indicate that BPB-

PPMS outperforms both Naı̈ve Bayes and simple SVMs classifiers

due to the fact that Bi-profile Bayes coding scheme possesses

advantages over binary coding scheme and single feature space

coding scheme. In addition, performance on independent datasets

for BPB-PPMS and MeMo (Table 3) shows that BPB-PPMS

outperforms MeMo, even though independent datasets is only in

terms of BPB-PPMS, which might result from two factors. One is

the more diverse training datasets employed in BPB-PPMS

(training datasets collected up to Sep, 2008) than those used in

MeMo (training datasets collected before submission of MeMo

work, Jan-19, 2006). Another factor is that, as indicated by

Table 2, Bi-profile Bayes coding scheme used in BPB-PPMS

outperforms binary coding scheme utilized by MeMo.

Prediction models for functional sites can provide valuable

information for future experimental designs. However, informa-

tion regarding negative training/test datasets (definitely deter-

mined non-functional sites) is scarce, which is a choke point for the

development of prediction models. Most of the existing tools

(classifiers) for prediction of PTM sites from sequences[7,9,10,21]-

were developed through various kinds of machine learning

approaches using experimentally verified PTM sites and putative

non-PTM sites as training datasets. The performance of classifiers

not only depends on the robustness of machine learning

approaches, but also whether the features extracted from training

datasets accurately reflect those of PTMs or non-PTMs.

Therefore, the quality of training datasets directly influences the

classification boundary and subsequent prediction performance.

The putative negative examples employed in most of prediction

models are generated based on either features of known functional

sites[14] or ‘‘accept or reject’’ rule[7,9,10]. A recent study[22]

proposed maximum distance minimum redundancy approach to

generate initial negative training datasets and predicted non-

coding RNAs from unlabeled data, which may be an useful way

for the generation of negative training examples with high

confidence and could be extended to the investigation of PTM

site prediction modeling. Although it is to some extent rational for

the generation of putative negative training examples (non-PTM

sites) from all of the remaining sites on proteins containing

experimentally verified sites (methylated arginines and lysines in

our case)[7,9,10], some putative negative examples are in fact

false, which will contribute to false negative prediction. Therefore,

as more validated methylated sites from high throughput

proteomic experiments become available, it should be possible to

further improve the reliability of predictions. In addition, the

inclusion of structural information into modeling process could be

another way to enhance the prediction performance since

methylation is an enzymatic process and the interactions between

methylated sites and enzymes concerned should be structurally

satisfied.

Table 4. Potential methylation sites predicted on Tat protein (P04610) through BPB-PPMS, Simple SVMs, and Naı̈ve Bayes
classifiers.

Experimentally verified
methylation sites on Tat protein Potential methylation sites predicted on Tat protein

BPB-PPMS Simple SVMs Naı̈ve Bayes

K50,K51,R52,R53 K50(0.83829), K51(0.8500), R7(0.992805), R49
(0.917059), R52(0.991765), R53(0.941735)

K28(0.9012), K50 (0.889106),
K71(0.7622), R53(0.78301)

K19 (0.6577), K50(0.9250),
K71(0.8119233)

The numbers in bracket denote the predictive probability of methylation at corresponding sites.
doi:10.1371/journal.pone.0004920.t004
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