
Increased Susceptibility for Superinfection with
Streptococcus pneumoniae during Influenza Virus
Infection Is Not Caused by TLR7-Mediated Lymphopenia
Sabine Stegemann1,2, Sofia Dahlberg3, Andrea Kröger4, Marcus Gereke2, Dunja Bruder2, Birgitta
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Abstract

Influenza A virus (IAV) causes respiratory tract infections leading to recurring epidemics with high rates of morbidity and
mortality. In the past century IAV induced several world-wide pandemics, the most aggressive occurring in 1918 with a
death toll of 20–50 million cases. However, infection with IAV alone is rarely fatal. Instead, death associated with IAV is
usually mediated by superinfection with bacteria, mainly Streptococcus pneumoniae. The reasons for this increased
susceptibility to bacterial superinfection have not been fully elucidated. We previously demonstrated that triggering of TLR7
causes immune incompetence in mice by induction of lymphopenia. IAV is recognized by TLR7 and infections can lead to
lymphopenia. Since lymphocytes are critical to protect from S. pneumoniae it has long been speculated that IAV-induced
lymphopenia might mediate increased susceptibility to superinfection. Here we show that sub-lethal pre-infections of mice
with IAV-PR8/A/34 strongly increased their mortality in non-lethal SP infections, surprisingly despite the absence of
detectable lymphopenia. In contrast to SP-infection alone co-infected animals were unable to control the exponential
growth of SP. However, lymphopenia forced by TLR7-triggering or antibody-mediated neutropenia did not increase SP-
susceptibility or compromise the ability to control SP growth. Thus, the immune-incompetence caused by transient lympho-
or leukopenia is not sufficient to inhibit potent antibacterial responses of the host and mechanisms distinct from
leukodepletion must account for increased bacterial superinfection during viral defence.
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Introduction

Influenza A virus (IAV) belongs to the class of orthomyxoviridae

[1,2] and presents with high genetic variability which is the cause

for regularly occurring epidemics [2] or world-wide pandemics

[3]. The 20th century has seen three IAV-pandemics, the most

aggressive one being the ‘‘Spanish Flu’’ of 1918/1919. The 1918

IAV-variant [4,5] rapidly spread over the globe reaching the most

remote places such as Spitzbergen or Alaska causing 20–50 million

deaths world-wide [3,6].

The major reason for this large mortality was not the IAV-

infection per se but rather secondary bacterial superinfections,

often caused by Streptococcus pneumoniae [7,8]. Supporting this

notion, vaccination against S. pneumoniae can prevent 31% of IAV-

associated pneumonias [9]. Thus, there seems to be a particularly

lethal synergism between IAV and S. pneumoniae [7,10]. S.

pneumoniae is a Gram-positive, encapsulated, facultatively anaerobic

bacterium [11] that is considered the most common bacterial

respiratory tract pathogen. It causes otitis media and sinusitis, but

is also a major contributor to community acquired pneumonia

with mortality rates as high as 20% in patients with concurrent

septicaemia [11–13]. The natural host-defence comprises com-

plement-mediated phagocytosis and killing by polymorphonuclear

neutrophil granulocytes (PMN). Serotype-specific antibodies of the

host aid in this process and form the basis for preventive

vaccination [9,14]. Recently also CD4+ T cells have been

implicated in the early control of the infection [11,15,16].

Although IAV-mediated predisposition for bacterial superinfec-

tions was initially observed almost 200 years ago [7] the molecular

and cellular mechanisms for this lethal synergism are still not fully

elucidated. A number of explanations exist (comprehensively

reviewed in [7]). The most widely used concept is focussed on the

destruction of the respiratory epithelium by IAV allowing

increased adhesion of bacteria to the tracheal wall and thus better

retention and growth of pneumococci [10]. However, also less

destructive variants of IAV are able to induce lethal synergism in a

mouse model [10] arguing for additional mechanisms. E.g. a

massive induction of pro-inflammatory cytokines was observed in

IAV-infected animals recruiting large numbers of PMN which

ultimately destroy the lung tissue [7,17]. However, other groups

could demonstrate the opposite, a strongly reduced recruitment of

PMN during pneumococcal infection in mice 4–6 weeks after
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recovering from IAV [18]. This was associated with a decreased

response of alveolar macrophages (AM) in IAV-infected mice in

response to Toll-like receptor (TLR) ligands of bacterial origin

leading to their inability to produce neutrophil attracting

chemokines such as Mip-2 and KC [18]. The latter study,

however, fails to explain why a natural mechanism should exist

that renders animals highly susceptible to secondary bacterial

infections for several weeks after a single viral infection. It is

difficult to imagine how such a process should have survived

through evolution in the presence of a constant bacterial threat.

It seems more conceivable that immediate mechanisms directly

associated with the viral defence process might be responsible for

the increased susceptibility to bacterial superinfection during

ongoing antiviral action and not after successful viral depletion.

Along those lines it has been demonstrated, that impairment in

AM phagocytosis of pneumococci 8–9 days after IAV infection

was dependent on the reduction of the scavenger receptor

MARCO on AM via T cell-derived interferon c [19]. MARCO

is one of the major receptors responsible for the uptake of S.

pneumoniae by AM [15].

While massive production of T cell-derived interferon c is

clearly a hallmark of antiviral immune responses, also another

change in virally infected hosts is frequently observed, which is

leukopenia mediated by type 1 interferons [20–22]. Indeed it has

been shown that increased susceptibility of mice to superinfection

with Listeria monocytogenes after LCMV infection is caused by

enhanced apoptosis of PMN leading to leukopenia and drastically

reduced PMN infiltration at bacterial infection sites [22].

Is it possible, that similar mechanisms underlie the increased

pneumococcal superinfection of IAV infected hosts? The host

response to IAV is initiated by TLR7- and RIG-I-mediated

recognition of the viral genome [23–25] leading to a rapid and

massive production of type I interferons which are able to establish

a so-called antiviral state. We have shown that triggering of TLR7

by the specific ligand R-848 rapidly induces lymphopenia in mice

lasting 36–48 hours [26]. This lymphopenia renders animals

unable to mount peripheral immune responses [26]. Also IAV

infections can cause massive lymphopenia [20] peaking at day 7 of

the infection. In IAV and S. pneumoniae co-infection models the

time point of highest susceptibility for the bacterial superinfection

was at day 7 after IAV pre-infection [10], correlating precisely

with the peak of lymphopenia seen during IAV infection [20].

Thus we reasoned that TLR7 induced lymphopenia might

increase susceptibility to pneumococcal superinfection.

To test this we established a mouse model for co-infection of the

mouse adapted IAV-strain PR8/A/34 [10] and the invasive S.

pneumoniae strain TIGR4 [27,28]. Individually, both infections

were sublethal but showed strong synergistic action when

combined. Here we demonstrate that peripheral lymphocyte-

counts were not diminished in this model and also that forced

depletion of lymphocytes or PMN did not render mice susceptible

to superinfection with S. pneumoniae.

Methods

Mice
Female C57Bl/6 mice were purchased from Charles River

(Sulzfeld, Germany) or Harlan Winkelmann (Borchen, Germany) at

the age of 6 to 8 weeks. Mice were housed under specific pathogen-

free conditions according to the guidelines of the regional animal

care committee. All experiments were approved by the local ethical

committees (for the HZI: Niedersächsisches Landesamt für Ver-

braucherschutz und Lebensmittelsicherheit, file number 33.42502-

006/07 and for the KI: all the experiments were conducted in

conformity with the European Communities Council Directive 86/

609/EEC and the Swedish animal protection legislation.)

Viral and bacterial pathogens
Influenza A virus PR8/A/34 (H1N1) [10] was grown on Madin-

Darby canine kidney (MDCK) cells. Shortly, cells were infected with

the virus and incubated at 35uC and 5% CO2 for 24 hours.

Supernatant was harvested, spun down to remove cellular debris and

used for mouse infection experiments. Supernatant from uninfected

cells was obtained likewise and served as inoculum for uninfected

control animals. For bacterial challenges Streptococcus pneumoniae

TIGR4, an encapsulated strain of serotype 4 (ATCC BAA-334

[27,28]), was grown overnight on blood agar plates (BD Diagnostic

Systems, Columbia Agar with 5% sheep blood) from frozen stocks at

37uC and 5% CO2. Colonies were briefly inoculated into pre-

warmed DS (dextrose- serum) medium (OXOID manual 1990), and

then inoculated into pre- warmed C+Y (casamino acid & yeast

extract [29]) medium, grown to midlogarithmic phase (OD620 = 0,5)

and subsequently diluted in C+Y medium in order to obtain the

appropriate concentrations for the mouse infections. Bacterial

medium was produced by the Karolinska Microbiology Laboratory

(Solna, Sweden).

R-848 treatment
For systemic TLR7 triggering, R-848 (Axxora, Loerrach/

Germany) was administered intraperitoneally in a volume of

100 ml PBS at a concentration of 25 mg/ml, resulting in a dose of

2,5 mg/mouse as described [26].

RB6-8C5 antibody treatment
For PMN depletion experiments 100 mg of the monoclonal

antibody RB6-8C5 recognizing mouse Ly-6G (Gr-1, BioXCell,

West Lebanon/USA) was intraperitoneally injected in a volume of

100 ml PBS 24 h prior to S. pneumoniae infection. Control animals

were likewise treated with 100 mg of control rat IgG (Sigma-

Aldrich). To confirm PNM depletion, at different time points after

injection, 30 ml blood were taken from the tail vein, the sample

depleted of erythrocytes as described below, cells stained with

Phyco-erythrin labelled RB6-8C5 and analysed using a BD

FACSCalibur or FACSCanto flow cytometer and the Dako

Summit software.

Viral and bacterial infections
For viral and bacterial challenge, 7 to 9 week old mice were

lightly anaesthetized by isofluorane inhalation. Holding the

animals upright, the viral or bacterial inoculum was given onto

the nostrils to be taken up by the mouse upon breathing.

For the MDCK-cell derived IAV PR8/A/34 virus stock the

dose lethal to 50% of inoculated C57Bl/6 mice (LD50) was

determined by the method of Reed and Muench [30]. Briefly,

groups of mice were intranasally infected with 25 ml of appropriate

dilutions of the virus stock in control medium. Body weight and

health status were monitored, survival assessed over 14 days and

the MLD50 determined by endpoint calculation. Mice having lost

more than 25% of body weight were sacrificed and the infection

considered lethal. For all following experimental mouse infections

a dose of 0.04 MLD50 was chosen.

For S. pneumoniae TIGR4 challenge, bacteria were diluted in

C+Y medium to a concentration of ,56106 CFU/ml, verified by

plating out 10-fold dilutions onto blood-agar plates. Mice were

inoculated intranasally with 20 ml of bacterial solution (controls

with medium alone), health status was monitored at least twice/

day for seven days or until earlier sacrificing. Blood was analyzed

IAV-Pneumococcus Synergism
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for bacterial counts at 24, 48 and 72 h after infection. When

observing impairment in health conditions animals were sacrificed

and the infection regarded as lethal.

Assessment of S. pneumoniae CFU counts in blood, lungs,
tracheal and bronchoalveolar lavage

For the assessment of bacterial counts in blood, 5 ml of blood

were taken from the tail vein, serially diluted in PBS and dilutions

were plated onto blood agar.

For CFU counts in lung tissue, lungs of sacrificed mice were

aseptically removed, collected in 1 ml of PBS, homogenized

through a 100 mm cell strainer and serial dilutions in PBS plated

on blood plates.

Nasopharyngeal lavage was obtained post mortem by flushing

the nasopharynx through trachea and nares with PBS through a

20G canule inserted into the trachea. 100 ml of fluid were collected

from the nares and used for plating serial dilutions on blood plates.

Bronchoalveolar lavage was collected by flushing the lungs once

with 1 ml of PBS. To determine CFU counts the sample was

serially diluted in PBS and plated on blood plates. CFUs on blood

plates were counted after 16 h of incubation at 37uC/5% CO2.

Quantification of peripheral blood lymphocytes
For the quantification of peripheral blood lymphocytes from

either R-848 treated or IAV infected mice, the animals were bled

by tail vein puncture. Blood samples of defined volume (30 ml

blood) were obtained before, 1 hour, 24 hours and 48 hours

after R-848 injection or once/day at the indicated time points

post IAV infection. Blood samples were depleted of erythrocytes

by osmotic shock through addition of red blood cell lysis buffer

(0.15 M NH4Cl, 0.01 M KHCO3, 0.1 mM EDTA, pH7.2) and

subsequent centrifugation to pellet lymphocytes. Cells were then

stained for CD4+, CD8a+ and CD45R/B220+ (antibodies from

BD Pharmingen, clone RM 4-5, 53-6.7 and RA3-6B2,

respectively). Cell counts were acquired on BD FACSCanto or

FACSCalibur flow cytometers. Acquisition of a defined volume

was performed by analysing samples at a constant flow rate over

a defined period of time. This allowed tracking of cell counts

over various time points, expressing cell numbers as percentage

of the starting value at time point 0. Data was analysed using the

Dako Summit software.

Analysis of lymphocyte subsets in lung tissue and
bronchoalveolar lavage

Lungs were perfused with PBS, excised and finely minced on

ice, followed by enzymatic digestion for 45 minutes at 37uC in

Iscove’s modified Dulbecco’s medium (IMDM) containing

0,2 mg/ml Collagenase D (Roche), 10 mg/ml DNase (Sigma)

and 5% fetal calf serum. After addition of EDTA (5 mM final

concentration), suspensions were pelleted by centrifugation and

depleted of erythrocytes by osmotic shock. Cells from BAL fluid

were prepared by flushing the lung once with 1 ml PBS and

centrifugation of the sample at 4206g for 10 minutes. For FACS

analysis, Fc-block was performed through incubation with anti-

mouse CD16/CD36 antibody (BD Pharmingen) followed by

staining for mouse CD4, CD8, CD19, CD11b and Gr-1 (clones

RM4-5, 53-6.7, 1D3, M1/70 and RB6-8C5, respectively). Data

were acquired on a BD FACS Canto flow cytometer and analysed

using DAKO Summit software.

Statistical analysis
All statistical analyses shown were performed by paired, two-

tailed t test and survival data compared by Kaplan Meier analysis

log rank test using Graph Pad Prism software (Graph Pad

Software, La Jolla/USA).

Results

Characterization of an IAV/S. pneumoniae co-infection
model

To establish a model system for IAV/S. pneumoniae synergism in

the mouse we established two sublethal infections with either the

mouse-adapted viral strain PR8/A/34 or the pneumococcal strain

TIGR4. 0.04 MLD50 of IAV caused a mild disease with a

transient mean loss of max. 10% body weight up to day 7 of the

infection, which was resolved by day 12 post infection (Fig. 1A).

Likewise, a sublethal course of S. pneumoniae was established after

infection with 16105 CFU that was not detectable by weight

changes of infected animals (Fig. 1A). A productive infection was

verified from nasopharyngeal lavages at day 7 p.i. in all infected

animals (Fig. 1B). Survival-curves showed that both infections were

sublethal to 80% (IAV) or 88% (S. pneumoniae) of all animals

although single individuals could still succumb to the infection as

seen elsewhere [10]. The combined sublethal infections with IAV

followed by S. pneumoniae 7 days later were highly synergistic

leading to 63% mortality within 2 days after the bacterial

superinfection (Fig. 1C). The lung homogenates of animals

succumbing to the co-infection showed high CFU in their tissues

similar to the levels observed in the rare cases of lethal courses

from single infections (Fig. 1D).

This suggested the inability to control the bacterial spread as

cause for a lethal S. pneumoniae superinfection. Thus, we measured

the extent of colonization at defined time points (4 and 24 h) after

the bacterial infection either alone or in the co-infection model

(Fig. 2). At 4 h p.i. animals in both models could still control

bacterial spread to the same degree. However, at 24 h singly

infected mice started to clear the bacterial infection in both the

bronchoalveolar lavage (BAL) and lung-tissues, while co-infected

mice failed to control bacterial proliferation at all sites tested

(Fig. 2). These findings further supported that a defect in

controlling bacterial growth occurred already early in superinfect-

ed mice.

Absence of leukopenia in IAV/S. pneumoniae co-infected
animals

We next asked whether a reduction of peripheral white blood

cells (leukopenia) was associated with the course of the viral

infection, as had been demonstrated elsewhere [20]. Thus, we

measured the levels of peripheral blood B cells as well as CD4 and

CD8 T cells at different time points after a sublethal IAV-

infection. However, we never observed lymphocyte-numbers in

IAV-infected animals that were below the levels found in mock-

infected controls (Fig. 3). In fact, from day 7 up to 14 p.i. the

lymphocyte-numbers in IAV-infected animals were higher as

compared to controls (Fig. 3).

Thus, in the IAV-infection used here no detectable lymphope-

nia was evident in the animals despite a prominent viral-bacterial

synergism. Therefore, the synergism observed here must be based

on mechanisms distinct from peripheral lymphocyte-depletion.

Forced lympho- or neutropenia does not lead to
enhanced susceptibility to bacterial superinfection

Can leukopenia predispose for S. pneumoniae superinfection at

all? In animal models and human patients virus-induced

leukopenia coincides with increased susceptibility to bacterial

superinfections [7,22]. In addition, we have previously shown that

IAV-Pneumococcus Synergism
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TLR7-triggering with the imidazoquinoline R-848 induces

lymphopenia and leads to transient immune-incompetence in

the host [26]. Thus, using R-848 as trigger we tested whether

forced lymphopenia would render animals hyper-susceptible to

S. pneumoniae-infection. As shown for BALB/c mice [26], R-848

also induced profound lymphopenia in the C57Bl/6 mice used

here (Fig. 4A). Like in BALB/c mice [26] this lymphopenia was

evident at 1 h after application of R-848 and lasted for at least

24 h, being more pronounced in the T cell compartment as

compared to the B cell pool (Fig. 4A). To verify, that R-848

treatment also affected lymphocyte numbers at the site of

infection, we analyzed lung tissue for the content of CD4+, CD8+

and CD19+ cells. Indeed, although these cells only constituted a

minor fraction in the analyzed lung tissues, all populations were

further reduced by R-848 treatment (24%, 35% and 13% for

CD4+, CD8+ and CD19+ cells, respectively). In the case of CD8+

cells this effect was significant (Fig. 4B). However, despite this

effective reduction of cell numbers both in the peripheral blood,

as well as at the site of infection, we did not observe an increase

in susceptibility to S. pneumoniae in mice rendered lymphopenic,

either directly at the time of bacterial infection (Fig. 4C) or 12 h

later (Fig. 4D).

Although TLR7-mediated lymphopenia did not affect the

overall survival of S. pneumoniae-infected mice it was still possible

that lymphopenia showed more subtle effects on bacterial spread.

Thus we analyzed the course of bacterial deletion at three sites. As

Figure 1. Influenza A virus infection predisposes for invasive disease through Streptococcus pneumoniae. (A) C57Bl/6 mice were
intranasally inoculated with medium, 0.04 MLD50 Influenza A virus (IAV) PR8/A/34 or 16105 CFU Streptococcus pneumoniae TIGR4 (T4) and weighed
daily. Body weight is shown as % relative to the starting weight. (B) S. pneumoniae CFU counts in tracheal lavage of survivors seven days after i.n.
infection. (C) Survival rates of C57Bl/6 mice after i.n. infection with IAV PR8/A/34 alone (day 0), S. pneumoniae T4 alone (day 7) or S. pneumoniae T4
(day 7) following IAV (day 0). (D) CFU counts in lung homogenates of S. pneumoniae only infected and Influenza A virus pre-infected C57Bl/6 mice in
which infection was lethal. All data shown are compiled from at least two independent experiments with groups of 5 or more mice. No bacteria could
be detected in the lungs of mice surviving the infections (not shown).
doi:10.1371/journal.pone.0004840.g001

Figure 2. Influenza A virus infection renders mice unable to control Streptococcus pneumoniae growth in the upper and lower
respiratory tract. C57Bl/6 mice were inoculated with medium (N) or 0.04 MLD50 Influenza A virus (IAV) PR8/A/34 (#) seven days before infection
with 16105 CFU Streptococcus pneumoniae TIGR4 (T4). Mice were sacrificed 4 and 24 hours after bacterial infection and S. pneumoniae CFU counts in
nasopharyngeal lavage (A), bronchoalveolar lavage (B) and lung homogenates (C) were assessed. Data show values of individual mice together with
group means (horizontal lines) and are compiled from two independent experiments.
doi:10.1371/journal.pone.0004840.g002

IAV-Pneumococcus Synergism
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Figure 3. Analysis of peripheral blood lymphocyte counts shows no lymphopenia in the course of Influenza A virus infection. C57Bl/
6 mice were intranasally inoculated with 0.04 MLD50 of Influenza A virus (IAV PR8/A/34) or medium (control) and repetitive blood samples on all
animals were taken on different days p.i. The numbers of B220- (A), CD4- (B) and CD8-positive (C) cells in peripheral blood as determined by flow
cytometry are shown as % relative to pre-infection levels. Data show representative results as means6s.e.m. of one out of two experiments with five
mice per group.
doi:10.1371/journal.pone.0004840.g003

Figure 4. Systemic TLR7 triggering leads to transient peripheral blood lymphopenia but does not cause increased susceptibility for
lethal Streptococcus pneumoniae infection in C57Bl/6 mice. (A) Mice were injected with PBS or R-848 intraperitoneally and bled from the tail
vein immediately before, 1, 24 and 48 h after treatment. Samples were analysed for B220-, CD4- and CD8-positive cells by flow cytometry. Cell
numbers are expressed as relative % compared to pre-treatment levels. Data show means6s.e.m. compiled from three independent experiments. (B)
Likewise, lung tissue of R-848- or PBS-treated animals was analysed for the content of CD4+, CD8+ and CD19+ cells 1 h after treatment. Data show
means6s.e.m. compiled from five individual animals. Additionally, different groups of mice were intranasally inoculated with 16105 CFU
Streptococcus pneumoniae TIGR4 (T4) together with (C) or 12 hours before (D) intraperitoneal R-848 injection and survival was assessed. The
lymphopenia in these mice was also verified (not shown). Data show compiled results of two independent experiments performed with five mice per
group (*** p,0.001, * p,0.05).
doi:10.1371/journal.pone.0004840.g004
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already indicated by the viability experiments, also the clearance

of bacteria was unchanged in normal versus lymphopenic mice

(Fig. 5).

Finally, a critical leukocyte population that is important for

early bacterial control are PMN [11,14]. In other virus-bacteria

co-infection models a reduction of PMN-numbers increases

susceptibility to bacterial infection [18,22]. While TLR7-triggering

induces lymphopenia it does not equally well deplete PMN from

the blood ([26] and Fig. 4A). Thus, a specific depletion of PMN

might increase the susceptibility to S. pneumoniae-infection. We

depleted PMN by injection of the monoclonal antibody RB6-8C5

specific for mouse Gr-1 [31,32] one day before infection. As shown

by repetitive measurements in individual animals a single i.p.

injection of 100 mg RB6-8C5 antibody led to a very rapid (less

than 15 minutes) disappearance of PMN from the peripheral

blood which was almost complete and lasted at least 5 days

(Fig. 6A). Importantly, the same treatment also led to an almost

complete loss of PMN in lung tissue or BAL fluid, thus directly at

the site of infection (Fig. 6B). Nevertheless, there was no evidence

in the treated animals of an increased bacterial burden or

clearance-problems at infected sites (Fig. 6C) nor did we find

evidence of sepsis (data not shown). These findings were mirrored

in the survival course of the experiments where transiently PMN-

depleted animals did not show a significantly increased mortality-

rate (Fig. 6D).

Together, these experiments showed that a forced lympho- or

neutropenia did not render hosts more susceptible to superinfec-

tion with S. pneumoniae.

Discussion

In this study we have investigated the role played by peripheral

leukocytes in the control of a bacterial infection. Sparked by our

observation that the depletion of peripheral lymphocytes by

TLR7-triggering renders mice incompetent to mount a peripheral

immune response [26] we reasoned that a similar mechanism

might be responsible for the well known synergism of IAV and S.

pneumoniae with IAV acting like a natural TLR7-ligand in this

setting. Clearly, cellular immunity is critical for the defence against

S. pneumoniae infection. It is well known that the lack of PMN

recruitment to infected lungs can render animals susceptible for

pneumococcal infection [33–35]. Also in other models of bacterial

superinfection during ongoing viral disease, a defect of PMN has

been identified as leading cause [22]. Likewise, the absence of

CD4 cells increases the susceptibility to S. pneumoniae [16], which is

a solid finding, although still difficult to explain on a mechanistic

basis [14]. CD4 T cells are efficiently depleted by TLR7-ligands

([26] and Fig. 4A/B) and during IAV-infections [20]. In the light

of these facts it was logical to hypothesize, that leukopenia would

be a possible cause for the observed synergistic action of IAV and

S. pneumoniae, more so, as TLR7 would provide a valuable

mechanistic link.

Associating IAV-induced leukopenia with increased susceptibil-

ity to bacterial superinfection is not a novel concept [7] but still

lacked a definitive experimental test. Previous studies on this issue

suffered from the lack of examples where both, the time course of

peripheral blood leukocyte counts and the susceptibility for

Figure 5. Forced lymphopenia does not interfere with bacterial clearance in S. pneumoniae infected hosts. C57Bl/6 mice were
intranasally infected with 16105 CFU Streptococcus pneumoniae TIGR4 and at the same time intraperitoneally injected with PBS (N) or R-848 (#). Mice
were sacrificed 4 and 24 hours later and S. pneumoniae CFU counts in nasopharyngeal lavage (A), bronchoalveolar lavage (B) and lung homogenates
(C) were assessed. Data show values of individual mice together with group means (horizontal lines) and are compiled from two independent
experiments.
doi:10.1371/journal.pone.0004840.g005

IAV-Pneumococcus Synergism
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bacterial superinfection were followed within the same system.

Either one of the parameters was measured separately, but never

both simultaneously.

In addition, the different experimental systems varied greatly

e.g. in the employed pneumococcal and viral isolates as well as the

strains of mice. Different mouse strains react very differently to

identical treatments. PMN depletion in BALB/c mice renders

them highly susceptible to pneumococcal infection [33], while we

did not observe any impact of this treatment on the C57Bl/6 mice

used here (Fig. 6). Genetic differences between these strains are

also responsible for differences in normal pneumococcal suscep-

tibility [36–38] and in this context BALB/c mice might be

particularly dependent on the rapid recruitment of PMN to

control early pneumococcal infiltration [36]. Another critical issue

is the infectious dose of pneumococci. This varied by 5 orders of

magnitude between studies from as few as 100 CFU [39] to the

very high dose of 107 CFU [35]. As has been demonstrated, mouse

strains differ enormously in their response to low or high doses of

Figure 6. Antibody mediated depletion of PMN does not interfere with bacterial clearance in S. pneumoniae infected hosts. C57Bl/6
mice were intraperitoneally injected with rat IgG (N) as control or RB6-8C5 antibody (#) to deplete PMN. To confirm depletion of PMN, mouse
peripheral blood samples were FACS analysed for Gr-1 positive cells on days 1, 2, 5, 6 and 7 post RB6-8C5 antibody treatment. Data show the
percentage of Gr-1high cells out of the respective total granulocyte population for one representative out of two analysed animals per group (A).
Likewise, numbers of Gr-1high/CD11b+ cells (neutrophils) in lung tissue or BAL fluid were analysed by flow cytometry 24 h post antibody treatment
(B). On the day following antibody treatment, mice were intranasally infected with 16105 CFU Streptococcus pneumoniae TIGR4 and sacrificed
24 hours after infection to assess S. pneumoniae CFU counts in nasopharyngeal lavage, bronchoalveolar lavage and lung homogenates (C). Additional
groups of mice were treated equally to assess CFU counts in nasopharyngeal lavage seven days following infection (C) and survival rates (D). CFU
counts show values of individual mice together with group means (horizontal lines). Data are compiled from two independent experiments with
groups of at least 5 mice. For lung and BAL fluid neutrophil numbers, data from 5 mice/group are shown (+/2s.e.m.).
doi:10.1371/journal.pone.0004840.g006
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infection [36]. It was, therefore, very difficult if not impossible to

directly compare results from these different studies.

Thus it was necessary to investigate leukocyte numbers and

susceptibility for synergistic function of IAV and S. pneumoniae in a

controlled system simultaneously. We used the well established

mouse adapted viral strain PR8/A/34 which is widely used for

studying IAV infections in mice [39]. This was combined with the

pneumococcal strain TIGR4, which is highly invasive in a mouse

model and has been sequenced, thus can be considered a

molecularly defined reference pathogen [27]. Our data for the

first time show, that highly efficient synergistic action of IAV and

pneumococcal infection can occur in the presence of normal or

even increased numbers of peripheral blood leukocytes (Fig. 2).

We further demonstrate that a forced reduction of peripheral

leukocytes does not predispose for pneumococcal infection, at least

in the model system analyzed here (Figs. 4–6).

This might point to the fact that neither PMN nor lymphocytes

are necessary in the early phase of the response to this bacterial

infection. Indeed, lung-resident alveolar macrophages are the first

line of cellular defence for pneumococcal infections [19] and these

are not depleted by the antibody RB6-8C5 [40] and most likely

also not by TLR7 triggering. In addition, the lymphopenic phase

after R-848-treatment is transient. Lymphocyte levels are back to

normal or even higher 48 h after R-848 triggering (Fig. 4A and

[26]). This time window of absence is long enough to inhibit acute

responses from primed peripheral T cells [26] but obviously not

sufficiently long to inhibit the protective impact of polyclonal CD4

cells on the outcome of a pneumococcal threat, which has been

observed in CD4 deficient animals [14,16]. However, PMN

numbers are almost undetectable for up to 5 days after injection of

RB6-8C5 (Fig. 6A), which is mirrored at the site of infection 24 h

post injection, thus making a significant contribution of PMN for

pneumococcal resistance in this model unlikely. Removal of PMN

by a single injection of RB6-8C5 induces a profound immune

suppression in C57Bl/6 mice rendering the normally resistant

mice highly susceptible to a pulmonary infection with Aspergillus

fumigatus (data not shown). But the same degree of immune

suppression seems not sufficient to mediate increased susceptibility

for infection with S. pneumoniae.

Our study now firmly establishes, that normal numbers of

circulating leukocytes do not protect from a lethal bacterial

superinfection but that the lack of peripheral leukocytes alone does

not predispose for the infection. What might be the reason for this

phenomenon? Recent evidence suggests, that Interferon-c pro-

duced massively by the immune system during viral defence

renders alveolar macrophages unable to phagocytose incoming

bacteria [19]. However, a previous paper from the same group

finds, that Interferon-c-mediated recruitment of PMN to the lung

is a protective mechanism for pneumococcal infection [33], calling

the importance of the other finding for pneumococcal susceptibil-

ity into question. Nevertheless, these results belong to a group of

observations that link the natural antiviral response with a toxic

impact on endogenous immune cells like alveolar macrophages

[19] or PMN [18,22]. A different line of findings demonstrates that

an overt immune response, mainly of PMN origin, is responsible

for a pathologic destruction of lung tissue in the attempt to fight

the bacterial superinfection [17,39]. This has recently been linked

to the IAV-protein PB1-F2 with the 1918-strain being the source

of a particularly virulent version of this protein [39]. However,

IAV-1918 is special leading to an uncontrolled and not well timed

cytokine storm in infected animals [41] making this human-

adapted strain also highly pathogenic for mice [42,43].

However, these findings can only partially explain the processes

in co-infected animals in the model used here. We have used the

viral strain PR8/A/34 leading to a relatively mild form of the viral

infection (Fig. 1). The majority of mice can cope well with the

infection and clear it without a large health burden which is in

sharp contrast to IAV-1918. What causes increased superinfection

here must remain open. Our data show that depletion of

peripheral leukocytes is not critical (Fig. 2, 4–6). In contrast,

analyses of BAL from co-infected mice in our model suggest a

highly increased infiltration of the lung with PBMC (data not

shown). Unable to protect from superinfection, these cells could

even be toxic and their depletion might result in a health benefit in

a mouse model of pneumococcal infection [44]. If this can be

further substantiated, it might be considered for future IAV

epidemics to combine a prophylactic antibiotic treatment, which

on its own is not protective [45] with some form of medical control

for overt leukocyte recruitment and the uncontrolled release of

pro-inflammatory cytokines.
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