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Abstract

The viscoelastic properties of passive eye muscles are prime determinants of the deficits observed following eye muscle
paralysis, the root cause of several types of strabismus. Our limited knowledge about such properties is hindering the ability
of eye plant models to assist in formulating a patient’s diagnosis and prognosis. To investigate these properties we
conducted an extensive in vivo study of the mechanics of passive eye muscles in deeply anesthetized and paralyzed
monkeys. We describe here the static length-tension relationship and the transient forces elicited by small step-like
elongations. We found that the static force increases nonlinearly with length, as previously shown. As expected, an
elongation step induces a fast rise in force, followed by a prolonged decay. The time course of the decay is however
considerably more complex than previously thought, indicating the presence of several relaxation processes, with time
constants ranging from 1 ms to at least 40 s. The mechanical properties of passive eye muscles are thus similar to those of
many other biological passive tissues. Eye plant models, which for lack of data had to rely on (erroneous) assumptions, will
have to be updated to incorporate these properties.
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Introduction

Recent studies of monkeys with one eye muscle paralyzed [1,2]

have revealed an intricate pattern of static and dynamic deficits,

which cannot be fully reproduced using current models of the eye

plant (the globe, extraocular muscles and passive tissues in the

orbit). We have argued elsewhere [3] that the inability to capture

the static deficits is probably due to our limited knowledge of the

innervation patterns in physiologic conditions. However, the

failure to capture the dynamic deficits must almost certainly be

ascribed to our limited knowledge about the dynamic mechanical

properties of eye muscles, especially in their passive state.

Because no complete review of the pertinent literature is

available, we will now briefly summarize what has been reported

regarding the passive properties of eye muscles.

Static forces
The relationship between the length of an eye muscle and the

force it generates at equilibrium (i.e., after the length has been

maintained for a very long time) has been studied in several

species. Robinson [4] and Collins [5] were first, and used cats.

Collins proposed that the static stiffness of the muscle (which he

defined as the slope of the length-tension relationship) was

proportional to the force at the same length. That is, Collins

implicitly proposed that the stiffness and the force both increase

exponentially with length. In his original paper, results from two

experiments were plotted. We found that one dataset (his Fig. 15)

can indeed be fit very well (r2 = 0.99) by the following exponential

function:

T Lð Þ~1:13eL=1:81

where T is the tension (in gf) and L is the elongation (in mm)

relative to the muscle length with the eye in primary position. The

other dataset (his Fig. 8) is less well captured (r2 = 0.89) by a single

exponential, but is considerably better fit (r2 = 0.97) by the

following expression:

T Lð Þ~pos 0:5Lz0:38eL=1:99z3:67
� �

where pos[ ] indicates that negative values are truncated to zero.

Obviously, in this latter expression the stiffness (i.e.,, the

derivative of the force with respect to length) would not be

directly proportional to the force. However, we found that, unlike

the pure exponential proposed by Collins, it provides a good fit to

all the datasets available in the literature. For example, the passive

length-tension curves in cat extraocular muscles (EOMs) were

measured in two other experiments. The data reported by

Robinson [4] is well fit (r2 = 0.96) by

T Lð Þ~pos 1:03Lz5:37eL=1:20z8:42
� �

In this case however, the elongation (L) is relative to the length at

which the active force in the tetanized muscle is maximal.

Robinson assumed that this was equal to the length in primary
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position, but we now know that that is not true. The data collected

by Barmack and colleagues, also in cats, [6] is well fit (r2 = 0.97)

by:

T Lð Þ~pos 0:27Lz0:59eL=1:39z1:72
� �

where L indicates the elongation relative to the length in primary

position. In each study a different value was chosen for the zero

length, and there must be some variability across animals, thus it is

not surprising that the various fits look quite different. In an effort

to find some sort of average fit, we tried to shift and scale the

length axis, and to scale the force axis. Using reasonable ranges

(65 mm shifts and 630% scaling), we could not find decent

agreement across all curves (Fig. 1A, see legend).

Unfortunately, there are not many studies in other species.

Barmack [7] studied EOM passive force in rabbits, and found that

the length-tension relationship in their inferior rectus is almost

linear. We could fit it very well (r2 = 0.96) with:

T Lð Þ~pos 0:81Lz0:04eL=1:14z1:46
� �

In this case L indicated the elongation relative to primary position,

but Barmack noted that the precision of this measurement was

quite low. The only study in monkeys [8] produced results that are

somewhat different from those in all other studies. The force is low

for the first four mm, and does not even seem monotonic over this

range. It then increases linearly first (over four mm) and very

rapidly afterwards (over two mm). Excluding the maximum

elongation point (which is most likely beyond the muscle’s natural

working range) from their dataset, we obtained a reasonably good,

but not great, fit (r2 = 0.92) with:

T Lð Þ~pos 0:26Lz0:14eL=1:76z1:58
� �

Two other animal studies exist, but their methodologies make

them uninformative: Stone and colleagues [9] measured the force

on the globe with muscles attached in dogs, and Breinin [10]

provided only relative forces in cats.

Several studies have been published in which the passive force

was measured in humans before strabismus surgery (Fig. 1B). The

first two such studies [5,11] both report the same data from a

patient in which the passive force is estimated by having the awake

patient fixate (with the other eye) as far as possible away from the

muscle’s field of action. Obviously this is not an ideal experimental

condition, and most likely the muscle was somewhat innervated.

The length-tension curve is fit perfectly (r2 = 0.99) by:

T Lð Þ~pos 0:50Lz1:35eL=3:25z1:31
� �

A later study [12] found, using the same methodology, somewhat

lower forces, which are reasonably fit (r2 = 0.90) by

T Lð Þ~1:02eL=3:15

Adding parameters to this fit did not improve it significantly. In yet

another study [13], the passive forces from five deeply anesthetized

patients from the same group were reported. In this case a good fit

(r2 = 0.97) is obtained with:

T Lð Þ~pos 0:95Lz0:74eL=2:91z3:13
� �

The data from humans, having been collected by the same group

of investigators, and thus using more standardized techniques and

equipment, should be considerably more consistent than those in

cats. However, this expectation is not met (Fig. 1B). Also, because

of the different methodology used, one would have expected the

force measured by Scott (which should also be more reliable, being

Figure 1. Passive force-length relationships reported in the literature. A: Data from the lateral rectus in cats, pooled across studies. The red
fit represents original data, whereas the other fits have been scaled along both axes (see text) in an (obviously failed) attempt to reconcile the various
data sets. B: The passive force-length relationship in human horizontal recti, as measured in studies on strabismic subjects (see text). The elongation
is referred to the straight ahead position.
doi:10.1371/journal.pone.0004850.g001
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the average of five subjects) to be lower than the force reported in

the other two studies, but this was not the case.

Dynamic forces
There is only one applicable study of the dynamic properties of

passive eye muscles [5], on the lateral rectus of cats. Collins

concluded that the passive muscle can be modeled with an elastic

element in series with a Voigt element (a viscous and an elastic

element in parallel); the (only) time constant in the model was

100 ms. (Another study was carried out in dogs, but the force was

measured at the eyeball with an intact plant [9]; parsing the

contributions of the muscles and orbital tissues under these

circumstances is a hopeless endeavor.) This result would seem to

indicate that passive eye muscles have little in common with any

other passive biological tissue studied.

This brief but complete review of the literature reveals a striking

paucity of data and considerable inconsistency across data sets,

even within the same species. Even more worrisome, there are

considerable inconsistencies even across subjects within the same

experimental group. Building models based on such limited

knowledge is obviously less than ideal. Robinson recognized this

problem almost 30 years ago [14]. Referring to the viscous

properties of passive eye muscles, he noted that ‘‘there seems little

doubt that the value chosen for this viscosity will have a

considerable effect on a model’s behavior and our lack of any

certain knowledge of its properties is certainly a source of

indeterminacy in any model.’’ Robinson continued: ‘‘I believe

we are now at the point where we need more facts about how

muscles behave, rather than more modeling’’. Unfortunately, since

that landmark review article was published not a single experiment

has been carried out to measure the dynamic mechanical

properties of passive eye muscles.

In an attempt to fill this glaring gap, we measured, in vivo, the

forces exerted by passive extraocular muscles of monkeys. While

the lion’s share of this study is devoted to the dynamic properties of

passive eye muscles, in this article we will also present a detailed

analysis of the static forces.

Methods

Ethics Statement
All procedures were in agreement with the Public Health

Service policy on the humane care and use of laboratory animals

and all protocols were approved by the Animal Care and Use

Committee of the National Eye Institute.

Animals
Eye muscle forces were measured in three adult rhesus monkeys

(Macaca mulatta), ranging in weight from 8 to 14 Kg (identified as

m2, m3, and m4). None of the animals had been previously used

in any experiment, and their eyes and orbits were thus pristine.

They had all been exposed to the simian herpes B virus, and

accordingly were isolated and considered inappropriate for awake,

chronic experiments.

Surgical procedure
The animal was premedicated with ketamine hydrochloride

(10 mg/Kg) and glycopyrrolate (13–17 mg/Kg) delivered intra-

muscularly. An IV catheter was placed in the saphenous vein, and

lactated Ringer’s solution was administered (10 mL/Kg/hour).

The animal was then placed supine on the surgical table, intubated

and anesthetized with isoflurane (2–4%) in oxygen, and mechan-

ically ventilated. Heart rate, indirect mean arterial blood pressure,

mucus membrane color, peripheral oxygenation/SpO2, end-

expiratory CO2 partial pressure, and EKG were monitored and

maintained within normal physiological ranges. Body temperature

was monitored and maintained at 37uC with a heating pad.

Paralysis was induced with pancuronium bromide (0.05–0.10 mg/

Kg IV), and maintained with 0.025–0.050 mg/Kg IV every

45 minutes until the end of the procedure. The paralytic agent was

used to ensure that the muscles were completely passive. It is

usually assumed that deep anesthesia is sufficient to obliterate

muscle activation, but only a paralytic agent can guarantee this

outcome. Pancuronium bromide, a non-depolarizing agent, is the

preferred agent; succinylcholine, another commonly used paralyt-

ic, could not be used here, as it actually activates an entire class

(multiply innervated, non-twitch) of eye muscle fibers [15]. After

measurements were finished, the animal, without awakening, was

euthanized with an overdose of sodium pentobarbital (150–

250 mg/kg). The animal was then perfused intracardially with a

glutaraldehyde and paraformaldehyde solution. The orbital

contents were preserved for anatomical study.

Experimental procedure
After the animal had been anesthetized, its head was stabilized

with a stereotaxic device’s ear bars (to reduce the head’s degrees of

freedom from six to one). A mouth bar added to the stereotaxic

device was attached to the front teeth with dental cement to fix the

head so that Reid’s baseline was perpendicular to the table. Both

eyes were prepped and draped in the usual sterile ophthalmic

manner. The conjunctiva was then incised in correspondence with

an eye muscle insertion on the globe, and a muscle hook was

placed under the insertion. From here we adopted two different

techniques.

In four muscles (identified as m2LR, m2SR, m3LR and m3SR),

the muscle was connected to the measuring device directly by a

KevlarTM thread (between 50 and 75 mm long). The connection

was achieved by sandwiching the wire, together with the tendon,

between two tiny titanium plates (6 mm by 2 mm by 1 mm) kept

together by two microscrews (total weight 0.05 g). The pressure

exerted by the screws was such that no slippage could have occurred.

To err on the side of caution, a small knot (fixed with glue) was

placed at the distal end of the Kevlar wire, and before tightening the

screws the wire was pulled until the knot came in contact with the

distal side of the plates. The proximal end of the Kevlar wire was

connected to the measuring apparatus by a knot secured with a drop

of cyanoacrylate glue. The Kevlar 49 thread we used (0.2 mm

diameter, 460 denier (d)) has a tensile modulus of 885 g/d (Dupont

Kevlar Technical guide, see Dupont web site). The stiffness of the

connection was then between 5400 and 8100 gf/mm.

On the last muscle tested (identified as m4LR), we did not use

the above described clamping technique, but instead tied a

SurgidacTM (US Surgical) 5-0 surgical suture to the tendon and

then knotted its other end to the distal end of the Kevlar wire (the

knot was then secured with a very small metallic crimp, weight

0.02 g). More precisely, the suture was tied at both sides of the

tendon, and both ends of the suture were then connected to the

Kevlar wire (i.e., it was as if there were two sutures connected in

parallel). The length of the suture segment was 8 mm, whereas the

length of the Kevlar segment was 50 mm. We selected Surgidac

sutures because they are the least compliant of those we tested (the

others were TicronTM, Fiber-wireTM, TenaraTM, Gore-texTM,

VicrylTM coated and uncoated, DexonTM, and braided silk, listed

in order of ascending compliance). A double 8 mm segment has a

stiffness of 3520 gf/mm. The overall stiffness of the Surgidac-

Kevlar connection was then 2450 gf/mm.

In all cases the tendon was connected to the measuring device

before being detached from the globe, allowing us to get an
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estimate of the force exerted by the muscles when the line of sight

pointed the equivalent of straight ahead (i.e., in this posture,

straight up). Since the animal was anesthetized, straight ahead

position was estimated by the Hirschberg corneal reflex test, which

has an approximate accuracy of five degrees horizontally and

vertically.

Muscle force was measured using an Aurora Scientific (Aurora,

ON, Canada) 305C Dual-Mode Muscle Lever System. In the

experiments described here we imposed the muscle length, and

measured the corresponding change in force (NB: the SI standard

unit of force is the Newton (N), but muscle force is traditionally

measured in units of gram force (1 gf<0.0098 N); e.g., a mass of

102 g exerts a force of 102 gf, or 1 N, on earth). The specifications

for the system used are as follows:

N Length Signal Resolution: 1 micron

N Length Signal Linearity: 0.1% over the center 4 millimeters,

0.5% over the entire 20 mm range

N Length Step Response Time (1% to 99% critically damped):

2.0 msec

N Sinusoidal Frequency Response (23 dB): 330 Hz

N Force Signal Resolution: 1.0 mN (,0.1 gf)

N Force Signal Linearity: 0.2% of force change

Both the length and the force signals are low-pass filtered with a

4th order Butterworth filter with a cut off frequency of 5 kHz. The

bandwidth of the system is limited by the motion bandwidth, not

by the sensor bandwidth. In all our experiments we stayed well

within the bandwidth of the equipment. In doing so we guaranteed

that the measurement device was not a limiting factor, and that

both the length and force sensor outputs can be treated as

veridical. The input/output analog signals for/from this device

were generated and acquired through an A/D-D/A interface

board (National Instruments, NI USB-6211) connected to a laptop

PC (IBM, Amonk, NY) and controlled by LabView (National

Instruments, Austin, TX). The experiment was controlled by a

custom Java program that communicated with LabView,

displayed the data in real-time, and stored it for later analysis.

Sterile artificial tears were used to bathe the exposed tissues

continuously during the experiment. Before recording we

preconditioned the muscles by repeatedly (5–10 times) stretching

and releasing them sinusoidally over their entire range (which is

standard procedure in tissue rheology to guarantee repeatable

results; the relatively low number of cycles used here is justified by

the in vivo condition, which is unique to our experiment). We were

extremely careful to preserve the blood supply and to keep the

tissues well hydrated, because it has been recently shown that

other methods (e.g., extraction of the muscle) are fraught with

potential problems [16]. For all muscles tested, we ran a block of

3–4 ramps at the beginning and end of the experiment to test for

any possible deterioration of the muscle. We did not observed any

significant change in these test trials.

Because very little was known about the viscoelastic properties

of passive eye muscles (and, as we show here, that little turned out

to be grossly inaccurate), we based our experimental design on the

results and modeling studies from other passive biological tissues.

We concluded that the best experimental design to characterize

the in-vivo viscoelastic properties of eye muscle consists in imposing

small elongation steps, executed within a few milliseconds, from

initial lengths spanning the entire elongation range tested. All the

steps we imposed had an amplitude of 0.5 mm. In all muscles we

used steps that had a peak speed of 160 mm/s, a peak

acceleration/deceleration of 144 mm/s2, and a duration of

4.5 ms (bandwidth 130 Hz, Welch’s method). In some muscles

we also induced some slower steps, with a peak speed of 80 mm/s,

a peak acceleration/deceleration of 74 mm/ s2, and a duration of

8 ms (bandwidth 50 Hz). Long waiting periods were imposed

before and after each length change. Other paradigms (e.g.,

constant-speed ramps spanning the entire elongation range, at

various speeds: 1, 10, 80, and 160 mm/s) were also part of the

experiments, but they will be described and analyzed in

subsequent papers.

Because it was technically impossible for us to measure the

forces during shortening (they become negative for even relatively

low shortening speeds, causing the Kevlar thread to buckle) only

lengthening was tested. Knowing the passive properties during

shortening would be valuable to study pathologic conditions, but a

completely different measuring apparatus would have to be

constructed. Fortunately, during shortening in physiological

conditions the muscle is always innervated, and so its passive

properties are less important. Another limitation of our study is

that, because after each muscle elongation we waited for a long

time (30 seconds in the first two monkeys, 45 s in the third) for the

force to settle, we could not perform all experiments in all muscles

(we never exceeded a one-hour testing period per muscle, as we

wanted to avoid any tissue deterioration).

The elongation range was determined separately for each

muscle. As a lower bound we picked the longest muscle length at

which the force recorded was essentially zero. This length

coincided with, or was very close to, our approximate estimate

of the muscle length with the eye in primary position. For the

upper bound we selected the length at which the force curve

steepened to the point where elongations of a tenth of a millimeter

caused considerable force changes (around 1 gf). To avoid any

damage, we never pulled the muscle further, even though it was

clearly possible to do so; we are confident that the range tested

always covered the entire oculomotor range (i.e., the set of lengths

that are achieved in physiologic conditions, which in monkeys

correspond to approximately 45u of rotation), but never exceeded

it by more than one mm. Accordingly, the elongation range tested

was always about eight mm. We never noticed the sudden increase

in stiffness corresponding to the leash region described by others

[17]. On a couple of occasions, after testing was completed, we

slowly stretched the muscle by an extra two mm, but even then no

sudden stiffening was noticed.

We originally considered running multiple trials for each

condition, with the intention of increasing the signal to noise

ratio by averaging across the trials. As soon as we started the

experiments, we realized that most of the noise we observed was

not independent and randomly distributed, which could be

reduced by averaging over trials. Rather, we measured significant

heartbeat and respiration-related signals, neither of which would

go away with small n averaging. The actual measurement noise was

extremely small, at or below the level of our instrumentation

accuracy. Accordingly, we collected a single trial per condition.

Another aspect that became clear early on was that the muscle

needed to be completely detached from the globe before the

measurements. When we prepared our very first muscle for

measurement we were careful to be minimally invasive, detaching

only the tendon and immediately starting the measurements. We

quickly realized that, because of other attachments between the

muscle and the sclera, as we pulled the muscle the eye rotated with

it. Also, connective tissues on the orbital side of the muscle were

dragged out of the orbit at longer extensions. Evidence for the

mechanical significance of these extra-tendinous attachments in

humans has been recently reported [18]. From then on, before

starting the measurements, we carefully ‘‘cleaned’’ the muscle,

detaching all the connections between the global side of the muscle
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and the sclera, and the most distal attachments between the orbital

side and the bony orbit.

Noise
In all our measurements we could clearly identify three sources

of noise:

N A high-frequency, low-amplitude signal that we refer to as

measurement noise, meaning that it is probably not part of the

muscle force, but is rather due to our recording system.

N A physiological signal with a base frequency of approximately

1.5–1.6 Hz, corresponding to the heartbeat.

N A physiological signal with a base frequency of approximately

0.4 Hz, corresponding to the ventilation rate.

Two sources of measurement noise could be identified in the

frequency domain. The first one covers a band between 2 and

11 Hz, with a dominant frequency around 5 Hz, and contains

75% of the total power of the high-frequency noise. This

component is most likely due to micro-oscillations of the Kevlar

suture connecting the muscle tendon to the apparatus. The second

source of noise is the AC power line, with most of the noise (6% of

the total power) scattered across the first (60 Hz) and third

(180 Hz) harmonics. The RMS force of the high-frequency noise

was always very small, below the accuracy of our instrumentation

(0.1 gf).

Denoising
The two physiological noise sources were stronger than the

measurement noise, especially the heartbeat noise, and increased

approximately linearly with the stiffness of the muscle (which, as we’ll

see below, increases with muscle length). We estimate that periodic

changes in muscle length of the order of 610 mm would be sufficient

to induce the noise we measured. The physiologic noise could not be

removed by frequency-band filtering, because the frequency

spectrum of the noise overlapped the spectrum of the signal during

the early part of the post-elongation force decay. To overcome this

problem we took advantage of two properties of our measures: 1) the

noise waveform is highly consistent, and 2) the force decays

exponentially, so that most of the high frequency components of

the signal (dominated by short time constants) is clustered during and

just after the elongation period. We thus proceeded as follows. First,

we fitted all the post-movement traces with a sum of exponentials

using the Emri-Tschoegl algorithm (E-T), described below. Starting

from 5 s after the end of the elongation phase, this fit to the raw data

was insensitive to the biological noise. Accordingly, we used the

residuals (i.e., the difference between the measured force and the fit)

from the slow part of the decay curve to form templates accurately

describing the physiological noise.

We first used these residuals to build a template for the

heartbeat noise (by averaging over many heartbeat cycles). This

was done separately at each muscle length sampled. In Fig. 2A we

show the heartbeat templates for one muscle (lateral rectus in m3);

each trace corresponds to a different muscle length. In Fig. 2B we

show the relationship between the muscle length and the

magnitude of the heartbeat noise, measured around the peak

(red bar in Fig. 2A). Each red dot in Fig. 2B corresponds to a

different trace in Fig. 2A, and a cubic fit through the data is

shown. Next, we subtracted this average template from the

residuals. We then assumed that the periodic waveform that was

left was due to the respiration noise, and thus collected and

averaged those cycles to compute, for each muscle length, a

template of the respiration noise. In Fig. 2C we show the

respiration noise templates, and in Fig. 2D we show how their

magnitude varies with muscle length. These two sets of templates

were then, in a semi-automatic way, matched to the recorded force

(taking into account the instantaneous muscle length to interpolate

across noise templates), and the two sources of noise were then

subtracted off sequentially. In Fig. 2E we show an example of the

results. The red trace is the original post-step decay, the blue trace

is what is left (shifted down for clarity) after the heartbeat noise is

removed, and the green trace is what is left (again shifted down)

after the respiration noise has also been subtracted. Obviously the

result, which is representative of what we got on all our traces, is

very good, leaving behind only the high frequency, low amplitude,

measurement noise described above. It should be pointed out that

our noise templates do not have zero mean, as we assume that the

biological sources of noise increase the force measured. The E-T

fit was then recomputed from the denoised data set; only the fits to

denoised data are included in the Results.

Results

Static length-tension relationship
The static length-tension relationship of a viscoelastic material

describes the steady-state force exerted at a given length (it is the

equivalent of the linear equilibrium stress-strain law of infinites-

imal elasticity theory [19]). Obviously, it cannot be directly

measured, as at each length the force would require an infinite

amount of time to reach steady-state. Practically, the static force at

a given length can be estimated from force measurements in two

ways. First, one could simply record the force measured after the

muscle length has been kept constant for at least three times the

longest time-constant of interest of the system. It also would be

advisable to reach the final length with as slow a movement as

possible, because, other things being equal, one would assume that

the larger the viscous force induced by the preceding movement

the larger the error in the estimate. Alternatively, one could use a

model to extrapolate the asymptotic force at which the muscle

would eventually settle. In this case, the estimate can be as

accurate as the model used to fit the response. We used a hybrid

approach to estimate this relationship. We estimated the force at

the length following each quick step using the asymptotic value

from the spectral fit (described in the Relaxation Response

section). As an estimate of the force at the length preceding each

quick-step we instead used the average force measured during

200 ms before the step (after denoising the signal, see Methods). As

the spectral fits were always extremely good, we believe that the

former estimates are highly reliable. The latter were of course less

reliable, somewhat underestimating the force exerted at the

shortest length (because the force was still recovering after the

shortening), and overestimating the force exerted at the other

lengths (because the force was still settling after the previous

lengthening). As the preceding fast movement was always at least

one minute away, we believe that these estimation errors were

quite small.

We evaluated in this manner the length-tension relationship in

five recti muscles (three lateral recti, two superior recti) in three

monkeys. After failing to fit the static data with previously

proposed equations (e.g., [5,20,21]), we settled on the following

relationship:

T Lð Þ~aLzbeL=czd ð1Þ

where T is the passive force, L is the muscle elongation, and a, b, c,

and d are parameters. We used a weighted sum-of-squares

minimization procedure because of the different reliability

associated with various data points (see above). The distance
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between each data point and the fit (i.e., each residual) was

weighted as follows: residuals for the asymptotic values have a

unitary weight, positive residuals for the pre-step averages had a

weight of 0.1 for the first step and 0.5 for all others, and negative

residuals for the pre-step averages had a weight of 0.5 for the first

step and 0.1 for all others. This arrangement accounts both for our

stronger reliance on the asymptotic measures, and for our

knowledge about the direction of the bias in the pre-step averages.

In all cases this equation provided an exceptional fit, accounting

for more than 99% of the variance in the data, regardless of the

formula used to compute the coefficient of determination, R2 [22].

We noted at recording time, and confirmed during the analysis,

that the data from one of the muscles in the dataset was

problematic. When we prepared the LR in our first monkey

(Fig. 3A), we cleaned the orbital side too much. Lack of any

connective tissues allowed the muscle to slip freely around the

globe, so that it followed the shortest path from its origin to our

apparatus. In spite of our best efforts to select an appropriate

pulling direction, as soon as the force increased the muscle slipped

around the globe (because the LR is the muscle that wraps around

the globe the most, it is also the most sensitive to this problem).

This can be easily seen in the data, as the slope dropped after

about 3 mm (gray arrow Fig. 3A), and we had to elongate the

muscle much more than in the other experiments to get to the

steeper part of the curve. This again highlights how crucial it is to

properly prepare the muscle in an in vivo experiment. The data

acquired from this muscle was not subjected to any further analysis

and discarded. The fitted parameters for the other four muscles

(Fig. 3B–E) are listed in Table 1. In Fig. 3F we plot the length-

tension curves from these four muscles together: they are

surprisingly similar, even though the parameters listed in the

table are not that close. That is because the parameters in Eq. 1

are not orthogonal, and thus can be traded off against each other

without changing the fit dramatically.

To estimate the stiffness of the muscles at short elongations

(corresponding to small eye eccentricities), we also fitted a straight

Figure 2. Sources of noise in our force measurements. Data are from the lateral rectus (LR) of the second monkey (m3). A: Heartbeat noise
templates at different muscle lengths. B: Magnitude of the heartbeat noise (average over the time interval indicated by the red bar in A) as a function
of muscle length. A least-squares cubic fit to the data is shown in blue. C: Respiration noise templates at different muscle lengths. D: Magnitude of
the respiration noise (average in the time interval indicated by the red bar in C) as a function of muscle length. A least-squares cubic fit to the data is
shown in blue. E: Red: Part of the relaxation response measured in the same muscle after a quick step. Blue: Same as red trace, but after template-
based removal of the heartbeat noise (shifted down by 1 gf for clarity). Green: same as blue trace, but after template-based removal of the respiration
noise (shifted down by 2 gf for clarity). The green trace is the denoised data used in all subsequent analyses.
doi:10.1371/journal.pone.0004850.g002
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line to the portion of the curves up to elongations of 2 mm (note

that we used the fitted equations, not the original data, as there

were too few data points below that range). We obtained the

following values: 0.78 (m2SR), 0.80 (m3LR), 0.53 (m3SR), and

0.67 (m4LR) gf/mm (corresponding to approximately 0.09 to

0.13 gf/u when expressed in terms of equivalent eye rotation).

It is important to note at this point that, while an attempt can be

made to estimate the relative force of different muscles in the same

animal from average geometrical/structural considerations, it is

difficult to do so across monkeys. Thus, the best that we can expect

to obtain from experiments such as ours, in which the number of

muscles sampled is necessarily quite low, is an ‘‘average’’

description of muscle behavior, which can then be scaled for the

various muscles within a model. To obtain such an average muscle

model, we thus computed a population fit. Because the individual

parameters in the model are not completely independent, looking

at the values of the parameters in the individual fits was not

particularly helpful. Instead, given how similar the curves for the

muscles were, we fitted the equation directly to the pooled data

points from all the muscles. We do realize that this is not a good

idea in general, as we are pooling data across muscles and animals,

but we felt that in our specific case it would be an efficient and

effective way to obtain an expression that could be useful for

modelers. The fit for this ‘‘average’’ muscle, this time done using

unweighted least-square optimization, is:

T Lð Þ~0:7Lz0:15eL=1:74z0:75

The stiffness at short elongations, in this case, is 0.85 gf/mm (or

0.14 gf/u), somewhat higher than that of any individual muscle.

This is certainly due to the different fitting technique used for this

curve, but the weighted least-squares optimization used above is

not applicable in this context.

Relaxation response
The relaxation response (i.e., the time course of the force decay

following an elongation step) is sufficient to fully characterize a

linear viscoelastic material. Not surprisingly then, its determina-

tion is the oldest and most extensively addressed problem in

rheology. One would hope that such a long standing problem

would have been solved by now, but it turns out to be an inverse

problem very sensitive to noise (i.e., an ill-posed problem), and

there is no ‘‘silver bullet’’ for its solution. In another paper we will

compare several of the methods proposed over the years to fit the

relaxation response, but here we will only describe the one that we

found most convenient for the data presented herein.

Historically, viscoelastic models have been described using

integer order differential equations. As the solution of such

equations are exponential functions, it is only natural that the

relaxation response has been modeled as a sum of exponentials:

F tð Þ~
XN

i~1

mie
{t=ti zF? ð2Þ

The N moduli mi and time constants ti define what is usually

referred to as a line spectrum. Our goal is to find N and the values

mi and ti that, when plugged into Eq. 2, yield the best fit to the

measured relaxation responses.

Figure 3. Passive force as a function of length in five eye muscles from three monkeys. A–E: Length-Tension curve for a single muscle.
Blue points: average of the force measured during 200 ms before each step. Red points: estimate of the force at the final elongation after each step
using the steady-state value from the spectral fit (see text). Black line: fit based on Eq. 1. F: Fits from panels B–E. The first muscle was excluded
because the muscle was ‘‘cleaned’’ too extensively and it slipped around the globe (gray arrow in panel A). Muscles: lateral rectus (LR), superior rectus
(SR).
doi:10.1371/journal.pone.0004850.g003

Table 1. Length-Tension relationship parameters (Eq. 1).

a b c d

m2SR 0.687 0.0612 1.452 0.71

m3LR 0.602 0.1908 1.789 1.49

m3SR 0.457 0.0469 1.394 1.43

m4LR 0.519 0.1289 1.651 0.73

doi:10.1371/journal.pone.0004850.t001
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One way to tackle this problem is to arbitrarily impose N and

the values for ti, and then use an analytic least-squares error

minimization method to find the optimal moduli mi. However, if

the time constants are not far enough apart, this technique

produces some negative moduli, which are obviously not

acceptable. To overcome this problem, Emri and Tschoegl [23–

26] developed a method to find a good fit (but not necessarily the

best solution) without generating any negative moduli. With this

method the user must still supply the time constants of interest, but

the moduli are then computed using an iterative process that

utilizes only non-overlapping data subsets for each mi. The

algorithm is iterative and deterministic (i.e., the same result is

obtained if run multiple times on the same data set), and very fast.

Unfortunately, even with this method the choice of the time

constants is critical, and the largest time constant is fit first and is

thus privileged over the others. In addition to the time constants,

the asymptotic force (F‘) must also be supplied, as the sum of

decaying exponentials will necessarily converge to zero. Because

we could not find established criteria to guide our choice of time

constants and asymptotic force, we developed our own.

Emri and Tschoegl suggested simply using the value of the last

data point as the asymptotic force, but that works only if the

recording window is several times longer than the largest time

constant. In our experiment that is definitely not the case, ruling

out this approach. As an alternative, we used the following

technique. First, we picked the highest time constant (40 s) that we

felt we could estimate reliably given the duration of our recording

window (30 s in m2 and m3, 45 s in m4); we used a single value for

all muscles so that comparisons could be made more easily.

Judging from experiments in other passive tissues, longer time

constants most likely are in play, but cannot be reliably measured

with our recording window. Next, we picked a fixed spacing (0.5

log10 units) for the time constants, and computed additional time

constants down from the maximum to a lower bound of 1 ms (a

limit imposed by the bandwidth of our equipment). We then used

the Emri-Tschoegl (E-T) algorithm to compute the corresponding

moduli for the best fit to one trace (starting from the end of the

elongation). We did this several times, each time with a different

asymptotic value (ranging from 0.75 to 0.99 times the final force).

The value that yielded the best fit was selected as the asymptotic

force, F‘, and was then used to compute the length-tension curve

in Eq. 1, as described above.

Once the asymptotic force was obtained, we subtracted the

corresponding fit (Eq. 2) from the force trace, and analyzed the

statistics of the residual noise (after cubic detrending, if necessary).

We then used an Ornstein-Uhlenbeck process [27] to generate

noise with the same variance and similar auto-correlation function,

added this new noise to the fit previously obtained (adding back

the detrending curve when necessary), thus generating a synthetic

force measurement. We repeated this step several times (10 to 50),

thus producing a family of synthetic force traces carrying the same

signal but different noise instances. We then ran the E-T algorithm

on each of these traces, and we did so for many different time

constant spacings (from 0.5 to 1.5 log10 units). We found that when

the spacing between time constants was too small, on different fits

neighboring moduli were traded off against each other, so that

when one was high the other was low, and vice versa. Thus, the

standard deviation of the moduli for any one time constant, across

runs, was quite large. When the spacing was large enough, this

phenomenon did not occur, and all that was the left were the small

changes expected given the noise level. We found that, with our

noise level, this occurred for a spacing between 0.7 and 0.8

decades (Fig. 4A). On the other hand, as the spectrum lines

become too far apart, the quality of the fit, evaluated computing

the mean SSE across the set of synthetic force traces, deteriorates.

At our noise levels this occurred above one decade (Fig. 4B).

Accordingly, any spacing between 0.75 and one decade could be

used. In all cases we used a spacing of 0.75 decades, corresponding

to 7 spectrum lines in the range 1 ms to 40 s. We settled on the

lower end of the spacing spectrum because it enabled us to get

better fits during the elongation phase (see below). At this spacing

level the analytic least-squares method was still generating one or

more negative moduli, and thus was not a viable alternative to the

E-T algorithm.

Once we had found the spacing for the spectrum lines and, for

each muscle, the length-tension curve, we computed the line

spectrum from each quick-step trace. This algorithm yielded

excellent fits to our post-elongation decays, with a median r2 value

of 0.9972 (ranging between 0.9783 and 0.9995, excluding the fits

at the two shortest lengths, where the force was small compared to

the noise). In Fig. 5 we show the fit for some of the steps recorded

from the superior rectus muscle of m3. In panel A the data and the

fits are shown with a linear scale, whereas in panel B the same data

and fits are shown with a logarithmic scale (to improve

visualization at short times). The fits are excellent at all lengths

and over the entire duration of the experiment, with the exception

of a small disturbance around 10 ms (most likely an artifact due to

a small transient overshoot of the final length). In panel C we plot

the moduli for the fits plotted in A and B. Seven time constants

were used, spaced by 0.75 decades (1.3 ms, 7.1 ms, 40 ms,

225 ms, 1.26 s, 7.11 s, and 40 s). While an overall trend is clear

across lengths, this is not strict, especially for the small time

constants. In panel D we plot, for each time constant, the moduli

as a function of muscle length, normalized to the peak value. For

most time constants, the moduli increase ‘‘exponentially’’ with

length, even though there are some obvious differences between

the various curves.

In Fig. 6 we plot the spectra (as in panels C and D in Fig. 5) for

the other three muscles tested. The overall trend is the same, but

again there is quite a lot of variability. The moduli associated with

the 7 ms time constant are particularly idiosyncratic, especially in

m4 but to a lesser extent also in the other monkeys. We do not

have a good explanation for this discrepancy, and unfortunately

studies of other passive tissues do not usually investigate these short

time scales. It is hard to rule out that measurement artifacts, such

as the propagation of inertial waves [28], are responsible. One

could suspect that the somewhat higher compliance of the method

used to connect this muscle to the apparatus might have played a

role, but then the effect should have been even more pronounced

on the 1 ms time constant. Given the high values of the 1 ms

modulus relative to the 7 ms modulus in this muscle (a more

compliant connection would be expected to produce the opposite

result), the most likely explanation is that the moduli for the two

time constants have been traded off versus each other (i.e.,

probably six time constants should have been used for this muscle,

but to make comparisons across muscles we wanted to use the

same fitting equation for all muscles). As a general rule, the moduli

for time constants over 20 ms increased monotonically and

‘‘exponentially’’ with length, whereas the moduli for the two

shortest time constants are more variable and less stereotypical.

The values of the moduli for the individual muscles are listed in

Tables 2–5.

Force during the step
So far we have described what happens at equilibrium, and how

the muscle force relaxes after a step. To conclude our analysis of

the step response of passive muscles, we need to describe what

happens during the elongation. These data can be a significant
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Figure 4. Relationship between fit quality and line spectrum spacing. A: The E-T algorithm was run on several simulated relaxation
responses, each obtained by adding noise to the fit to an actual relaxation response (see text). As the spacing between spectrum lines (abscissa)
decreases, the variability in the moduli of the fits to the simulated responses increases, because moduli for neighboring time constants are traded off
against each other. As the spacing is increased this trade off is not possible anymore, and the variability in the fit reflects only the noise in the fitted
responses. For each spacing, we computed, for each time constant, the standard deviation of the moduli over the set of fits to the simulated
responses. We plot the mean of this measure over all the time constants against the spacing, separately for each muscle. B: As the spacing between
spectrum lines (abscissa) increases, the fit deteriorates. For a given spacing, we computed the sum squared error for the fit to each simulated
response. We plot the mean of this measure as a function of spacing, separately for each muscle.
doi:10.1371/journal.pone.0004850.g004

Figure 5. Relaxation responses from the superior rectus in m3. A: Data (black) and fits (green) for five different steps (blue numbers are the
final length in mm). The steps at the smallest final length are not plotted for clarity, but the fits were just as good. B: Same as A, but using a
logarithmically spaced abscissa to improve visualization of the force at short times. C: Moduli associated with each time constant in the fit; one line
for each final length. D: Normalized moduli as a function of muscle length after the step; one line for each time constant. Note that in this panel the
shortest lengths are also represented.
doi:10.1371/journal.pone.0004850.g005
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source of information, but they are often neglected, both in muscle

physiology and in rheological studies of natural or man-made

materials. As far as we know, Ford and colleagues [29] were the

Figure 6. Relaxation responses from the other three muscles tested. One row per muscle. The panels on the left are the same as Fig. 5C,
whereas the panels on the right are the same as Fig. 5D. Note the variability of the moduli both as a function of final length and time constants.
doi:10.1371/journal.pone.0004850.g006

Table 2. Relaxation spectrum in m2SR (0.5 mm steps from
different initial lengths).

1.3 ms 7.1 ms 40 ms 225 ms 1.26 s 7.11 s 40 s

0 0.000 0.000 0.286 0.000 0.000 0.000 0.143

1 0.000 1.306 0.372 0.223 0.070 0.058 0.036

2 0.211 0.995 0.595 0.371 0.130 0.126 0.056

3 0.397 1.165 0.820 0.318 0.205 0.134 0.243

4 0.817 1.286 1.197 0.405 0.287 0.157 0.347

5 1.090 1.369 1.633 0.404 0.383 0.232 0.539

6 1.677 1.358 2.159 0.629 0.404 0.727 0.560

7 2.160 1.930 2.501 1.111 0.834 1.126 1.389

8 2.123 3.585 3.131 2.047 1.798 1.811 3.386

doi:10.1371/journal.pone.0004850.t002

Table 3. Relaxation spectrum in m3LR (0.5 mm steps from
different initial lengths).

1.3 ms 7.1 ms 40 ms 225 ms 1.26 s 7.11 s 40 s

0 0.208 0.000 0.452 0.128 0.146 0.054 0.000

2 0.335 0.000 1.161 0.156 0.120 0.185 0.035

4 0.605 0.787 0.967 0.474 0.289 0.258 0.337

5 1.104 1.098 1.246 0.778 0.548 0.434 0.662

6 1.505 2.235 1.250 1.472 0.663 0.813 0.955

7 2.371 2.877 1.706 1.856 1.239 0.915 1.977

8 3.469 2.741 3.130 2.518 1.878 1.476 3.369

doi:10.1371/journal.pone.0004850.t003
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first to propose that imposing a very brief constant-velocity stretch

(i.e., a ramp change in length) is an ideal method to study the

viscoelastic behavior of muscles. Subsequently, Bagni and

colleagues [30,31] used this paradigm on frog skeletal muscle

fibers, and Mutungi and Ranatunga [32,33] used it to study rat

skeletal muscle fibers. When we planned our experiments we thus

made sure that our steps were generated in this manner, i.e., with

very fast acceleration and deceleration phases, and a constant

velocity for most of the step duration. For example, for a step with

a peak speed of 80 mm/s, the peak speed was reached in 1.5 ms, it

was maintained for 5 ms, and the deceleration phase lasted

another 1.5 ms, for a total of 8 ms.

To gain the maximum insight, it is useful to plot the force not as

a function of time, but rather as a function of muscle elongation.

Of course, by doing so the post-step relaxation collapses to a

vertical line. In Fig. 7 we plot, as a function of elongation, both the

force (red traces) and the speed (blue traces, multiplied by 0.015

for clarity; the peak speed was 80 mm/s for these steps) for steps

executed at different muscle lengths (L0). At short lengths (panel A)

it is obvious that initially the force increases linearly with speed,

indicating a purely viscous process, or at least a process with an

extremely short time constant (no more than 0.2 ms, given that the

peak speed is reached in 1.5 ms). If we subtract off this viscous

contribution, what is left is the typical response of a linear

viscoelastic system, and it is thus compatible with the relaxation

response that we just described. This same explanation works

fairly well also at the next length (panel B, note change in scale),

but it breaks down for the last two (panels C and D). Note that, in

these latter two cases, there is an upward inflection in the force

trace long after the speed has become stable. The upward

inflection is due to the quickly increasing stiffness as the muscle is

stretched; this type of behavior cannot be produced by a linear

system (i.e., a system with constant stiffness). This is compatible

with the moduli shown in Fig. 5D: at short lengths, the moduli do

not vary by much over the 0.5 mm elongation range covered by

the steps, but as the length increases they change considerably

even over such short elongations. Only a nonlinear system can

generate this type of behavior.

Variation across muscles
Because it is quite difficult to estimate the amount of variability

observed across muscles for the numerical fits reported above, in

Fig. 8 we plot, for all muscles and separately at different lengths,

the viscoelastic forces induced by elongation steps of identical

amplitude and speed. To better focus on the viscoelastic force, we

subtracted from the traces the initial (static) force, which, as shown

in Fig. 3, is slightly different for each muscle. The final (asymptotic)

force is also different in different muscles, but we did not make any

adjustment for that. Note that there is a fair amount of variation

across muscles, but the relative forces do not simply scale at

different lengths. So, for example, the lateral rectus in m3 (green

traces) exhibits the largest maximum force (indicated for clarity by

short horizontal bars) in the first three steps (panels A–C), but not

in the last. The temporal evolution of the force decay is also

somewhat variable: for example, in panel D higher peak forces

result in higher forces throughout the decay phase, but that is not

true in panel B. All in all, this shows that while the muscles

certainly behave in qualitatively similar ways both statically and

dynamically, they also exhibit some substantial quantitative

differences.

Discussion

A graphical representation
We noted in the introduction that Collins modeled the passive

muscle with an elastic element in series with a Voigt element.

These types of representations, referred to as series-parallel mechanical

models, have been used extensively to describe linear viscoelastic

behavior [34]. They are less useful to represent nonlinear models,

but they can nonetheless be didactically useful. In this vein, and

with these caveats, we could then say that, from the data presented

so far, a better representation for passive extraocular muscles

(Fig. 9) is obtained by connecting in parallel a spring, a damping

element, and seven Maxwell elements (a viscous and an elastic

element in series). Each Maxwell element accounts for one of the

relaxation processes, the spring accounts for the static length-

tension relationship, and the damper accounts for the viscous force

that can be observed during the step. Again, it cannot be stressed

enough that this is just a representation, a cartoon if you wish, and

must not be interpreted as a model. There are infinite other

representations that could fit the data presented, and they would

all behave very differently when tested on other elongation

histories.

The length-tension relationship
The relationship between the static (i.e., steady-state) tension

exerted at the tendon of a resting eye muscle and its length has

been measured experimentally in cats (e.g., [4,5]), in monkeys [8],

and in humans (e.g., [5,11,12,35]). As mentioned in the

Introduction, the different measurements do not agree quantita-

tively. Nonetheless, there is a qualitative consensus that the

relationship between passive force and muscle length is highly

Table 4. Relaxation spectrum in m3SR (0.5 mm steps from
different initial lengths).

1.3 ms 7.1 ms 40 ms 225 ms 1.26 s 7.11 s 40 s

0 0.000 0.059 0.274 0.065 0.102 0.035 0.020

2 0.000 0.188 0.463 0.129 0.080 0.119 0.053

4 0.012 0.697 0.442 0.350 0.101 0.179 0.190

5 0.361 0.805 0.775 0.444 0.248 0.261 0.364

6 0.953 0.808 1.197 0.819 0.395 0.374 0.667

7 1.242 2.083 1.233 1.251 0.691 0.623 1.294

8 1.752 2.806 1.861 2.258 1.241 1.402 2.159

doi:10.1371/journal.pone.0004850.t004

Table 5. Relaxation spectrum in m4LR (0.5 mm steps from
different initial lengths).

1.3 ms 7.1 ms 40 ms 225 ms 1.26 s 7.11 s 40 s

0 0.163 0.083 0.419 0.230 0.000 0.000 0.207

1 0.377 0.223 0.671 0.133 0.194 0.054 0.184

2 0.179 0.566 0.578 0.238 0.126 0.126 0.130

3 0.283 0.746 0.688 0.179 0.187 0.117 0.211

4 0.494 0.990 0.751 0.291 0.424 0.149 0.391

5 1.126 1.131 1.017 0.611 0.507 0.351 0.579

6 2.434 1.058 1.671 0.847 0.879 0.456 1.052

7 4.233 0.000 2.850 1.363 1.260 0.981 1.853

8 5.058 0.387 4.112 2.268 2.340 1.213 4.266

doi:10.1371/journal.pone.0004850.t005
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nonlinear, and that the force increases faster and faster as the

muscle is stretched. Here we confirmed these findings, and

quantified this relationship in monkey EOMs. We found that

expressions used previously to fit this curve in eye [5,20] and

skeletal [21] muscles were not appropriate for our data. The

expression we proposed has one extra degree of freedom, but we

Figure 7. Force measured during a 0.5 mm step. All data shown are from the superior rectus (SR) of the second monkey (m3). Each panel shows
force (red) and normalized speed (blue) as a function of change in muscle length, for different initial lengths spanning the entire range tested. (The
speed trace is used only to indicate how it varies during the elongation; its magnitude has no meaning).
doi:10.1371/journal.pone.0004850.g007

Figure 8. Force induced by 0.5 mm steps in different muscles. The initial length is different in each panel. The short horizontal bars on the left
of each trace indicate the maximum force for that muscle. The initial static force, slightly different for each muscle (Fig. 3), has been subtracted from
each trace.
doi:10.1371/journal.pone.0004850.g008
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showed in the Introduction that it is in fact appropriate even for

the older datasets. In addition, it captures well our finding that

the force increases approximately linearly with length over the

first 3 mm (corresponding to 18u of eye rotation). It is important

to stress that this last observation does not imply that the muscle

behaves linearly within this range, because linearity requires

both scaling and superposition, and there is no experimental

evidence that the latter holds. Unlike the previous experiments

listed in the Introduction, we found that the static relationship is

remarkably consistent across muscles and monkeys (Fig. 3F).

Larger variations might have been observed in the oblique

muscles, but it is technically very difficult to record these muscles

in vivo.

It should be remarked that our findings do not match

quantitatively the curve reported by Fuchs and Luschei [8], the

only other recording in monkeys (see Introduction). More

precisely, over the first 2–3 mm of elongation they report a much

smaller stiffness, estimated by Sklavos and colleagues [36] at

0.03 gf/u, three to four times smaller than what we report here.

Also, over this elongation range the forces they report were not

even monotonic. There are several reasons that could explain the

discrepancy; first of all, it is not clear exactly how those authors

measured the passive force (most of their experiment was devoted

to the measurement of active forces). The history of elongation

leading up to the measurement of the passive force is of course

very important, and it was very tightly controlled in our

experiments. Long and consistent pre-measurement delays, which

we used throughout, are unlikely to have been part of their

protocol. Second, their surgical procedure was much more

invasive than ours (the lateral bone of the orbit was removed).

Third, their force sensor was a lot less accurate than ours (5%

linearity vs. 0.2% linearity). Finally, if one were to take at face

value their measurements of the passive force at large lengths and

tetanic force at small lengths, the oculomotor range of the monkey

would be limited to less than 35u, which is much less than the

actual range (45u). Unfortunately, data from only one muscle was

shown (five lateral recti were tested), and no analytical fits were

provided. For all these reasons, we are confident that our

measurements provide a superior estimate of the passive forces

in monkey extraocular muscles.

Dynamic forces
All the passive biological tissues ever studied, such as tendons,

ligaments, veins, arteries, cartilage, cardiac and skeletal muscle,

are characterized by a relaxation response that exhibits a wide

range of time scales, from 1 ms all the way up to 1 hour (almost 7

orders of magnitude). As noted in the Introduction, Collins [5] was

the only one to have attempted to measure the dynamic forces

exerted by a passive eye muscle (cat lateral rectus). His proposed

model (a single relaxation process with a 100 ms time constant)

would imply that passive eye muscles have little in common with

any other passive biological tissue studied. It has been known for a

while that extraocular muscles exhibit several distinctive structural

and functional characteristics [37], but we were highly suspicious

that these could lead to such a drastic difference in their

mechanical properties. This study demonstrates that passive eye

muscles are in fact not qualitatively different from other biological

passive tissues. We found that a set of dynamic processes could be

inferred, with time constants ranging from 1 ms to at least 40 s.

The moduli associated with these time constants were comparable,

so that it cannot be said that any one time constant dominates.

We introduced here an algorithm that permits objective

determination of how far apart the spectrum lines must be to

avoid over-fitting or under-fitting the response. While we are

aware that the most likely scenario is that there is actually a

continuous range of processes, each with a different time constant,

the noise inevitably present in any recording makes it impossible to

do better than the line spectrum presented here [38]. Similarly, we

have no reasons to exclude that much longer time constants (e.g.,

10 minutes) could be observed, as they are routinely reported in

collagen (e.g., [39]) and skeletal muscles (e.g., [40]). However, the

in vivo conditions under which we performed our experiments

imposed a trade-off between observation time and number of

experiments that could be performed. We believe that our choice

was justified given the broad range of questions we were interested

in addressing (described in the following papers in this series).

Origin of the passive force
In the early days of muscle research, it was assumed that the

passive force is generated mainly by the connective tissues that

support the myoplasm (epimysium, perimysium, and endomysi-

Figure 9. A series-parallel representation compatible with the mechanical properties of passive muscles reported in this paper. This
must not be interpreted as a model, because it has no predictive value. Rather, it is a didactically useful cartoon, a way of graphically summarizing our
findings. Symbols: the arc is a limp leash (muscles pull, but don’t push), a spring (stiffness), and a dashpot damper (viscosity).
doi:10.1371/journal.pone.0004850.g009
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um), and not by the myoplasmic proteins themselves [41,42].

However, it was shown later that, at least in amphibian skeletal

muscles, the myofibrils themselves must be generating most of this

force, at least at small elongations [40]. Careful study of individual

fibers revealed that the giant protein titin is the main contributor

of this force [43,44].

One might then be tempted to think that this issue is settled, and

it might be so for skeletal muscles, but extraocular muscles have an

important peculiarity. In skeletal muscles, both at the single fiber

level and at the whole muscle level, the passive force becomes

significant only after the active force has peaked (i.e., at long

lengths) [41], so that the total force exhibits a region of ‘‘negative

stiffness’’. In extraocular muscles, at least at the whole muscle

level, this does not happen, because the passive force starts

increasing before (i.e., at shorter lengths) the active force peaks, so

that when the latter decays the passive force picks up the slack.

Accordingly, the stiffness for the total force is always positive [4].

To the best of our knowledge, the rationale for this difference has

not been studied, but it is reasonable to hypothesize that it has to

do with the considerably larger elongation range (relative to the

muscle resting length) over which extraocular muscles have to

operate. In skeletal muscles the operating range is restricted to

lengths shorter than that for which the active force peaks [45], and

so the negative stiffness region is never reached. However, the

ratio between the diameter of the eye, i.e., the joint that eye

muscles rotate, and muscle length at rest is around one in

monkeys, much larger than for any skeletal muscle, so that

extraocular muscles must operate over a much larger length range.

How this specialization has been achieved is however not known.

Importantly, it is not even known whether this holds at the single

fiber level. The definitive experiment to elucidate this issue

requires the measurement of active and passive properties in a

skinned extraocular muscle fiber. Comparing the force in passive

and chemically activated fibers would explain whether this

difference is due to a shorter titin protein in extraocular muscles

(in which case the single fiber total stiffness would also be always

positive), or whether it is in fact the collagen surrounding the fibers

that provides most of the passive force in whole extraocular muscle

(in which case the single fiber total stiffness would be similar to that

observed in skeletal muscles).

The data presented here cannot resolve this issues, but it can be

used to make some inferences. The length-tension relationship has

been measured countless times in single fibers, and even individual

sarcomeres, in skeletal muscles (e.g., [46,47]). However, when

single fibers are studied, the length-stiffness relationship (i.e., the

slope of the length-tension curve) increases with length up to a

certain point, and then saturates (i.e., it looks sigmoidal, e.g., [46],

their Fig. 6). Interestingly, studies of single titin filaments reveal

elastic properties virtually identical to those of an intact muscle

fiber [47]. Furthermore, a careful study of cat skeletal muscles led

Brown and colleagues [21] to propose an equation for the the

passive properties of whole muscles that is also characterized by

stiffness saturation.

If we look closely at our data it appears clear that the stiffness of

the muscles we studied does not saturate. This can be appreciated

both from the analytical expression of the stiffness

K Lð Þ~ dT Lð Þ
dL

~az
b

c
eL=c

and from the actual data (note in Fig. 3 how the distance between

two successive red dots always increases with elongation, with no

sign of saturation). This suggests that titin might not be the source

of the passive force we measured, which could instead be

generated mostly by the collagen network that supports the

myoplasm. It is true that the stiffness of individual collagen fibers

also saturates [48], but it is conceivable that inhomogeneity in the

length of individual fibrils within the collagen network, presumably

much larger than sarcomere inhomogeneity in the myoplasmic

network [45], might play a significant role. Of course it is also

possible that the relative contribution of these two sources changes

with length, as shown in cardiac muscle [49].

Implications for models of the eye plant
As we have shown in this paper, the dynamic properties of

passive extraocular muscles are very different from what has

been long assumed. It is then not surprising that, based on those

assumptions, dynamic deficits (especially post-saccadic drifts)

associated with paralytic strabismus appear puzzling. Our study

also highlights the fact that, in spite of over forty years of intense

study of the oculomotor system, our understanding of even its

most basic physiology is still quite limited. Worse, a lot of what

we think we know might, in fact, turn out to be incorrect. For

example, besides what we have shown here, very little is known

about the properties of naturally innervated muscles. There are

countless studies that describe how the force changes when either

the muscle length or the (artificial) innervation is changed while

the other is kept constant, but independent force and length

changes never happen in natural conditions. Similarly, the

interactions between active and passive properties are routinely

ignored. It has been known for almost sixty years [50] that the

relaxation spectrum is much narrower for a tetanically

innervated muscle than for a passive muscle, indicating a highly

nonlinear interaction. However, most models either ignore the

passive properties (which might be acceptable in some cases for

skeletal muscles, but never for extraocular muscles), or it is

simply assumed that passive and active force are independent

and just sum. Some of the dynamic deficits associated with

muscle paralysis (e.g., hysteresis) might then be due to the wider

relaxation spectrum of passive muscles. Similar criticisms can be

applied to models of individual sarcomeres, as it has been shown

that the crossbridge and non-crossbridge force components also

interact, and do not simply sum [51,52].

Only models that more realistically reproduce the complex

dynamic behavior of muscles will have any hope of capturing the

type of subtle deficits often observed in the clinic, which might very

well have a high, but as yet untapped, diagnostic value. In a

subsequent paper in this series we will describe a model that does a

fair job of reproducing the passive properties of extraocular

muscles, but a lot more remains to be done, both on the

experimental and on the theoretical side.
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