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Abstract

Many cellular processes require decision making mechanisms, which must act reliably even in the unavoidable presence of
substantial amounts of noise. However, the multistable genetic switches that underlie most decision-making processes are
dominated by fluctuations that can induce random jumps between alternative cellular states. Here we show, via theoretical
modeling of a population of noise-driven bistable genetic switches, that reliable timing of decision-making processes can
be accomplished for large enough population sizes, as long as cells are globally coupled by chemical means. In the light of
these results, we conjecture that cell proliferation, in the presence of cell–cell communication, could provide a mechanism
for reliable decision making in the presence of noise, by triggering cellular transitions only when the whole cell population
reaches a certain size. In other words, the summation performed by the cell population would average out the noise and
reduce its detrimental impact.
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Introduction

Genetically identical cells may exhibit diverse phenotypic states

even under almost identical environmental conditions. An extreme

example of this fact is provided by genetic switches, which can

operate in one of two or more states that coexist. Such genetic

switching is the basis of many cellular decision-making processes,

including differentiation, whereby cells change their state when

driven sufficiently beyond a certain threshold. A driving source for

such processes might be in the form of environmental signals.

However, switching can also occur cell-autonomously, when

driven by stochastic fluctuations that unavoidably affect cellular

behavior. In fact, noise is ubiquitous in gene expression [1,2,3,4]

and frequently cannot be neglected. Recent studies have indeed

shown that sufficient amounts of noise are able to induce frequent

jumps between coexisting states in genetic switches [5]. These

results open up the question of how cells can make decisions

reliably in the presence of noise.

Here we study the possibility that cell–cell coupling can provide

a mechanism for enhancing the reliability of cellular decision

making due to noise. Such a constructive role of coupling has

already been discussed in the context of genetic oscillations in

multicellular clocks [6,7,8]. In that case, precision enhancement

arises from the synchronization of oscillations across the

population, and is therefore associated with a homogeneous

behavior of the cells. Here we discuss, on the other hand, a

situation in which heterogeneity is preserved, but the decision

making process is nevertheless reliable. A theoretical basis for these

ideas has been established in general nonlinear stochastic models,

where noise is known to be tunable through the size of the system,

decreasing as the number of coupled elements increase [9]. Taking

into account that cell populations increase their size autonomously

(provided that sufficient nutrients are available and no growth-

arrest signals are present), one can envisage a mechanism through

which populations of cells self-organize into a minimum system

size above which fluctuations are sufficiently small to allow a

certain cellular behavior to arise. For population sizes below that

critical value, commitment to a given cellular state would not take

place due to the presence of an unacceptable amount of noise.

The mechanism outlined above requires a means of cell–cell

communication in the growing cellular population. Eukaryotic

cells, specially those forming part of multicellular organisms, have

multiple ways to communicate; here we concentrate, for the sake

of simplicity, on prokaryotic cells. Bacteria, for instance, have a

mechanism of chemical communication [10] that relies on the

exchange of small signaling molecules. These molecules, known as

autoinducers (AI), freely diffuse through the cell membrane and

are thereby shared by all cells in the population. Bacteria can thus

use the external bath of AI molecules as a way of monitoring the

density of cells in their surrounding. Such quorum sensing

mechanism is used for instance by Vibrio fischeri, a bioluminiscent

symbiotic bacterium that colonizes the light organs of certain types

of fish and other marine species [11]. The V. fischeri LuxIR circuit

has been used to build synthetic gene circuits, such as one
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performing programmed population control [12], and has been

proposed as a method to obtain synchronization of genetic

oscillators [7,13].

Here we study how the interplay between noise, population

growth and cell–cell coupling controls the dynamical behavior of a

population of coupled genetic relaxators. These genetic circuits

can exhibit bistable or oscillatory behavior when in isolation. Our

results indicate that cell growth leads to reduction of noise (see also

[14]) and appearance of clustering of the oscillators in the

population, that can be interpreted as decision making. This

mechanism works both when cells exhibit bistable or oscillatory

behavior in the absence of noise, which evidences the generality of

the phenomenon reported.

Methods

Structure of the model
We consider a model, proposed in Ref. [15] that describes a

population of synthetic gene relaxator oscillators coupled via

quorum sensing. The underlying genetic circuit (Fig. 1) contains a

toggle switch composed of two genes u and v that inhibit each

other, by repressing transcription from their respective promoters

P1 and P2. This circuit is known to lead to bistable behavior [16].

Promoter P2 also drives the expression of a third gene w

(corresponding to the luxI gene in the V. fischeri quorum sensing

system) that synthesizes a small autoinducer molecule, which is

able to diffuse in and out of the cell. The autoinducer activates

transcription of promoter P3. Placing a second copy of the u gene

under the control of this promoter provides both an additional

feedback loop to the toggle switch, and a mechanism that couples

the switch to all cells in the population via quorum sensing.

The time evolution of the proteins involved in the genetic circuit

represented in Fig. 1 can be described by the following

dimensionless equations:

dui

dt
~a1f við Þ{uiza3h wið Þ ð1Þ

dvi

dt
~a2g uið Þ{vi ð2Þ

dwi

dt
~e a4g uið Þ{wið Þz2d we{wið Þzji tð Þ ð3Þ

dwe

dt
~

de

N

XN

i~1

wi{weð Þ ð4Þ

where the subindex i denotes the cell number, with N being the

total number of cells. The activity of the promoters P1, P2 and P3

described by the Hill functions f(v), g(u) and h(w), respectively,

defined as:

f vð Þ~ 1

1zvb
; g uð Þ~ 1

1zuc
; h wð Þ~ wg

1zwg
ð5Þ

The parameters a1 and a2 determine the expression strength of

the toggle switch genes, while a3 represents the activation of u from

promoter P3. The expression of the lux gene w is measured by

parameter a4. Time has been rescaled by the lifetime of u and v,

assumed equal. The parameter e measures the ratio between the

lifetimes of the toggle-switch genes and the autoinducer, and is

assumed to be small. This separates the dynamics of the cells into

two very different time scales, with fast dynamics of u, v and we and

slow dynamics of w. The dynamics of the autoinducer (investigated

in detail in [15]) introduces an additional feedback loop into the

toggle switch and can lead to oscillatory behavior even in isolated

cells [15]. The coupling coefficients d and de depend mainly on the

diffusion of the AI through the cell membrane. One can

biologically manipulate the relevant parameters by controlling

e.g. the number of plasmids per cell, protein decay rate or pH of

the solution etc., which enables experimental control of the circuits

dynamics. Stochasticity in gene expression is introduced in the

autoinducer equation by an additive noise source ji(t), which is a

Gaussian white noise with zero mean and correlation

given byvji tð Þjj t’ð Þw~s2
adijd t{t’ð Þ. Adding the noise source

to ui and vi leads to the same results as those shown in what follows

(results not presented here).

Results

Controlling cellular decision making via population
growth

First we analyze the situation in which the circuits operate in a

bistable regime. This means that, in the unrealistic assumption

that noise is not present, the concentrations of the observed

proteins have one of two possible values. Noise, however, induces

frequent jumps between the two stable concentration levels [5] and

prevents the cell from making any stable decision between the two

cellular states. Such a situation is shown in the upper left panel of

Fig. 2 for two coupled cells.

We note that coupling in this system does not produce

synchronization of the toggle switch dynamics because it acts

incoherently with respect to it (compare the type of regulation of

promoters P1 and P3, the former being inhibitory and the latter

activatory of u expression). This type of coupling is partially phase

repulsive, promoting synchronization between two coupled

elements only if they are close in phase space, and repulsion

Figure 1. Simplified scheme of a genetic network in the frame
of one cell. Mutually repressing genes u and v form a toggle switch.
Membrane diffusion of an autoinducer molecule, denoted as w,
provides intercell coupling.
doi:10.1371/journal.pone.0004872.g001
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otherwise. Thus, inter-cell coupling does not have a dynamical

effect on the bistable regime of the isolated cells. Its only influence

reveals itself in an effective reduction in noise levels, similar to

what has been reported in general models of nonlinear stochastic

systems [9]. Figure 2 shows the effect of increasing the size of the

population of coupled cells. As the system size increases, the

amount of fluctuations in each cell is effectively reduced, which

decreases the frequency of noise-induced jumps between both

bistable states. For a large enough population size, all cells are

stuck in one of the two states, and two stationary clusters of cells

emerge. Only small percentage of the cells (,2%) exhibit rare

noise induced jumps.

The previous results show that in a population of bistable

switches under the influence of noise, robust decisions cannot be

made unless the noise levels are reduced sufficiently so that

fluctuations cannot induce jumps between both states, which can

be accomplished by increasing the size of the cell population in the

presence of cell–cell coupling. We can therefore envision a

mechanism in which decisions are timed to occur only when the

population reaches a critical size, below which noise is too large for

a stable response to develop. We emphasize here that such a

mechanism does not require a deterministic transition in the

steady-state behavior of the system (something which quorum

sensing can achieve), but only a control of the noise level via the

system size. Therefore, the metabolic load in each cell would be

comparable before and after the decision has been made.

In order to model this timing mechanism, we represent cell

growth in a simplified way: after a given time period T all cells

divide and the number of cells is doubled. All daughter cells start

their dynamics with initial conditions for the protein concentra-

tions equal to the final state of the mother cell. The behavior of

this model is visualized in the top panel of Fig. 3 for a population

of two initial cells, which grows until N = 128. The concentration ui

is plotted for every oscillator in color scale, with blue (red)

representing a low (high) protein level. Initially the two cells exhibit

noise-induced jumps (see also the top left panel in Fig. 2). As the

cell population grows in size, the noise levels are reduced and the

frequency of jumps also decreases, until all cells eventually get

stuck in one of the two states. As a result, two approximately

stationary cell clusters appear for a large enough size. This can be

explained by the fact that effective noise in the system decreases

with the population size as 1
� ffiffiffiffiffi

N
p

.

To quantify how the decision-making dynamics changes as the

population size increases, we define an order parameter, J, as the

normalized number of jumps between the two stable states:

J~

P
i

Ni

N
ð6Þ

where Ni is the number of jumps above a certain threshold (here

set to 1.5) for the i-th oscillator, in a given cell cycle, and N is the

number of cells at that cell division round. A value of this order

parameter approaching zero means that there exists either one or

several stable clusters. The dependence of J on the population size

N is shown in the bottom left panel of Fig. 3. The number of jumps

per cell cycle for small N depends on the noise level; in our case the

amplitudes of the fluctuations are such that each cell jumps more

than twice between steady states every cell cycle. An increase in

the population size (and, correspondingly, a decrease in the noise

level) leads to a clearcut reduction of the occurrence of noise-

induced jumps, reaching a plateau at J,0.3, in which there is only

approximately one jump on average in every three cell cycles.

Figure 2. Time series for different number of cells with fixed
noise intensity (sa

2 = 0.002). The dynamics of u is plotted for different
cells in different colors. From top to bottom, and from left to right:
N = 2, 10, 30, 50, 500, 1000. The parameters are chosen so that cells are in
the bistable regime: a1 = 2, a2 = 4, a3 = 2, a4 = 1, b = c = 3, g = 1, e= 0.01,
d = 0.03 and de = 1.
doi:10.1371/journal.pone.0004872.g002

Figure 3. Top: population growth leads to restoration of
bistability hidden by noise. The cell cycle duration is T = 100 . The
concentration ui of the corresponding cell (from N = 2 to 128) is color-
coded (see color bar on the right). Bottom left: average number of
jumps per cell versus population size. Bottom left: fraction of cells that
perform at least one jump between two states versus population size.
Parameters are a1 = 2, a2 = 4, a3 = 2, a4 = 1, e= 0.01, d = 0.03, de = 1 and
sa

2 = 0.002.
doi:10.1371/journal.pone.0004872.g003
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These results clearly show that cell growth leads to the restoration

of bistability.

We can also compute the fraction of cells that jump at least once

in each cell division round considered. This is depicted in the

bottom right panel of Fig. 3, which shows that starting from a

situation where two (out of two) cells jump from one state to the

other, population growth reduces substantially the fraction of cells

that jump up to a value around 25% for N = 128 cells. No plateau

is observed in this case; this shows that more and more cells get

trapped in clusters of stable states for increasing N.

Decision making in a population of coupled genetic
oscillators

We will now demonstrate that the phenomenon described in the

previous paragraphs is a generic property of the interplay between

noise and cell–cell communication. To that end, let us consider the

case in which cells are originally (in the absence of noise) in an

oscillatory regime (the AI, responsible for the coupling between the

cells oscillates as well). Under these conditions, it is known [15]

that coupling can suppress the oscillations via the mechanism

known as oscillation death, leading to two clusters of cells with

constant protein levels (when OD is achieved, the level of AI

produced is also constant). Oscillation death is visualized in Fig. 4,

where the dynamics of a fixed population of N = 256 cells is

plotted in color code. Each cell is represented by a horizontal line,

with color corresponding to its value of ui, using the same color

scale as in Fig. 3. The plot shows that, in the absence of noise,

oscillations develop from random initial conditions, and after some

transient the cells get trapped in one of two possible states

represented in either red or blue, forming two clusters. We note

that coupling is here global, and thus these clusters do not have

spatial order (without enough coupling, the cells undergo periodic

oscillations that can be synchronized [15].). In a realistic situation,

however, noise is present in the system. In the simulations shown

in Fig. 4, noise is switched on at t = 1800, and this causes all cells to

jump randomly between the two states. Hence the clusters are

destroyed by noise-induced oscillations.

As we have seen, oscillation death would allow decision making

to occur even when the intrinsic dynamics of the cells is oscillatory.

Noise, however, destroys this effect. On the other hand, in the light

of the results presented in the previous section, we can expect

inter-cell coupling to reduce the detrimental effect of noise and

lead to robust decision making. In order to show this effect, we

model again population growth by doubling the number of cells

after a fixed cell cycle time T. The results are shown in Fig. 5, for a

cell population starting with 8 oscillators operating in the

oscillation death regime, and a noise intensity sa
2 = 0.7 that for

small population size leads to disordered jumps between clusters.

As the population grows in size, the noise-induced oscillations

become less frequent and eventually two clusters clearly develop

for large enough number of cells (see Fig. 5, top). Again, the

emergence of robust decision making as a result of population

growth can be explained by the effective reduction of noise

intensity as the system size increases. We note here that in the

deterministic case for N cells, there are N-1 possible stable different

distributions of the oscillators between the two clusters [17]. Thus,

the percentage of cells populating the upper or the lower cluster

depends only on the environmental conditions (initial values,

coupling coefficients etc.) and the system has no preference

towards choosing ‘u’-(or ‘v’) rich cells. This statement holds true in

both case, when the synthetic circuits operate in the bistable

regime, as well as in the case where oscillation death is present in

the system due to the global coupling present. Furthermore, we

have investigated the stability of the achieved states by means of

Figure 4. Effect of noise on a population of N = 256 coupled
cells in the oscillation death regime. The concentration ui is shown
in color code according to the scale of Fig. 3. Time runs horizontally
from left to right, while the different cells are plotted along the vertical
axis, each cell represented by a horizontal line. Simulations were started
with random initial conditions, and after a transient of around 900 time
units (in which the oscillations are highly synchronous), two stable
clusters emerge. At time t = 1800 noise is switched on with intensity
sa

2 = 0.4, and this leads to jumps between clusters. Parameters are
a1 = 3, a2 = 5, a3 = 1, a4 = 4, e= 0.05, d = 1 and de = 30.
doi:10.1371/journal.pone.0004872.g004

Figure 5. Top: population growth leads to restoration of
bistability (in the form of oscillation death). The cell cycle
duration is here T = 100. The concentration ui of each cell (from N = 8 to
256) is represented in color code (see color bar on Fig. 3). Bottom left:
average number of jumps per cell versus population size. Bottom left:
coefficient of variation of the interval between jumps versus noise
intensity. Parameters are: a1 = 3, a2 = 5, a3 = 1, a4 = 4, b = c = g = 2,
e= 0.05, d = 0.3 and de = 1.
doi:10.1371/journal.pone.0004872.g005
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bifurcation and extended numerical analysis and shown that once

a stable cluster distribution is achieved, the situation remains

unchanged in latter times as long as the environmental conditions

remain relatively stable (charts not shown here). Although both of

the cases presented here lead to a stable decision making process

by increase of the population size, it is important to mention that

the noise levels tolerated by an oscillatory population are

significantly higher than those of a system in a bistable regime.

This contributes to the fact that increased connectivity in the

network is accompanied by a more robust decision making

mechanism.

Moreover, we quantify once again the restoration of bistability

by computing the average number of jumps per cell and cell cycle.

This is shown in the bottom left panel of Fig. 5. In this case, the

parameters chosen are such that almost one jump occurs per cell

and cell cycle ( J,0.8) for a small population, while that fraction is

reduced to around 2 jumps for every hundred cells (J,0.02) for

large enough population sizes (here on the order of 28 = 256). This

result clearly indicates that noise-induced oscillations are prevent-

ed by an increase of the population size.

Interestingly, the top panel of Fig. 5 shows that for intermediate

population sizes (here for N = 64) the cells undergo synchronous

oscillations. In order to understand this effect, we note that these

cells have a well defined underlying time scale, determined by their

oscillatory dynamics in the absence of coupling (also revealed in

the transient dynamics of the noiseless system before clustering, see

Fig. 4). The reduction of noise for increasing system size unveils

the hidden clustering regime, but as a precursor of this a temporal

synchronous behavior appears. This effect is a fingerprint of a

phenomenon known as coherence resonance [18], or autonomous

stochastic resonance, in which an optimal amount of noise

enhances an intrinsic periodic behavior in stochastic nonlinear

systems. In the present case the noise intensity, controlled by the

system size, passes through this optimal value as the cell

population grows, leading to synchronous jumps for an interme-

diate population size. To quantify this effect, we have estimated

the regularity of the cellular dynamics by computing the coefficient

of variation (normalized standard deviation) of the residence times

in the two stable states, tp:

Rp~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S tp{StpT
� �2T

q

StpT

where S::T denotes time average. The bottom right panel of Fig. 5

shows how this quantity depends on the noise intensity for a fixed

population of N = 8 cells. The figure shows that the regularity of

the dynamics is maximum (the coefficient of variation is minimum)

for an intermediate noise level.

Therefore, the emergence of synchronous oscillations in a

population of coupled genetic circuits [7] can also be timed by the

size of the population. In this way one can envision programming

the start of a genetic clock only when a predefined population size

is achieved.

Discussion

The seeming paradox of how cells can operate reliably in

presence of noise is being increasingly recognized recently. Specific

gene-regulatory networks have been proposed to filter transcrip-

tional noise so as to allow, e.g., coordinated developmental

decisions to take place [19]. In this contribution we have proposed

a mechanism that does not rely on any intrinsic property of single

cells, but that emerges from the interaction among the cells (via

small signaling molecules) in a growing population. The

mechanism relies on an effective reduction of noise that occurs

as the population increases in size. In such a way, a collection of

bistable toggle switches that are continuously triggered by noise for

small population sizes, would separate into clusters of cells stuck in

one of the two coexisting states of the toggle switch for large

enough population sizes, when the noise level is no longer

sufficient to induce jumps between the two states. One could thus

envision a mechanism for programming a decision to occur when

the cell population becomes large enough: for smaller population

sizes the cells would be undecided and jump randomly between

two alternative states, whereas when the population grows to a

sufficiently large size the cells would divide into two separate

clusters, each one following an alternate fate.

Here we have assumed that the signaling autoinducer molecules

diffuse very fast in the extracellular medium. Hence, coupling is

global throughout the cell population and the resulting clusters do

not reflect any spatial distribution. On the other hand, a limited

diffusion range of the autoinducer would lead to a short-range,

local coupling between the cells, which would in turn provide a

patterning mechanism driven by the formation of spatial clusters.

Programmed pattern formation driven by finite autoinducer

diffusion has already been demonstrated in a synthetic gene-

regulatory circuit in E. coli [20]. That mechanism, however, did

not rely on a decision-making circuit.

Cell–cell communication has already been used to program a

particular cellular process, namely cell death, in E. coli [12]. In that

case, quorum sensing induces a transition between different

dynamical regimes. The mechanism proposed here, on the other

hand, does not rely on the occurrence of dynamical bifurcations,

but only on the control of the intrinsic noise that is unavoidable in

gene-regulatory networks. Noise reduction due to coupling has

already been proposed as a mechanism of precision enhancement

in multicellular genetic clocks [6,7,8]. That situation, however,

relies on a homogeneous response of the system. The mechanism

reported here, on the other hand, maintains the possibility that the

system behaves in an heterogeneous way (something which is

necessary in developmental processes, for instance), but neverthe-

less it is still able to benefit from the coupling-induced noise

reduction.

A second effect of the intercell coupling discussed above, is the

possibility that coupled genetic oscillators exhibit a phenomenon

known as oscillation death. The presence of noise undermines the

operation of the coupling-induced switch, in the same way that it

prevents reliable decisions from taking place when the cells are

intrinsically bistable but noisy. Again, decision making should in

principle be possible for large enough population sizes.

Noise-reduction due to coupling has already been discussed in a

biological context, mainly in the framework of neuronal dynamics.

In that context, noise due to either (i) the random opening of ion

channels [21,22], (ii) fluctuations in the neurons’ input currents

[23,24], and (iii) the incidence of a large number of stochastic

synaptic inputs into a neuronal network [25] has been shown to be

decreased with the system size. Here we propose, for the first time

to our knowledge, a functional role for this effect at the level of

gene regulation. As a prospect, it would be specially interesting to

study how the growing diversity due to mutations would compete

with the coupling-induced reduction of noise as the population

grows.
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