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Abstract

Background: The molecular epidemiology of HIV-1 in the Caribbean has been described using partial genome sequencing;
subtype B is the most common subtype in multiple countries. To expand our knowledge of this, nearly full genome
amplification, sequencing and analysis was conducted.

Methodology/Principal Findings: Virion RNA from sera collected in Haiti, Dominican Republic, Jamaica and Trinidad and
Tobago were reverse transcribed, PCR amplified, sequenced and phylogenetically analyzed. Nearly full genomes were
completed for 15 strains; partial pol was done for 67 strains. All but one of the 67 strains analyzed in pol were subtype B; the
exception was a unique recombinant of subtypes B and C collected in the Dominican Republic. Of the nearly full genomes
of 14 strains that were subtype B in pol, all were subtype B from one end of the genome to the other and not inter-subtype
recombinants. Surprisingly, the Caribbean subtype B strains clustered significantly with each other and separate from
subtype B from other parts of the pandemic.

Conclusions: The more complete analysis of HIV-1 from 4 Caribbean countries confirms previous research using partial
genome analysis that the predominant subtype in circulation was subtype B. The Caribbean strains are phylogenetically
distinct from other subtype B strains although the biological meaning of this finding is unclear.
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Introduction

The Caribbean has the second highest HIV-1 prevalence in the

world today, approximately 1% in adult men and women,

exceeded only by sub-Saharan Africa [1]. There is quite a bit of

variability between the different countries in the Caribbean,

however. The national adult HIV prevalence rate exceeds 1% in

Barbados, Dominican Republic, Jamaica and Suriname, 2% in the

Bahamas, Guyana and Trinidad and Tobago, and is greater than

3% in Haiti.

The various epidemics in the Caribbean are driven predomi-

nantly by heterosexual intercourse, fuelled by commercial sex

work in societies with widespread poverty. A background of

stagnant tourism-dependent economies, early coitarche, high

numbers of sexual partners for both sexes, high rates of sexually

transmitted diseases, stigmatization and discrimination against

sexual minorities are some of the many factors driving the

Caribbean HIV-1 epidemic [2,3,4]. Homosexual intercourse is a

minor factor in most of the epidemics, though the extent of its

contribution is probably underestimated due to stigma. Injecting

drug use drives the epidemics in only two locations: Bermuda and

Puerto Rico [4].

Although international efforts to systematically collect, charac-

terize, and classify HIV isolates from around the world have

increased considerably, data on HIV-1 genetic variations in the

Caribbean remains limited. Globally, nine subtypes and 34

circulating recombinant forms have been defined in HIV-1 Group

M, which accounts for most of the HIV-1 pandemic. One of the

earliest HIV-1 strains characterized by full-genome sequencing

(RF) was from a Haitian woman living in the United States

but since that time no full genomes have been sequenced

to represent the epidemic(s) in the Caribbean [5]. Partial genome

sequencing of viruses from multiple Caribbean islands have

reported subtype B as virtually the only subtype present (with

the exception of Cuba) [6–8]. Because subtype B is the most

common subtype in the United States, its presence in the

Caribbean would seem unremarkable, but in fact subtype B has

never been the most common subtype in a heterosexual epidemic

anywhere in the world [9]. As such, the epidemics in the

Caribbean are unique.
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The effort to more fully characterize the subtypes in circulation

around the Caribbean was initiated by an examination of the

viruses from HIV-positive patients from four countries: Dominican

Republic (DO), Haiti (HT), Jamaica (JM) and Trinidad and

Tobago (TT). The nearly full-length genomes of HIV-1 were

amplified from the viral RNA and sequenced and represent the

first nearly full-length sequences of HIV-1 from the Dominican

Republic and Jamaica and the first in over a decade from Haiti

and Trinidad and Tobago. To evaluate the genetic distribution

pattern of HIV-1 in the Caribbean region, we analyzed

phylogenetic relationships and genetic variability among HIV-1

strains isolated from patient samples collected between 2000 and

2005 in seroprevalence studies in Trinidad and Tobago, Jamaica,

Haiti, and the Dominican Republic.

Materials and Methods

Study Subjects
Blood samples were drawn from patients attending the following

centers: GHESKIO in Port-au-Prince, Haiti; Ministry of Health,

Kingston, Jamaica; IDCP, Santo Domingo, Dominican Republic;

Medical Research Foundation of Trinidad and Tobago, Port of

Spain, Trinidad and Tobago. Patients were newly diagnosed as

HIV(+) and had been infected for an unknown period of time.

Serum was collected, frozen and sent to IHV, Baltimore, MD for

analysis. All patients gave written informed consent and the study,

including the notification of the subjects of their HIV status, was

approved by the IRB of the University of Maryland, Baltimore,

and the local participating institutions.

Reverse Transcription and Amplification
The methods for RNA extraction, reverse transcription (RT),

polymerase chain reaction (PCR) and the primers used for the

nearly full-length PCR amplification have been previously

described [10,11]. Briefly, RNA was extracted from 140 ml of

serum concentrated from 500 ml, using QIAamp Viral RNA Mini

Assay (Qiagen, Valencia, CA). Reverse transcription of RNA was

performed using SuperScriptTM III RNase H2 Reverse Tran-

scriptase (Invitrogen, Carlsbad, CA) with RT3474R and UN-

INEF79 primers for the partial pol region and the nearly full-length

genome amplification, respectively. cDNA synthesized with

UNINEF79 as primer was used as template for the nearly full-

length PCR amplification with limiting-dilution methods [11].

This method utilizes one, two or three overlapping amplicons to

cover most of the HIV genome, from 795 to 9180 on HXB-2

(Genbank Accession No. K03455) and is routinely successful with

well preserved serum having a viral load of 105 or greater. The

amplicon does not, however, include the U5, R or U3 components

of the viral RNA.

Specifically, reverse transcription of the RNA was performed by

priming with UNINEF79 (59-GCACTCAAGGCAAGCTT-

TATTGAGGCTT-39) close to the 39 end of the viral RNA or

by VIF-VPUoutR1 (59-GGTACCCCATAATAGACTGTRA-

CCCACAA-39) in vpu [11]. The extracted RNA (3 ml) was reverse

transcribed in a total volume of 20 ml with 500 mM dNTP,

2.5 mM primer, 16 RT buffer, 5 mM MgCl2, 10 mM DTT,

40 U RnaseOUT, and 400 U SuperScriptTM III RNase H2

RT (Invitrogen, Carlsbad, CA). The RNA, primer and dNTPs

were first incubated at 65uC for 5 minutes, then the remaining

reagents were added for cDNA synthesis at 50uC for 2 hours,

followed by 85uC for 5 minutes. Then 2 U E. coli RNase H

(Invitrogen, Carlsbad, CA) was added, and the reaction tubes were

incubated at 37uC for 20 minutes followed by 70uC for

15 minutes.

Two or three regions of the viral genome were independently

amplified from the cDNA to contain a nearly full-length genome

of HIV-1. The two-amplicon strategy consisted of one amplicon of

about 2.6-kb consisting of gag and part of pol (nts 769-3338 HXB-2

(Genbank Acc No: K03455)) and another amplicon of approxi-

mately 7.0-kb stretching from the 59 end of pol to the middle of nef

(nts 2143–9181 HXB-2). A three-amplicon strategy was used as

needed. The first amplicon was the gag-pol amplicon described

above, the second spanned pol to vpu (nts 2483–6231 HXB-2) and

the third env to nef (nts 5861–9181 HXB-2). The reaction volume

was 50 ml, containing 16 PCR buffer, 350 mM dNTP mixture,

0.4 mM of each primer and 5 U Expand Long Template PCR

enzyme mixture (Roche Diagnostics, Indianapolis, IN). Cycling

conditions for the first round were: 94uC for 2 minutes and then

10 cycles of (94uC 10 s, 60uC 30 s, 68uC 3 min), then 20 cycles of

(94uC 10 s, 55uC 30 s, 68uC 3 min) followed by 68uC for

10 minutes. For the second round, cycling conditions were the

same, except that the annealing temperature for the first 10 cycles

was 65uC and the incubation at 68uC was for 8 minutes.

The products of reverse transcription with the primer RT3474R

were employed for amplification of the partial pol region. The first-

round amplification was done with 2 primers: Pro5F (59-

AGAAATTGCAGGGCCCCTAGGAA) and RT3474R (59-

GAATCTCTCTGTTTTCTGCCAG), using AmpliTaq Gold

(Applied Biosystems, Foster City, CA) and 2 mM of MgCl2 in a

total volume of 50 mL. The second-round amplification was

completed using the following 2 primers: Pro3F (59-AGANCA-

GAGCCAACAGCCCCACCA) and ProRT (59- TTTCCCCAC-

TAACTTCTGTATGTCATTGACA). The first-round amplifi-

cation reactions began with a ‘‘hot start’’ at 95uC for 10 minutes to

activate the polymerase, followed by 30 cycles for 30 seconds at

94uC, 30 seconds at 55uC, and 1.5 minutes at 72uC, then a step at

7 minutes at 72uC was followed to end the cycles. For the second-

round amplification, the cycling conditions were the same except

for an annealing temperature of 58uC and the use of 40 cycles

instead of 30. The partial pol amplicon contained the coding

sequences for protease and part of reverse transcriptase (RT),

corresponding to nts 2167 through 3307 on HXB-2.

Amplified DNA for the partial pol and nearly full-length regions

were purified and sequenced in the Applied Biosystems 3130xl

automated sequencer using Big Dye terminators (Applied Biosys-

tems), and the sequences were assembled with Sequencher v4.6 (Gene

Codes Corporation, Ann Arbor, MI). When multiple amplicons were

used, they were not merged unless the overlapping sequences were

within 2% of each other. Nearly full genome and partial pol sequences

were deposited in Genbank under accession numbers EU839596–

EU839610 and EU439709–EU439774, respectively.

Analysis. A multiple alignment of the newly derived

protease/RT sequences and nearly full-length genome sequences

with selected reference sequences was constructed, consisting of

1069 nts and 8364 nts, respectively. Phylogenetic trees were

generated, and the consistency of branching order was evaluated

using SEQBOOT, DNADIST, NEIGHBOR, and CONSENSE

modules of the Phylogeny Inference Package (V3.52c).

Recombinant analysis was performed with Simplot, version 3.4,

and alignment examination was used to determine precise

breakpoints [12]. After breakpoint identification, each segment

was extracted and analyzed phylogenetically to confirm the

assignment of subtype; breakpoint locations were designed

relative to HXB-2. The Kimura 2-parameter method was used

to calculate pairwise genetic distances. Analysis of the protease-RT

sequences for mutations that might lead to resistance to

antiretroviral drugs was performed using the Stanford University

Database (http://hivdb.stanford.edu/hiv).

HIV Subtypes in Caribbean
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The nine genes of HIV-1 were translated from the nucleotide

sequence and visually examined to identify sites that might

distinguish the Caribbean strains. The prevalence of particular

amino acids were compared between the Caribbean sequences

and reference B sequences using Fisher’s Exact Test without

correcting for multiple comparisons.

Results

A total of 67 partial pol sequences of HIV-1 from the four

Caribbean countries were analyzed: Trinidad and Tobago

(n = 30), Dominican Republic (n = 18), Haiti (n = 16) and Jamaica

(n = 3). Phylogenetic analysis classified 66 partial pol sequences as

HIV-1 subtype B and one, from the Dominican Republic, as a

recombinant between subtypes B and C (Figure 1). Based on the

genetic analysis, some of the Trinidad samples were probably

epidemiologically linked but aside from those clusters there was no

clustering within Caribbean subtype B by country, island or

language.

Of the 67 samples with partial pol sequences, 15 specimens were

also successfully amplified for the nearly full-length genome from

serum RNA. The 15 that underwent full-length analysis consisted

of the one non-B and those that produced full length ampicons

readily. Previous experience with the primers suggests that failure

to amplify was not due to primer mismatch, but rather to sample

quality. Fourteen strains were non-recombinant subtype B; all

strains were analyzed for evidence of intersubtype recombination

and none was observed. The nearly full-length sequence of the B/

C recombinant strain revealed that it was a unique recombinant

form which was subtype B in protease and the amino terminus of

RT, while the rest of the genome was subtype C. The sequence did

not cluster with CRF31_BC or any other B/C recombinant in

genbank.

When analyzed with other subtype B strains from the pandemic,

the 14 nearly full-length sequences of the subtype B strains from

the Caribbean clustered together significantly with a bootstrap

value of 82% (Figure 2). The only ‘non-Caribbean’ subtype B was

RF, a virus collected from an Haitian woman in the United States

[5]. Aside from one cluster between two of the Trinidad samples

there was no significant clustering within the Caribbean strains,

either by country, island or language. Analysis of the nine genes of

HIV-1 for mutations more common in the Caribbean strains than

in subtype B reference strains revealed a handful of sites that

significantly distinguished the two populations (Table 1).

Analysis of the protease/RT sequences revealed a lack of major

drug resistance-conferring mutations among the Caribbean HIV-

1-infected samples except for one sample from the Dominican

Republic. Tropism for co-receptor usage of HIV-1 was deter-

mined in silico for 22 partial env sequences from the study

population. The PSSM procedure was used to predict the

phenotype [13]. Only 2 out of the 22 sequences had a preference

for CXCR4 rather than CCR5, both of them from the Dominican

Republic.

Figure 1. Phylogenetic analysis of 67 partial pol sequences of
HIV-1 from Caribbean countries: Trinidad and Tobago (TT),
Dominican Republic (DO), Haiti (HT) and Jamaica (JM). A
neighbor-joining phylogenetic tree was built using the Kimura 2-
parameter model and significant parsimony bootstrap values (.70%)
were placed next to the nodes. The genetic distance corresponding to
the lengths of the branches is shown by the scale below the tree.
Reference samples are those named, preceded by the subtype; one of
the study samples (the B/C recombinant) is also named.
doi:10.1371/journal.pone.0004814.g001
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We analyzed the V3 loop of the samples and there was a

deletion of threonine in the V3 loop in 40% of the Caribbean

samples overall, and this was more common in samples from

Trinidad and Tobago (67%) than in the other countries, where it

ranged from 20% (JM), to 33% (DO). Overall, this mutation is

associated preferentially with the Caribbean strains (env T319-,

Table 1).

Discussion

Nearly full-length genome sequencing has been tremendously

helpful in understanding the HIV epidemics in many parts of the

world; when inter-subtype recombinants are circulating, partial

genome sequencing can be very misleading. To date, the only HIV

viral genomes collected in the Caribbean that have been fully

sequenced were from Cuba [14]. Partial genome sequencing by

many has shown that outside of Cuba the epidemic was dominated

by subtype B, the strain of HIV-1 common in the developed world

[2,6,8,15,16]. It was to improve our knowledge about the strains in

the Caribbean that nearly full genome amplification and

sequencing was performed for samples from 4 countries: Trinidad

and Tobago, Jamaica, Dominican Republic and Haiti.

Based on the sequence of the protease and RT region of pol, the

majority of strains (66/67, 98.5%) were subtype B, although one,

from the Dominican Republic, was a B/C recombinant.

Phylogenetic analysis of this region revealed no clustering of

Caribbean sequences distinct from non-Caribbean, or between

one country and another.

Analysis of the nearly full genome sequences of the 14 subtype B

strains demonstrated no evidence of inter-subtype recombination.

Of note, however, is the fact that the region of the genome that

was sequenced did not include the parts of the RNA that form the

LTR in the provirus, consequently it is still possible that the LTR

could be from a non-B subtype, although not likely. Full genome

analysis of the subtype B strains did support the distinct clustering

of the subtype B Caribbean sequences separate from those from

the pandemic, including South America. This is surprising because

there is undoubtedly a great deal of human traffic between the

U.S. and Europe, on the one hand, and the Caribbean, on the

other. In an attempt to locate the part of the genome that might be

contributing to the monophyletic clustering, a sliding window

examination of 8.5 kb revealed no specific location on the genome

that was responsible. There were, however, isolated sites that

distinguished the Caribbean strains from others. Shown in Table 1,

there were some amino acid mutations that significantly

distinguished the two populations. In comparisons such as this, it

is appropriate to consider the fact that these comparisons are being

done for each of the .3000 amino acids in the HIV-1 genome,

and thus the statistical significance should be adjusted. If that

adjustment were done, no amino acid mutations would statistically

distinguish the two populations. As an exploratory exercise,

however, it is valuable to explore where the phylogenetic signal

may be coming from. The first site, gag D102E, occurs in the

matrix protein and is associated with Elite Controllers [17].

Another Caribbean-specific mutation has already been reported:

the presence of a threonine deletion in the V3 loop of Trinidad

samples (env T319-) [8]. Most of the other changes were

conservative, and are not known to be associated with specific

phenotypic differences. These sites and others were so uncommon

that phylogenetic clustering only achieved statistical significance

when the full genome was analyzed (data not shown). It is unclear

what the biological importance of this phylogenetic distinction is

but this question could be explored in vitro.

There are two possible explanations for the phylogenetic

clustering of the Caribbean strains. The first is that it can be the

result of founder effects from when the epidemic first began that

are still detectable 20 years later. There are several arguments

against that theory: given the human traffic in and out of the

Caribbean, it is extremely unlikely that a founder effect would

continue so long. Another fact that argues against the founder

effect is that there is no clustering of samples by country or

language, as you would expect if there were different founder

Figure 2. Phylogenetic analysis of 14 nearly full genome
sequences of HIV-1 Subtype B from Caribbean countries:
Trinidad and Tobago (TT), Dominican Republic (DO), Haiti
(HT) and Jamaica (JM). Reference subtype B sequences are indicated
by the country of origin; they are: US: MN, JRCSF, SF2, WR27, P896, NY5,
BCSG3C, YU2, RF, U23487; DE: D31, HAN; GB: CAM1, study sequences
(bold) are identified by name. A neighbor-joining phylogenetic tree was
built using the Kimura 2-parameter model and significant parsimony
bootstrap values (.70%) were placed next to the nodes. The genetic
distance corresponding to the lengths of the branches is shown by the
scale below the tree.
doi:10.1371/journal.pone.0004814.g002

Table 1. Amino acid sites that differ between the Caribbean
B strains and the subtype B reference strains.

Gene Location Mutation Caribbean B Reference B p

gag (n = 25) (n = 19)

matrix D102E 23 11 0.01

capsid I159V 9 15 0.005

pol (n = 14)

signal peptide N21TDA 8 18 0.03

protease K97R 1 13 0.0004

rev (n = 14)

V102I 2 13 0.002

env (n = 14)

V3 loop T319- 5 0 0.008

C5 N474D 5 15 0.01

C5 K476RM 5 17 0.002

doi:10.1371/journal.pone.0004814.t001
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viruses in different islands. Another explanation is that there may

be some form of consistant selection pressure on these viruses that

is not as strong in subtype B viruses from the developed world. As

mentioned earlier, the Caribbean is the only region of the world

that has a robust heterosexually-driven epidemic of subtype B. In

Thailand, South Africa and Argentina, concentrated epidemics in

high risk populations preceded generalized epidemics in the

general public. In each of these cases, subtype B was the subtype

common in the concentrated epidemic and a non-B subtype

replaced it as the epidemic grew [9,16]. Subtype B viruses from the

Caribbean may have acquired features that have enabled it to

generate a more ‘successful’ heterosexual epidemic.

The data presented here have limitations: the samples used were

not collected using any systematic sampling method and might not

adequately represent the strains in these four countries. The

number of full length genome sequences that could be performed

was limited, and the selection of those was determined by ease of

amplification, which could bring in a consistant bias against

certain strains. These primers have been used successfully for

many subtypes and the likelihood of sequence bias is not high,

however. In general, the study was limited by the small sample

size, and this would have been more consequential if the molecular

epidemiology had been more complex. The findings, however, are

consistant with the findings of others based on partial genome

sequences and this lends support to their validity.

The HIV epidemic in the Caribbean is second only to sub-

Saharan Africa in the prevalence of infection in the generalized

population [1]. The complexities of the region, with its different

islands, languages and cultures, has presented a challenge for

coordinating research activities throughout the region, difficulties

that are compounded by the low standard of living for many of the

countries. As anti-retroviral drugs are deployed across the region,

it becomes even more important to have a solid baseline

understanding of the molecular epidemiology of HIV in the

various countries, and to begin to track the emergence of drug

resistance.
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