
Buying Years to Extinction: Is Compensatory Mitigation
for Marine Bycatch a Sufficient Conservation Measure for
Long-Lived Seabirds?
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Abstract

Along the lines of the ‘polluter pays principle’, it has recently been proposed that the local long-line fishing industry should
fund eradication of terrestrial predators at seabird breeding colonies, as a compensatory measure for the bycatch caused by
the fishing activity. The measure is economically sound, but a quantitative and reliable test of its biological efficacy has
never been conducted. Here, we investigated the demographic consequences of predator eradication for Cory’s shearwater
Calonectris diomedea, breeding in the Mediterranean, using a population model that integrates demographic rates
estimated from individual life-history information with experimental measures of predation and habitat structure. We found
that similar values of population growth rate can be obtained by different combinations of habitat characteristics, predator
abundance and adult mortality, which explains the persistence of shearwater colonies in islands with introduced predators.
Even so, given the empirically obtained values of survival, all combinations of predator abundance and habitat
characteristics projected a decline in shearwater numbers. Perturbation analyses indicated that the value and the sensitivity
of shearwater population growth rates were affected by all covariates considered and their interactions. A decrease in rat
abundance delivered only a small increase in the population growth rate, whereas a change in adult survival (a parameter
independent of rat abundance) had the strongest impact on population dynamics. When adult survival is low, rat
eradication would allow us to ‘‘buy’’ years before extinction but does not reverse the process. Rat eradication can therefore
be seen as an emergency measure if threats on adult survival are eliminated in the medium-term period. For species with
low fecundity and long life expectancy, our results suggest that rat control campaigns are not a sufficient, self-standing
measure to compensate the biological toll of long-line fisheries.
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Introduction

Human activities alter ecosystem functioning by modifying the

physical characteristics of the environment and the connections

within biological networks. For unavoidable impacts, environ-

mental agencies have proposed compensatory mitigation measures

that are not intended to restore the original state of the system, but

rather act to compensate for the generated loss by enhancing its

global functioning [1]. The concept of compensatory mitigation

was originally introduced for the restoration and maintenance of

natural habitats along the line of the ‘polluter pays principle’ or

‘extent polluter responsibility’, adopted by the EU in the early

1970s to regulate environmental damages [2]. The social

importance of fisheries, their economic value [3] and their

biological toll, engender apprehension about the sustainability of

the exploitation of marine resources. As a response to this concern,

a compensatory measure has been recently proposed to compen-

sate for the impact of fisheries on marine top-predator populations

[4]. For example, increased adult mortality due to bycatch of adult

birds in long-line fisheries has caused many seabird populations to

decline [5–7]. Among top marine predators, seabirds are unusual

because they have to reproduce on land, where additional threats,

linked again to human activities, may further jeopardise their

populations. Terrestrial predators, e.g. rats Rattus spp., introduced

by humans in historically predator-free islands actually are an

additional driver for population extinction [8,9]. Wilcox and

Donlan (2007) proposed a compensatory action based on the

eradication of ship rats Rattus rattus to be funded by the local long-

line fishing industry. The compensatory efficiency of this measure

however has been recently questioned as i) the measure can only

be useful to small species with terrestrial threats (i.e. seabirds) and

ii) the negative population trend is likely to continue even after rat

eradication [9–11]. Also, cases of long-term coexistence of rats and

seabirds indicate that the compensatory action might not always

be justified [12–14]. Despite the growing debate on rat control as a

compensatory measure, there is a lack of knowledge on the actual

demographic consequences of rats on the population dynamics of

seabirds. Rats may prey on small adult seabirds, e.g. the European
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Storm petrel, Hydrobates pelagicus [15,16], but their most docu-

mented impact is on breeding success [17–19]. This impact is

especially prevalent in medium-size species with low behavioural

plasticity such as most Procellariiformes (petrels, shearwater and

albatrosses) that exhibit high site fidelity, lay a single egg and do

not have replacement clutches [20]. The positive relationship

between rat control efforts and seabird breeding success [13,21,22]

is frequently used as justification of rat control or eradication

campaigns; however in some cases, the impact of rats on seabird

extinction probability is controversial [23] . Thus, the question of

the efficiency of compensatory measures is still open. Part of the

problem is the difficulty of obtaining robust estimates of seabird

demographic parameters, i.e. survival and reproductive success,

and of measuring their association with rat abundance. Here, we

present a model for a population of Cory’s shearwaters Calonectris

diomedea that integrates experimental measures of predation by ship

rats and island habitat structure. Adult survival was expressed as a

function of a hazard rate that represents a hypothetical additional

adult mortality, i.e. long-line bycatch. We investigated the

demographic influence of these factors on population growth rate

using sensitivity analysis and evaluated the efficiency of compen-

satory mitigation measures.

Results

Rat abundance, habitat structure and shearwater
demographic parameters

The index of rat abundance, R, was negatively correlated with

rat control effort in the previous campaign, E (R = 20.0120.09E,

R2 = 0.89; P,0.001). Eradication of rats occurred in 2005 since

neither captures of rats nor signs of rat presence or predation were

recorded in the following two years. About two-third (62.85%) of

the variability in nest habitat characteristic was explained by the

1st component of the CatPCA (eigenvalue for dimension

one = 5.03, Cronbach’s a= 0.92). The index achieved high values

for nest with low vegetation cover, high ground complexity, high

burrow density and a more central position within the colony.

Nests with higher index of habitat structure were less accessible to

rats.

Shearwater breeding success was negatively associated with rat

abundance (model 1, Table 1) and the strength of this relationship

was influenced by nest habitat structure as a result of the

interaction between rat abundance and nest characteristics. The fit

of this model was checked by inspecting the distribution of

residuals (Pearson’s normality test P = 11.3663, p = 0.3297).

Similar results were obtained when the random effect was not

considered (results not shown). No further simplifications of the

model were possible because the interaction term, R6H, was

significant (Z = 3.78, p,0.001). We built a particular model that

included the effect of rat density, R, and the statistical interaction

between rat abundance and habitat, R6H, but not the main effect

of habitat, H (model 2 in Table 1). This model assumes the same

breeding success regardless of the complexity of the habitat in the

absence of rats and must be viewed as more realistic than model 1

(Table 1). We found that local adult survival was constant over

time (0.867, 95% CI: 0.834–0.894) and independent from rat

abundance (F1,7 = 0.638, p = 0.448).

Rat, habitat, hazard rate and population growth
Using the estimated demographic parameters for the average rat

abundance and habitat structure, the population growth rate of the

deterministic model was 0.934 (95% CI: 0.888–0.981). The

population is thus projected to decline by 6.6% per year. This

projection is in agreement with the negative trend over time in

occupation rate of monitored nests observed on Chafarinas (J.M.

Igual unpublished data). None of the combinations of rat abundance

and habitat characteristics predicted an increasing or a stable

population (i.e. growth rate $1) under the current estimate of adult

survival (max value of l: 0.941, Fig. 1a). Stable or growing

populations were only predicted for higher values of adult survival

(Fig. 1b). The population growth rate was more affected by a change

in adult survival than by any other parameters (Table 2). As expected

the population growth rate was negatively affected by rat abundance,

i.e. negative sensitivities (Fig. 2). The sensitivity of l to rat abundance

is lower at high values of the habitat index. As a consequence a

change in rat abundance will have more effect in islands or parts of

the island where habitat structure is low. The sensitivity of l to

habitat structure is positive, i.e. habitat structure positively affects

population growth rate. However, it is almost null when rat density is

low as a direct effect of the interaction between rat and habitat

structure. The sensitivities of the population growth rate to the

hazard rate are negative, i.e. the population is negatively affected by

an additional adult mortality. The deterministic population growth

rate calculated by the model using the observed value of S, the

average habitat structure and the minimum yearly reproductive

output (0.28, recorded in 1999) projected a population decline of

about 10% per year. Under these circumstances, a population of

1000 pairs with no immigration will decline to 10 pairs in c. 50 years.

The eradication of rat will have the effect of ‘adding’ c. 30 years to

this projection, but will not change the fate of the population. Our

deterministic model predicts a stable population (l = 1) when S is

0.93, corresponding to an increase of about 6% in adult survival

when compared to the observed value at Chafarinas Islands.

Discussion

Rats, fishery and seabird populations
For the Chafarinas Islands, our deterministic demographic model

suggested a decline of the shearwater population under all

combinations of habitat structure and rat abundance except in the

case when adult mortality and rat abundance are low (Fig. 1). We

have shown how the demographic effects of rat predation are

mediated by the structure of the habitat. There are important

consequences of this interplay between rat and habitat. For example,

different combinations of rat density and habitat structure can lead

to similar population growth rates. This interaction may explain the

persistence of some populations in Mediterranean islets despite

ancient rat introduction [12,14,16]. We have also shown, using a

Table 1. Modelling shearwater breeding success.

Model Notation Estimates se Z p

1 Intercept 0.668 0.147 4.544 ,0.001

R 20.651 0.090 27.225 ,0.001

H 0.4182 0.139 2.999 ,0.01

R6H 0.3710 0.098 3.779 ,0.001

2 Intercept 0.661 0.147 4.495 ,0.001

R 20.653 0.090 27.232 ,0.001

R6H 0.405 0.083 4.886 ,0.001

The effect of rat abundance (R), habitat structure (H) and their statistical
interaction (R6H) on shearwater breeding success has been modelled through
logistic regressions using the breeding output of 101 nests monitored from
1997 to 2007. The nest identity was taken as a random effect to account for
multiple entries from the same nest.
doi:10.1371/journal.pone.0004826.t001
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deterministic model, that when adult survival is low, e.g. less than

0.93, rat eradication is not sufficient to reverse a negative trend of the

population growth rate. This threshold value is similar to the one

found by Mougin et al. [24,25] during a period of stability of the

Cory’s Shearwaters at the island of Salvagem Grande (Portugal).

The sensitivity of population growth rate to breeding parameters is

lower than to adult survival. We can express our results in relative

terms using the breeding success in absence of rats (0.67) and

assuming an adult survival probability of 0.95 in the absence of

additional sources of mortality [24]. Given these values, the

maximum increase in mortality probability that can be compensat-

ed, i.e. l$1, by an increased in the breeding success is 2% (Fig. 3).

This maximum mortality threshold increases to 6% when one

considers l+s.e.$1 (Fig. 3). A theoretical value of the maximum level

of additional mortality can also be estimated using demographic

invariants [26] as: DF/F<TK , where DF/F is the relative change in

fecundity needed to compensate a change K in relative mortality and

T is the generation time [26]. Given this approximation, in a species

with a generation time of c. 18 years, as in the Cory’s shearwater, a

change of 38% in fecundity is needed to compensate a 2% increased

in mortality. The maximum change in breeding success observed at

Chafarinas Islands was of 40% (average values of breeding success

with and without rats were 0.40 and 0.67, respectively). Similarly,

Hunter and Caswell [27] showed that bycatch adult mortality has a

much greater impact on the population growth rate of Sooty

shearwater than did harvest of chicks by Maoris. Cuthbert, Fletcher

and Davis [28], also demonstrated that a change of 1% in adult

survival had a far greater effect on the distribution of the population

growth rate of Hutton’s Shearwater Puffinus huttoni than increasing

fledging success by 5%. Results from the sensitivity analysis of the

shearwater population at Chafarinas led to two important

conclusions. First, controlling the factors that increase adult

mortality, e.g. long-line fisheries, has a greater effect on population

growth rate than controlling those that limit breeding success, i.e. rat

density (Table 1). Second, the effect of rats on the population growth

rate was modulated by the complexity of the habitat (Fig. 2). When

adult mortality is low, reducing rat abundance when nests are

accessible, i.e. habitat structure is low, has a greater impact on

shearwater population growth rate than when habitat structure is

high (Fig. 2).

A limitation of our analysis is that the demographic model does

not incorporate changes in demographic parameters over time

due, for example, to environmental stochasticity. However,

environmental stochasticity would cause the long-run growth rate

to be lower than the one predicted by a deterministic model [29].

As a consequence, the population growth rates estimated by our

Figure 1. Growth rate, rats and habitat structure. Population
growth rate, l, as a function of rat density and habitat structure. a)
Adult survival is 0.87 as estimated at Chafarinas Islands. b) Changes in l
in relation to increasing harvesting rate, z; surfaces from bottom to top
correspond to z = 0.1, 0 and 20.1, respectively. The grey surface
indicates population stability. In all scenarios, different combination of
rat density and habitat structure result in similar values of l.
doi:10.1371/journal.pone.0004826.g001

Table 2. Sensitivity and elasticity of the population growth
rate.

Demographic parameter NotationValue s.e.

Sensitivity Elasticity

Average fecundity F 0.659 0.010 0.126 0.023

First-year survival S0 0.520 0.062 0.159 0.029

Survival from age 1 to age 2 S1 0.868 0.013 0.048 0.044

Survival from age 2 to age 3 S2 0.868 0.013 0.048 0.044

Survival from age 3 to age 4 S3 0.868 0.013 0.048 0.044

Survival from age 4 to age 5 S4 0.868 0.013 0.047 0.039

Survival from age 5 to age 6 S5 0.868 0.013 0.044 0.031

Survival from age 6 to age 7 S6 0.868 0.013 0.191 0.130

Survival of breeding adults SBr 0.868 0.013 0.499 0.378

Survival of non breeding adult SNb 0.868 0.013 0.104 0.049

Recruitment probability at age 3G3 0.004 0.001 0.111 0.038

Recruitment probability at age 4G4 0.044 0.009 0.105 0.038

Recruitment probability at age 5G5 0.126 0.015 0.091 0.036

Recruitment probability at age 6G6 0.125 0.014 0.403 0.154

Probability to skip a
reproduction

12GBr 0.11 - 0.069 0.326

Probability to remain non-
breeder

GNb 0.59 - 0.016 0.001

Sensitivity and elasticity of l to the demographic parameters calculated from a
model in the absence of rats and with the observed value of survival.
doi:10.1371/journal.pone.0004826.t002
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analysis have to be considered slightly inflated, a conservative

situation when testing the efficiency of mitigation measures.

Rat eradications and the compensatory mitigation to
bycatch

In general terms, rat eradication results in a significant recovery of

native biodiversity and is globally acknowledged as a key

management option to reduce the impact caused by alien predators

[21,30]. Rat eradication can be successful in isolated and small islets,

i.e. smaller than 100 ha, while ‘‘cost-dependent’’ [31] or less viable in

large islands [30]. Thus rat eradication is an important measure to

restore local biodiversity. Wilcox and Donlan (2007) suggested that

removal of invasive predators is a more effective measure for seabird

conservation from a return-on-investment perspective (i.e. percent

increase in population growth per dollar invested) and more socio-

politically feasible than imposing restriction to fishery. There are two

problems with this argument : the first is that the impact of predators

depends on their targeted prey (i.e. the impact is much higher when

predation is on adults) and the second is the lack of a robust realistic

estimation of the demographic consequence of rats and, ultimately,

of the effectiveness of the compensatory mitigation measure [9–11].

For shearwaters breeding in the Chafarinas Islands, the eradication

of rats does not seem a sufficient measure for mitigating additional

sources of adult mortality, such as that caused by long-line fisheries.

Reducing rat abundance when adult mortality is high will have little

effect on the population growth rate, a result practically independent

of habitat structure (Fig. 1b and 2). In our study population,

eradication increased population growth rate but not enough to

reverse a negative trend caused by high adult mortality. In this case,

rat control allows to us to ‘‘buy’’ years before extinction but not to

reverse the process. However, postponing the extinction of the

population a few decades may be important as an emergency

measure if threats on adult survival can be eliminated in the

medium-term period.

Although our results allow a certain degree of generalization, in

particular to long-lived species with low fecundity, they cannot be

extended to all seabirds affected by rats or by other introduced

predators. The first problem to be considered is the complex interplay

between rat predation and habitat structure. A second problem is that,

in our system, predation only affected birds’ breeding output – a

parameter with little impact on the long-term population growth.

When predation affects adult birds, it is expected to have a greater

impact on seabirds’ demography. This is the case for predation by rats

on small seabirds (such as storm petrels) or by other introduced

carnivores on larger species. In these cases, eradication of introduced

predators is crucial for population persistence. Finally, bet-hedging

species, such as gulls, with similar survival but higher fertility and a

younger age of first reproduction compared to shearwaters, are

expected to better respond to rat eradication.

In most cases, the first management action in response to

introduced predators is the control or eradication of alien species,

even when the demographic consequences of predation are not

clear. We showed that the interaction between habitat structure

and rat abundance is an important factor that managers should

consider in the cost-benefit balance of conservation actions. Most

studies on seabirds focus on factors that influence breeding success,

typically ignoring other parameters despite these might have a

greater influence on the population growth rate. In our case, rat

eradication can be an effective management measure when adult

survival is high and the combined effect of high rat abundance and

low habitat structure makes predation to reach extreme values. On

the other hand, if adult survival is high there is not a real need for

compensatory measures but rat control can be important as a

preventive measure and by itself, to restore the biotic interactions

between other island communities, such as plants and insects.

Materials and Methods

Study area
We studied the relationship between rat abundance, habitat

structure and shearwater demographic parameters on the

Figure 2. Sensitivity analysis. Sensitivity of lambda to (A) rat
abundance for high (e), medium (&) and low (N) habitat structure, (B)
habitat structure for high (e), medium (&) and low (N) rat density, and
(C) to hazard rate with habitat structure and rat density set to their
average levels. In all graphs survival is set to the value estimated from
individual encounter histories (0.87). A change in hazard rate shows by
far the highest sensitivity than a change in rat density and habitat
structure.
doi:10.1371/journal.pone.0004826.g002
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Chafarinas Islands, an archipelago 4.5 km off the Mediterranean

coast of Morocco (Western Mediterranean). Human presence on

the archipelago dates from the Neolithic [32] and is concentrated

today on a military base and a research station on the island of

Isabel II. Rat presence in the archipelago had been documented at

least since the end of the 19th century [33] but the species was

likely there long before this date as a consequence of human

settlement. The breeding colony of Cory’s shearwater consists of c.

8000–2000 breeding pairs [17], and is located on the largest and

most rugged island of Congreso. At present, this is the westernmost

known colony of the species in the Mediterranean basin.

Rat abundance, habitat structure and shearwater
demographic parameters

On Congreso island, between 1999 and 2003, we obtained an

index of rat abundance, noted R, as the number of captures per

100 traps per nights [34]. Trapping occurred in October once

birds left the colony [13]. Additionally, a rat control campaign was

conducted yearly by placing feeding stations baited with poison,

until complete eradication was achieved (where the number of rats

per night per trap was equal to zero for two consecutive years).

The rat control campaign was conducted soon after the rat

abundance survey to modulate the eradication effort accordingly

[13]. As a measure of rat control effort, denoted E, we took the

number of stations multiplied by the days of exposure divided by

100. We measured the linear association between the index of rat

abundance, R, and the effort of rat control. This relationship was

used to estimate the values of R in 1997 and 2004, when a measure

of the effort was available but the corresponding measures of rat

abundance index were missing. This was not possible for 1998

because neither R nor E were measured.

Rat abundance may not directly correlate with breeding success

if nest characteristics make them inaccessible to rats [13]. To

obtain a measure of nest habitat structure we measured the

habitat, the soil structure and the distance from the nearest

neighbour nest, of 101 randomly selected shearwater nests in

which output was also subsequently monitored (see below). A

Categorical Principal Components Analysis (CatPCA in package

SPSS; Rel. 11.0.1. 2001. SPSS Inc., Chicago) was used to reduce

the variables considered into a smaller number of components. We

retained the component with the highest contribution as an index

of nest habitat structure, noted H, and used it as a predictor of

breeding success (see below).

Fecundity, denoted F, was estimated by maximum likelihood

from the monitoring of nests for which the habitat index was

available. As shearwaters lay a single egg, the breeding outcome

has been treated as a binomial variable (1 = success; 0 = failure)

and modelled with generalized linear mixed models

(GlmmMLpackage [35] in R, www.r-project.org). We considered

the relative abundance of rat, R, the index of nest habitat

structure, H, and their statistical interaction, denoted R6H, as

predictors of the breeding outcome, as the correlation between

these two variables was not significant (Pearson’s product moment,

r = 20.008, t767 = 20.236, p = 0.813). Nest identity was treated as

a random variable to correct for the effect of multiple entries from

the same nest. Shearwater annual survival, denoted w, was

estimated by maximum likelihood from the observed fate of 354

Figure 3. Compensatory breeding success and additional mortality. Relative values of breeding success necessary to maintain a stable or
increasing population in relation to an increase in relative mortality (light-gray area: l$1, dark-gray area : l+s.e.$1). Survival without additional
mortality is taken as 0.95 and the average breeding success without rats observed at Chafarinas islands is 0.67 (see text). The deterministic model
indicates that a mortality greater than c. 2% cannot be compensated (if l+s.e$1 is considered, this threshold value increases to 4.3%).
doi:10.1371/journal.pone.0004826.g003
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individually marked adult birds captured and re-observed yearly

from 1999 to 2007. The analysis of individual longitudinal data

followed standard procedures of capture-recapture modelling [36].

After accounting for departures from a general model [37], we

tested whether survival was a function of time and of rat

abundance index, R. Models were built and compared using

program MARK [38]. The significance of R was estimated using

the ANODEV procedure in program MARK [38].

Adult shearwaters may not return to reproduce when individual

or environmental conditions are not suitable for breeding. The

exact value of this probability is not easy to estimate from capture-

recapture data because the detection probability is confounded by

temporal emigration. Therefore, we were able to estimate this

probability only conditionally on recapture, which is equivalent to

assuming a probability of recapture of 1. As a consequence, a bird

known to be alive on a given occasion was assumed to have

skipped reproduction if not seen at the colony during the

observation period. Estimated in this way, the probability of

reproductive skipping was 0.11. Similarly, the probability of

breeding after a skipping event was 0.59. These values are

consistent with those recently reported for the same species [39].

Finally, as our data did not allow a full description of immature

survival and breeding probabilities, we used estimates reported for

the same species by Jenouvrier et al. from a colony at Lavezzi

island, Corsica [39]. In long-lived species population growth rate is

little affected by a change in recruitment parameters [see results ;

40]. Therefore, differences in recruitment processes between

Lavezzi and Chafarinas Island should not substantially affect our

results.

Adult mortality and hazard rate
Cory’s shearwater die in fishing nets and, especially, in long-

lines [41,42], but this additional mortality is difficult to quantify.

For the western Mediterranean, Belda and Sanchez [41] provided

an estimate of the number of shearwater caught per 1000 hooks set

by bottom long lines boats but this number appeared highly

variable [43]. Also, the number of birds caught in long lines

cannot be directly related to a measure of mortality probability

because the origin of dead birds, and thus the number of birds at

risk, is unknown [44]. To investigate the demographic effect of an

additional adult mortality due, for example, to bycatch, we used

the same approach as in Hunter and Caswell [27]. We expressed

bird survival, S, as a function of an hazard rate, z, so that

S =wexp(2z), with w the local survival probability estimated from

individual encounter histories (see above). Adult survival is equal

to w when z = 0, which corresponds to the current level of natural

mortality and the current rate of mortality at sea, which is

unknown in our analysis. Therefore we assume that positive values

of the hazard parameter can be interpreted as an increase in the

harvesting rate by fisheries. In this case, the hazard parameter is

similar to the harvest parameter used in models for exploited

populations [27,45]. On the contrary, negative values of z refer to

a scenario in which the current mortality risks decrease. To

investigate how results change in relation to a change in mortality

risks, we considered a range of adult survival variations between

0.96 and 0.78 using z = 20.1, 20.05, 0, 0.05 and 0.1. This range

corresponds the one observed across shearwater colonies over the

species range [46].

A population model for the Cory’s shearwater
To explore population trajectories, we combined shearwater

survival, fertility, recruitment and breeding probabilities into a

stage demographic model [47]. The model is a matrix represen-

tation of shearwaters’ life cycle with 8 stages according to age and

state (breeder-non breeder; Fig. 4). The population matrix M (size

868) is:

M~

0 0 0 0 0 0 0:5S0F 0

S 0 0 0 0 0 0 0

0 S 0 0 0 0 0 0

0 0 S 1{G3ð Þ 0 0 0 0 0

0 0 0 S 1{G4ð Þ 0 0 0 0

0 0 0 0 S 1{G5ð Þ S 1{G6ð Þ 0 0

0 0 SG3 SG4 SG5 SG6 SGBr SGNb

0 0 0 0 0 0 S 1{GBrð Þ S 1{GNbð Þ

2
66666666666664

3
77777777777775

ð1Þ

Where:

S0 = is the annual survival from fledgling to the first birth

day.

S = the annual survival probability expressed as

wexp(2z), with w the local survival probability from

adult encounter histories and z the hazard rate (see

above)

Gj = age-specific recruitment probability at age j, with

j = 3,4,5,6.

F = the average breeding success modelled as a function

of rat density, R, and habitat structure, H, as 1/

(1+exp[2(a+b(R)+b(R6H))] in which a and b are the

linear predictors of F on a logit scale (see Table 1).

GBr = the average probability of breeding after a

breeding event (here GBr = 0.89). Note that 12GBr is

the probability to skip a reproduction after a breeding

event.

GNbr = the average probability of breeding after a non-

breeding event (here GNbr = 0.59).

The eight rows of M contain the demographic parameters

corresponding to the eight age-by-breeding stages, which are from

the top to bottom, fledgling, immature from age 1 to age $5 years

old, adult breeders and adult non-breeders. Each non-zero

element in eq.1 corresponds to an arrow in Fig. 4. Thus, the

first row contains the parameters related to fertility, F, and the

first-year survival, S0, while the rest of the matrix includes the

transition probabilities between all stages identified during the

time interval t, t+1. The matrix M can be viewed as composed by

two sub-matrices corresponding to the two boxes outlined in Fig. 4.

The first sub-matrix (size 866, left sector of eq.1), describes the

immature part of the cycle. It includes a survival parameter, S,

common to all ages, and the age-specific recruitment probabilities,

Gj, expressed as the transition probability at age j from the non-

breeding to the breeding state. At age 1 all birds are immature and

move to the next immature age class with probability S. At three

years old, immature birds ‘move’ into the adult breeding pool, i.e.

row seven, , with probability Gj or move into the next immature

age class with probability 12Gj. The last row of this sub-matrix is

empty because immature birds cannot become non-breeding

adults. The first row is empty because by definition, immature do

not reproduce. The second sub-matrix (size 862) refers to the

adult phase of the cycle. It is structured into two states, breeder

and non breeder, regardless of the age of the bird. As the first sub-

matrix, it contains the adult survival parameter, S, and the

probabilities, GBr and GNb, to become a breeding after a breeding

and a non-breeding event, respectively.

The impact of rats is considered only in breeding birds, whereas

the impact of fishery concerns non-breeding and immature birds

as well [41]. The population matrix M projects the population

vector n from t to t+1 as nt+1 = Mnt. The asymptotic population

growth, l, is calculated as the dominant eigenvalue of M. In a
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stable population the population growth rate is equal to 1 while

lower values indicate a decreasing trend. Finally we used

perturbation analyses to investigate how the change on a

demographic parameter, a combination of more than one

parameters or a covariate, would affect the population growth

rate l [48]. The sensitivity of l to a given parameter, h, is a scalar

calculated as hl/hh and gives an indication of how the population

growth rate is affected by a change in h [47]. The sensitivity of l to

h represents the slope of the relationship between parameter and

l, and is positive if population increases when the parameter

consider considered increases. The sensitivity to a given covariate,

X, affecting l through a parameter h, is calculated as
PK
1

Ll
Lh

Lh
LX

, with

Lh
LX

the derivatives of h with respect to the covariate value, and k the

number of parameters. Sensitivity analyses were computed with

program MATLAB [49]. The 95% confidence interval of l can be

calculated combining parameter variances with their respective

sensitivity [50].
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