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Abstract

Background: Studies of bone allometry typically use simple measurements taken in a small number of locations per bone;
often the midshaft diameter or joint surface area is compared to body mass or bone length. However, bones must fulfil
multiple roles simultaneously with minimum cost to the animal while meeting the structural requirements imposed by
behaviour and locomotion, and not exceeding its capacity for adaptation and repair. We use entire bone volumes from the
forelimbs and hindlimbs of Felidae (cats) to investigate regional complexities in bone allometry.

Method/Principal Findings: Computed tomographic (CT) images (16435 slices in 116 stacks) were made of 9 limb bones
from each of 13 individuals of 9 feline species ranging in size from domestic cat (Felis catus) to tiger (Panthera tigris). Eleven
geometric parameters were calculated for every CT slice and scaling exponents calculated at 5% increments along the entire
length of each bone. Three-dimensional moments of inertia were calculated for each bone volume, and spherical radii were
measured in the glenoid cavity, humeral head and femoral head. Allometry of the midshaft, moments of inertia and joint
radii were determined. Allometry was highly variable and related to local bone function, with joint surfaces and muscle
attachment sites generally showing stronger positive allometry than the midshaft.

Conclusions/Significance: Examining whole bones revealed that bone allometry is strongly affected by regional variations
in bone function, presumably through mechanical effects on bone modelling. Bone’s phenotypic plasticity may be an
advantage during rapid evolutionary divergence by allowing exploitation of the full size range that a morphotype can
occupy. Felids show bone allometry rather than postural change across their size range, unlike similar-sized animals.
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Introduction

As animals become more massive, their skeletons must

increase in size to accommodate increased body volume and

increase in strength in order to sustain larger applied loads.

Scaling studies have attempted to determine a relationship

between animal size and bone length and diameter, as well as

other correlates of bone strength such as cross-sectional area and

bone curvature to determine comparative trends in strength-

mass relationships [1]. A common approach in scaling studies is

to use linear measures of bone dimensions [2–5]: length and

midshaft diameter are both easily obtained and are predictive of

bending and buckling behaviour in simple, materially homoge-

neous beams. However, most bones exist in complicated

mechanical environments where they must articulate with other

bones, provide tendon and ligament attachment sites, recesses

for bulky organs, and accommodate gaits and behaviours. By

failing to account for these functional complexities, simple

scaling approaches have overlooked critical variations in bone

shape.

Bone shapes result from embryonic development, phenotypic

plasticity (modelling) and evolution. The initial position, size and

shape of cartilaginous anlagen are determined directly by the

genome during embryonic skeletogenesis and form a template for

bone growth [6,7]. Anlagen are replaced by endochondral

ossification forming bones that are modified continuously

throughout an animal’s life [8]. Fetal muscle contraction is

necessary for the normal development of bone size and shape,

indicating that bone shape is influenced by the mechanical

environment from an early developmental stage [9,10]. Bone

modelling occurs in response to (at least) strain magnitude, strain

rate and the presence of overlying soft tissue [11,12]. Bone tissue is

a complex, mineralised, fibre-reinforced porous composite mate-

rial that displays regional anisotropy at multiple levels of

organisation [13–17] and which exists within a spectrum of tissue

damage and repair [18–21]. Monotonic (traumatic) fracture may

result in severe lameness or death but many animals survive with

healed bones [22–24], while fatigue failure of bones is painful and

reduces locomotor performance even in the absence of complete

bone fracture [25].
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Cross-sectional geometric measurements have been used to

advance estimates of bone strength beyond what is possible with

simple diameter measurements. Cortical thickness has been

indirectly deduced from computed tomography (CT) images at

the mid-shaft [26,27], and has been measured on radiographs

[28]. These studies assumed that diaphyseal bone approximates to

a cylinder [26] or elliptical beam [28] and calculated bone strength

for a homogeneous beam of constant cross section. Selker and

Carter calculated the polar second moment of area (Jz) from CT

images of the bone at midshaft in artiodactyls and calculated a

bone strength index (Sb) from Jz, midshaft diameter (d) and length

(l: Sb = Jz/d l). They found that the bone strength index scaled

similarly across species despite differences in scaling of length and

diameter [26].

Christiansen found that bones from larger species appeared to

scale with lower regression coefficients than bones from smaller

species, and eschewed the possibility that a single scaling exponent

could explain all variation in bone shape, on the grounds that it

would not accommodate variations in posture or locomotor style

[5]. Bertram and Biewener had previously suggested that scaling

exponents varied within clades of different body mass ranges and

that posture changed with increasing body mass, as large animals’

limbs were relatively vertical and less crouched than small animals

[4]. Straightening the limbs with increasing size keeps bone

bending and muscular stresses nearly constant by increasing

muscle moment arms and reducing joint moments [29].

By restricting this study to a single morphotype (felids), we aim

to avoid the effects of gross postural and behavioural change that

can confound attempts to study size effects on bone scaling [30].

Davis selected Felidae for his organ weight and limb length scaling

study, and noted that felids approached the experimental ideal of

consistent morphology and behaviour across their size range [31].

Day and Jayne demonstrated that posture and gait were not

correlated with body mass within 9 felid species [32]. Since posture

does not change with body size in Felidae, the role of allometry in

maintaining relative bone strength should be marked. But would

this allometry be fully defined by midshaft parameters as has been

shown previously (Table 1), or could there be hidden complexities

and mechanisms that can only be found by measuring mechan-

ically-relevant geometric parameters throughout the whole bone?

Here, we image and analyse scapulae and 8 fore- and hindlimb

long bones from 9 felid species in three dimensions. We determine

geometrical parameters along the entire length of each bone to

reveal scaling relationships localised to individual bone regions.

This uses a novel method that we have developed, which can be

applied to skeletons quickly and semi-automatically.

Results

Phylogenetic analysis indicated that scaling patterns and

correlations were not constrained by phylogenetic topology when

tested on 50% length (midshaft) data (Table S1), meaning that

Table 1. Felid midshaft scaling exponents.

Study Comparison Bone A

Bertram & Biewener (1990) * D / la; D = midshaft craniocaudal diameter (1) Humerus 1.38

Radius 1.49

Femur 1.16

Tibia 1.40

D / la; D = midshaft mediolateral diameter (1) Humerus 1.23

Radius 1.48

Femur 1.14

Tibia 1.35

Anyonge (1993) # M / xa; x parameters are listed

Length (3) Femur 3.20

Midshaft circumference (3) 2.92

Midshaft cross-sectional area (1.5) 1.31

Midshaft mediolateral second moment of area (0.75) 0.69

Midshaft craniocaudal second moment of area (0.75) 0.71

Distal articular area (1.5) 1.31

Length (3) Humerus 3.13

Midshaft circumference (3) 2.65

Midshaft cross-sectional area (1.5) 1.25

Midshaft mediolateral second moment of area (0.75) 0.63

Midshaft craniocaudal second moment of area (0.75) 0.64

Scaling exponents (a) from previous studies on felid skeletons [4,28]. Scaling relationships reported by Bertram and Biewener (1990) have been inverted. Isometric
scaling exponents are indicated in parentheses.
M, body mass; l, length.
Species included: * Acinonyx jubatus, Felis aurata, F. bengalensis, F. catus, F. chaus, F. colocolo, F. concolor, F. geoffroyi, F. libyca, F. manul, F. marmorata, F. margarita, F.
pardalis, F. pleniceps, F. serval, F. tigrina, F. viverrina, F. wiedii, F. yaguarundi, Panthera leo, P. onca, P. pardus, P. tigris, Neofelis nebulosa, Uncia uncia, Lynx caracal, L. lynx, L.
rufus; # N. nebulosa, F. caracal, F. pardalis, A. jubatus, P. onca, P. pardus, P. leo, P. tigris, F. serval, F. lybica, F. yagouaroundi, L. rufus, Puma concolor, U. uncia. Taxonomic
classification is as reported by the original authors.
doi:10.1371/journal.pone.0004742.t001
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phylogeny could be defensibly ignored in further scaling

calculations. Scaling exponents at the midshaft were generally

greater than isometry, except cross-sectional area of the fibula and

cortical thickness, which scaled less than isometry. Allometry of

cross-sectional area, second moment of area and diameter versus

length were within the ranges described by previous authors

(Table 1), either through comparison with similar measurements

or exponents calculated using M as an intermediate [4,28].

Scapular diameter scaled to length with an exponent of

4.0862.13, much greater than isometry (Table 2). All further

scaling relationships were calculated with no set intercept, an

assumption of phylogenetic independence and without averaging

measurements from multiple animals of single species prior to

regression calculation.

Visual inspection of bone cross-sections indicated that assump-

tions of circularity or elliptical geometry underestimate the

complexity of bone structure (Figure 1), which diverged substan-

tially between and within bones.

Normalised section modulus (Zmax
1/3 / l) versus per cent length

plots (Figure 2) showed characteristic profiles for each bone, with

larger felids generally having greater normalised section modulus

at each per cent length than smaller felids. In addition, epiphyses

had noticeably greater normalised section moduli than diaphyses.

Normalised section moduli tended to be greater proximally than

distally, which was most pronounced in the ulna, tibia and larger

felids’ metapodials. The coronoid process and trochlear notch of

the ulna appear to become displaced distally in larger felids

(Figure 2).

Plots of scaling exponent versus per cent length showed wide

variation in scaling exponents between and within bones (Figure 3).

The radius, ulna and tibia were more strongly allometric than the

humerus and femur. There was a general trend towards greater

scaling exponents at the epiphyses than at the diaphyses. Polar

moment of area scaled to cross-sectional area with exponents

generally greater than isometry, indicating placement of bone

relatively more distant from the centroid as cross-sectional area

increases (Figure 3D). This would result in a larger diameter and

thinner cortex than would be expected with isometry, resulting in

a mechanical strength increase over bones of similar mass but with

relatively thicker cortices and smaller outer diameters. Compar-

ison of scaling exponent versus per cent length plots with whole-

bone anatomy indicated relationships between scaling and

anatomical features; for example the maximum diameter of the

tibia scales strongly positive in the region of the tibial crest (10%

length), as does the midshaft of the fibula in the region of M.

peroneus brevis’ origin (40–60% length). Diameter (Figure 3A),

section modulus (Figure 3B) and cross-sectional area (Figure 3C)

versus per cent length scaling of the ulna also varies within bone

length, showing stronger positive allometry at 50% than at 85%

length, and displaying increases in allometric exponent that relate

to the positions of the anconeal and coronoid processes.

Allometry of the glenoid cavity, femoral head and humeral head

radii versus bone length was present, with the glenoid cavity

showing allometry consistent with the static stress similarity

hypothesis (D / l3/2) (Table 3). Scaling exponents for humeral

(a = 1.34) and femoral (a = 1.26) head radii versus length were

greater than 1, indicating that the shoulder and hip joint surface

areas increase allometrically with increasing body size. This

compared well with previous allometric calculations of the distal

articular area (A) of the felid femur, which showed M / A1.31

(Table 1), and because M / l3.20, A / l2.44 and distal articular

‘radius’ / l1.22.

The minimum axis of inertia generally corresponded very

closely to the direction of the z-scan axis, meaning that CT slices

were good representations of axial cross-sectional geometry

(Figure 4). The two greatest moments of inertia (I1 and I2) were

not significantly different from each other (p = 0.93), so scaling

exponents were calculated only for the least moment of inertia (I3)

versus the greatest moment of inertia (I1: Table 4). Scaling

exponents for moments of inertia ranged from isometric (scapula,

radius, third metacarpal) to mild allometry (humerus, ulna, femur,

tibia, fibula, third metatarsal). Scaling exponents .1 indicate

Table 2. Midslice scaling exponents.

Bone a6CI for variables (y) where y / l a

dmax (1) tav (1) CSA (2) Zmax (3) Imax (4) Jz (4)

Scapula 4.0862.13 n.c. 2.2860.53 3.4760.75 4.5060.80 4.3560.70

Humerus 1.3660.46 0.6260.51 2.1360.58 3.5360.97 4.9261.45 4.5461.27

Radius 1.3460.47 0.8560.36 2.4860.81 3.9761.23 5.3461.73 5.3461.68

Ulna 1.2460.55 0.8260.50 2.3761.02 3.6661.46 4.8862.04 5.0262.06

Third Metacarpal 1.0660.21 0.5860.22 1.9060.42 3.1460.65 4.2260.85 4.2060.78

Femur 1.1160.27 0.8960.24 2.1060.46 3.2560.72 4.3860.97 4.4060.99

Tibia 1.1960.21 1.0260.27 2.3460.47 3.5560.66 4.7860.85 4.8360.88

Fibula 1.2460.75 n.c. 1.4460.77 2.7961.65 4.1562.46 3.9762.26

Third Metatarsal 1.2660.35 0.6160.27 2.1360.58 3.5660.85 4.8561.13 4.9161.17

Phylogenetically corrected scaling exponents, a695% CI, were calculated for midshaft parameters (y) versus bone length (l). The exponent expected for the isometric
case is in parentheses. Statistically significant (p,0.05) relationships are indicated in bold. Scaling exponents tend to be greater than isometry, except for cortical
thickness, which appears to scale at less than isometry. Full tables including correlation coefficients (r) and standard error (SE) are provided as supplementary
information (Table S1).
dmax, maximum external diameter.
tav, mean cortical thickness.
CSA, cross-sectional area.
Zmax, maximum section modulus.
Imax, maximum second moment of area.
Jz, polar moment of inertia.
n.c., not calculated.
doi:10.1371/journal.pone.0004742.t002
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Figure 1. Computed tomograms of a tiger humerus and tibia. Selected CT slices from the humerus and tibia of Panthera tigris (tiger) with
centroids and principal axes shown. Note the substantial variation in cortical shape and thickness along the length of each bone. Per cent length is
indicated for each slice; 0% is most proximal. Cr, cranial; Ca, caudal; M, medial; L, lateral.
doi:10.1371/journal.pone.0004742.g001

Figure 2. Normalised section modulus versus per cent length. Normalised section modulus (Zmax
1/3 / length) versus per cent length

(proximal = 0%) for appendicular long bones. Contributions from multiple individuals within species have been averaged. Note the characteristic
profile of each bone, a tendency for epiphyses to have markedly larger normalised section moduli than diaphyses and that larger felids tend to have
larger normalised section moduli at all per cent lengths than smaller felids in all bones except the fibula. Coronoid process (*). See Figure 3E for
reference bones.
doi:10.1371/journal.pone.0004742.g002
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placement of bone relatively more distant from the long axis as

bones become longer, which is consistent with other findings such

as positive allometry of section modulus despite the trend towards

negative allometry of cortical thickness (Table 2; Figure 3).

Discussion

The proposal that a general rule of scaling might apply to all

skeletal structures has been gradually worn down since it was

originally devised by Galileo Galilei in 1638 [1]. McMahon

suggested that bones should scale with elastic similarity [33] and

found some supporting evidence [3], but this was soon after

discovered to be due to an ‘‘unfortunate’’ selection of Artiodactyla

when the elastic similarity hypothesis did not generalise to other

taxa [34]. Economos showed small mammals scaling more closely

to isometry (M / l3) than large mammals which scaled more

elastically (M / l4) [35], while Christiansen rejected both

theoretical models [5]. Scaling theory has continued to evolve,

to the point that bone scaling exponents are no longer assumed to

Figure 3. Scaling exponent (a) versus per cent length. Scaling exponents (a) were calculated for 5% length bins for each bone (0% is most
proximal) for the following allometric relationships: (A) dmax / la; (B) Zmax / la; (C) CSA / la; (D) Jz / CSAa. The isometric exponent is indicated by a
horizontal line in each plot. Wide variation is evident in scaling exponents both between and within bones. Scaling exponents tend to be greater at
the epiphyses that at 50% length, and in the fibula the proximal and distal thirds (*) scale less strongly than the midshaft ({). (E) Panthera pardus
(leopard) bones scaled to 100% length for reference.
doi:10.1371/journal.pone.0004742.g003

Table 3. Glenoid cavity, femoral head and humeral head
allometry.

Comparison a 95% CI

Femoral head radius / femoral lengtha 1.26* 1.10–1.46

Femoral head radius / femoral midshaft diametera 1.12 1.00–1.24

Humeral head radius / humeral lengtha 1.34* 1.17–1.54

Humeral head radius / femoral head radiusa 1.08 0.99–1.18

Humeral head radius / humeral midshaft diametera 1.01 0.90–1.12

Glenoid radius / humeral head radiusa 1.15 1.03–1.28

Glenoid radius / scapular lengtha 1.48* 1.28–1.71

Scaling exponents (a) and 95% confidence intervals (CI) for femoral head,
humeral head and glenoid cavity spherical radii against bone lengths and
diameters. The strongest allometry is evident between articular radii and bone
lengths (*), which are strongly related to body size.
Isometry: a = 1.0.
doi:10.1371/journal.pone.0004742.t003
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fit a single model as many more factors than geometry and body

mass are involved, including phylogenetic biases, joint contact

pressure and muscle force allometry [1].

We have shown wide variation in scaling exponents both

between and within bones from extant felids. Exploration of

midshaft allometry showed exponents differing from isometry to

greater or lesser extent in each bone, presumably related to

individual bone functions. For example, the midshaft second

moments of area of the humerus, radius and ulna scale more

strongly than those of the femur, tibia and fibula, perhaps due to

greater loading during intense athletic activities (including prey

grasping, running, jumping, etc.) in the forelimb than the hindlimb

[36]. The third metatarsal is notably longer and scales more

positively than the third metacarpal bone in felids, possibly due to

the functions of the forelimb and hindlimb leading to different

loading environments. The major zeugopodial bones (radius, ulna,

tibia) and the third metatarsal tended to show stronger allometry

than the stylopodial bones (humerus, femur) and the third

metacarpal. Allometry was not constant along the length of bones,

generally being greater at the condyles. This suggests that scaling is

highly sensitive to regional variation in bone function. In those

regions where the stress on bone is expected to be mixed axial

compression, bending and torsion (e.g. tibial midshaft) [19,37–41]

we find weak allometry, perhaps related to effective use of material

to support these loading modes. It must be noted that reports of in-

vivo felid-specific bone stresses or strains are scarce. Strong

allometry at the epiphyses may relate to provision of articular

surface area, to shear and torsion from joint loading, and tension

from muscle and ligament attachment sites. Bone scaling studies

may have overemphasised midshaft strength when joint stress may

be just as constraining.

Crests at muscle attachment sites (humeral crest; tibial crest;

greater trochanter of the femur) and hollows that accommodate

muscle bellies relate directly to the presence of muscle mass while

influencing the geometry and mechanics of the underlying bone.

The tibial crest supplies an insertion point for the patellar ligament

through which the quadriceps muscle group acts to extend the

femorotibial joint. Strong allometry of cross-sectional geometry at

the level of the tibial crest indicates a disproportionate increase in

the femorotibial joint’s extensor moment arm and effective

mechanical advantage [42], perhaps enabling felids to maintain

their crouched posture throughout their size range. Our data also

suggest that scaling of effective mechanical advantage may occur

in felid elbows due to the relative distal drift of the ulna’s trochlear

notch, which increases the olecranon lever arm with increasing

animal size.

The tibial crest lies medial to M. tibialis cranialis, whose

contractions are partly responsible for the triangular cross-section

of the tibia [43]. The results of a recent simulation [44] suggested

that tibial cross-sectional shape was determined largely by local

Figure 4. Principal axes. Acinonyx jubatus (cheetah) ulna with
principal axes intersecting at the 3D centroid. Note the proximal
displacement of the centroid relative to 50% length. I1 and I2 are the
moments of inertia around the x and y axes; I3 is the moment of inertia
around z.
doi:10.1371/journal.pone.0004742.g004

Table 4. Moments of inertia allometry.

Bone a (I3 / I1
a) 95% CI

Scapula 0.99 0.96–1.01

Humerus 1.12{ 1.05–1.21

Radius 1.09 0.90–1.33

Ulna 1.19{ 1.11–1.28

Metacarpal 1.08 0.94–1.23

Femur 1.11{ 1.06–1.17

Tibia 1.15{ 1.06–1.24

Fibula 1.19{ 1.02–1.38

Metatarsal 1.15{ 1.04–1.26

Scaling exponents (a) and 95% confidence intervals (CI) for moments of inertia.
{Significantly different from isometry.
Isometry: a = 1.0.
doi:10.1371/journal.pone.0004742.t004
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periosteal surface loads (muscle contraction) whereas cross-

sectional area and second moment of area were more strongly

affected by the magnitude of bending and torsion (locomotor

loading). Estimating regional strain and bone’s mechanobiological

response may help explain the varied scaling exponents within and

between bones that we have observed in this study.

Since bone has a lower critical damage strain threshold in

tension than compression [45], it follows that a relatively greater

amount of bone must be placed in regions of tension than

compression to maintain maximum strain below levels at which

damage accumulates. This might explain the larger scaling

exponents seen in major tendon origins and insertions. The

osteogenic effect of tension is well known and regularly exploited

in orthodontic and orthopaedic practice [46,47], so allometry in

tensile regions of bones may relate to muscle cross-sectional

allometry and force generation. Felid muscle mass scaling was

calculated by Davis to show slight positive allometry, however, the

very small sample size (5 individuals, 3 species) makes this result

difficult to interpret with confidence [31].

Godfrey found an isometric relationship between carnivore

humeral and femoral head surface areas and their respective bone

lengths [30], whereas our data demonstrate positive allometry

between articular radii and bone lengths in agreement with

Anyonge [28]. In the static isometric model, contact pressure

increases linearly with increasing length, as M / l3 while A / l2,

meaning that pressure, which is proportional to M / A, is

proportional to length (i.e. P / l3 / l2). Our data reveal allometric

increases of joint contact areas in the shoulder and hip that

forestall the pressure increase that isometric scaling would incur.

The fibula is a unique case as it transmits at most a minority of

the axial load in the crus (6.4–17% in humans [48,49]), and it

correspondingly shows negative allometry in cross-sectional area

and section modulus versus length. However, polar moment of

area versus cross sectional area and maximum diameter versus

length show marked positive allometry at around 40% length,

possibly through the influence of tension from the origin of M.

peroneus brevis or through being flattened against the tibia and

flexor and extensor muscles of the leg.

Three-dimensional methods are useful for bones such as the

scapula in which ‘midshaft’ is not applicable. Traditional mid-

length scaling at the scapula gives an exponent of over 4 for

diameter versus length, while moments of inertia show that the

felid scapula scales isometrically, which is much more consistent

with the gross appearance of felid scapulae. Broad entheses would

result in less stress concentration than focussed entheses such as the

triceps insertion on the olecranon, so positive allometry may not

be as necessary in the scapula as it is in the epiphyses of long

bones. Moment of inertia scaling (I3 / I1
a) related well to D / la

scaling for the femur and tibia, indicating that moment of inertia

scaling is a general approach that handles both tubular and flat

bones.

Cross-sectional measurements were limited in this study to the

planes perpendicular to the CT scanner’s z-axis, which may not be

the mechanical axis at each transverse level. Imax may appear

artefactually increased if the mechanical axis is oblique to the CT

slice, since the obliquity would cause an increase in both cross-

sectional area and average distance from the centroid. Moments of

inertia calculations showed that the unit vector of the bones was

usually very close to alignment with the z-axis. Resolution was an

order of magnitude less in the z axis than the x–y plane. We

surmised that adjusting the plane of section was unnecessary and

risked introducing interpolation errors.

Section modulus is related to tibial fatigue (‘stress’) fractures in

human athletes, with those athletes with greater tibial section

moduli experiencing fewer painful episodes [50]. An 87% increase

in maximum second moment of area occurred in response to

experimental loading of rat ulnae, which was related to 100-fold

greater fatigue resistance (cycles to failure) [51], indicating that

cross-sectional geometric parameters have mechanical significance

for more than simply monotonic, catastrophic fracture. The

relative contributions of fatigue and monotonic failure to bone

evolution are unknown, and may be more or less important

depending on longevity, size and behaviour. As Biewener

proposed, the lifetime loading history is of central importance to

this problem [42], along with the likelihood of traumatic fracture,

fracture healing capacity, rate of fatigue accrual and repair and the

animal’s ability to cope with lameness of several weeks’ duration.

Bone is a phenotypically plastic tissue; it is capable of massive

changes in size and shape in response to a multitude of influences

within days to weeks [8,52,53]. Limitations to bone’s phenotypic

plasticity, along with ecological and behavioural parameters, may

participate in the determination of the maximum and minimum

size of a given morphotype. The normal body mass range of extant

felid species is approximately 1 kg–300 kg (Prionailuris rubiginosus -

Panthera tigris altaica), whereas Bovidae span 2 kg–1200 kg (Neotragus

pygmaeus – Bubalus bubalis). When morphotypes diverge they may

be variably successful at extending into larger and smaller sizes,

within the bounds of phenotypic plasticity. Most lineages

examined to date use increasingly straightened limbs to maintain

bone stresses within safe limits at body masses ,300 kg, but use

bone allometry at body masses .300 kg [42]. Felids are generally

,300 kg body mass yet they do not show limb straightening;

rather bone allometry and possibly reduced relative limb loading

and locomotor performance are present [42]. Among mammals,

felids have unusual musculoskeletal scaling upon which we have

cast new light.

Genes are the units of inheritance, but they do not directly

encode bone shape beyond patterning of the embryo [54]. The

success of genes relates to the success of the organism that carries

them; genes that regulate bone function might be expected to

contribute positively or negatively to the organism’s success based

on the success of the skeletal system. Evolution of bone shape must

occur at the level of regulatory pathways, involving genes that do

not directly specify bone shape. Evolution of bone mechanobiol-

ogy, for example sensitivity and response to strain, may occur due

to the organisms’ success or failure while using the bone shapes

that result.

Regional variation in allometry demonstrates the functional

dependence of bone scaling. Future work will investigate gait and

loading effects on bone allometry at multiple scale levels to

continue the development of an integrative model of skeletal

allometry.

Materials and Methods

Cleaned felid appendicular bones (9 species, 13 specimens, 116

bones total) were obtained from the Natural History Museum,

London, University Museum of Zoology Cambridge and post

mortem. Body masses were not available for museum specimens.

We did not calculate scaling exponents from body mass since true

values were unknown for all but one specimen (Felis catus) and

because felid body masses occupy broad intraspecific ranges

(Table 5) [55]. Estimation of body mass is possible but requires

back-calculation from bone dimensions [28], meaning that

estimated body masses used in scaling comparisons would

indirectly represent bone dimensions. To avoid this confounding

situation we used only dimensions measured directly from CT

scans for scaling calculations.
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Bones were selected from skeletally mature individuals showing

no signs of degenerative joint disease, fracture or other disease.

Bones containing active physes, osteophytosis, fracture callus or

handling damage were excluded. Where possible, ipsilateral sets of

scapula, humerus, radius, ulna, third metacarpal (Mc3), femur,

tibia, fibula and third metatarsal (Mt3) were selected from at least

one individual of each species. The fibula of Panthera leo was not

available for CT scanning. Occasionally, bones from contralateral

fore- and hindlimbs were selected due to missing or damaged

bones from the ipsilateral sets; each full set contained bones from

two limbs only, one forelimb and one hindlimb. Length, midshaft

diameter and midshaft circumference were measured with dial

callipers (60.05 mm) and measuring tape (60.5 mm). Diameters

were measured in the craniocaudal and mediolateral directions.

Scapular length was the distance between the distal and proximal

extremes collinear with the scapular spine, and scapular width was

the maximum width perpendicular to the scapular spine,

regardless of position on the spine.

CT scans were made with a Picker PQ5000 (peak X-ray tube

voltage 120 kVp; X-ray tube current 100 mA; exposure 64 mAs).

Bones were supported on a radiolucent piece of elastomeric foam

and aligned with their long axis parallel to the scanner’s z-axis.

The greatest practical resolution was used for each bone, with a

maximum stack size of 200 slices and constant 5126512 pixels per

slice. Small bones were scanned at higher resolution than large

bones (pixel size 0.078–0.469 mm; slice thickness 1–2 mm).

Digital oversampling was evident at high resolutions because pixel

size was substantially smaller than true image resolution, which

was measured as approximately 0.8 mm [56]. Images were

exported to ImageJ (NIH, Maryland, USA) in 16-bit DICOM

format with pixel values calibrated to Hounsfield units (HU).

Imaging artefacts and extraneous anatomical features, such as

articulating bones, were manually removed from images resulting

in stacks containing contrast from only the bone of interest and air.

Bone length was calculated by identifying the most proximal and

distal bone points in the image stack, and the midslice was

identified by taking the average slice number of the most proximal

and most distal bone-containing slices. Bone length measured from

CT stacks was strongly correlated with bone length measured

directly (R2 = 0.995). A total of 16435 slices of CT data were

collected from the 13 specimens.

Image stacks were processed with an ImageJ macro (Text S1).

Images were thresholded at 0 HU, which is the midpoint between

air (21000 HU) and cortical bone (1000 HU). Only pixels with

values $0 HU contributed to geometric calculations. The macro

calculated 11 parameters for each image slice: centroid (xc, yc);

cross sectional area (CSA); minimum, maximum and mean cortical

thickness (tmin, tmax, tav); maximum and minimum diameter (dmin,

dmax); maximum and minimum second moment of area (Imax,

Imin); and maximum and minimum section moduli (Zmax, Zmin)

(Text S2). Second moments of area and section moduli were

calculated directly from pixel coordinates without assumptions of

cylindrical or elliptical geometry. Cortical thickness was calculated

by wand selecting the inner and outer cortical boundaries, and for

each point of the outer boundary finding the shortest distance to

the inner boundary. Cortical thickness was not calculated for

scapulae or fibulae, as these bones’ cross-sectional geometries were

irregular and lacked a consistent medullary cavity. Diameter was

measured with the rotating callipers method [57] without

assuming anatomic orientation (Figure 5).

The 3D centroid, principal axis eigenvectors and moments of

inertia around the principal axes (I1, I2, I3) of each bone were

determined with an ImageJ plugin (Text S3), assuming bone

density of 1.8 g.cm23 [58]. The plugin also rotated the CT data to

align the bone image with its principal axes. To characterise joint

geometry and its scaling, femoral head, humeral head and glenoid

cavity radii were measured in ImageJ using a sphere-fitting

technique previously validated for the humeral head and glenoid

cavity of primates (Text S4) [59].

Data were collated into a MySQL (MySQL AB, Stockholm)

database that was accessed directly with R (R Development Core

Team, Vienna) for statistical analysis. Maximum section modulus

(Zmax) was normalised by dividing its cube root by bone length and

Figure 5. Slice measurements. The following calculations were
made with an ImageJ macro for each CT slice after thresholding for
cortical bone: centroid (c), major and minor principal axes (u, s) and the
moments of inertia around them (Imin, Imax); outer and inner perimeters
(p, q) were found; cortical thickness (t) was the distance from each point
in p to the nearest point in q; cross-sectional area (CSA) was the number
of thresholded pixels multiplied by pixel area; the greatest distance
from each principal axis (R) was found for the calculation of Zmax and
Zmin; diameter (d) was the distance between two parallel lines of
support as per the rotating calliper method. Equations are detailed in
supplementary material (Text S2).
doi:10.1371/journal.pone.0004742.g005

Table 5. Felid species.

Species Common name N Body mass (kg)

Felis catus Domestic cat 1 3–8

Lynx canadensis Canadian lynx 1 5–17

Leptailurus serval Serval 2 9–18

Leopardus pardalis Ocelot 2 11–16

Panthera pardus Leopard 1 28–90

Acinonyx jubatus Cheetah 2 35–72

Puma concolor Cougar 1 36–103

Panthera tigris Tiger 2 100–306

Panthera leo Lion 1 120–250

Felids used in the study are listed in order of minimum body mass [55].
N, number of specimens per species available for study.
doi:10.1371/journal.pone.0004742.t005
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plotted against per cent length, thus removing length from both

axes so that proportional differences in Zmax between species

would be apparent. Variables were log10 transformed prior to

calculation of the regression slope. Allometric relationships were

determined using the standardised major axis (SMA) method in

the R package ‘smatr’ [60,61] with the intercept not set. SMA was

preferred over major axis (MA) for line-fitting due to SMA’s

greater precision and its ability to handle log transformed variables

with arbitrary exponents [60]. Every slice’s z-coordinate was

labelled as per cent length and assigned to one of 20 bins, each of

5% length. Slice results were averaged within each bin and scaling

exponents calculated for each bone type and bin.

Independence of data from correlation due to phylogeny was

tested by constructing a phylogenetic tree for the selected felids

(Figure S1) from which standardised contrasts were calculated

(Text S5; Table S1). Scaling exponents of midslice dimensions

against bone length were calculated with corrected regressions

(Table S1).

Supporting Information

Table S1 Midshaft allometry with phylogenetic correction.

Tables detailing phylogenetic contrasts and all midshaft geometric

parameters.

Found at: doi:10.1371/journal.pone.0004742.s001 (0.15 MB

XLS)

Text S1 ImageJ macro for the calculation of cross-sectional

geometric parameters. This ImageJ macro sequentially analyses

every slice of a CT stack, measuring several geometric parameters

including second moment of area, section modulus and calliper

diameter.

Found at: doi:10.1371/journal.pone.0004742.s002 (0.03 MB

TXT)

Text S2 Equation list. List of equations used to calculate cross-

sectional and 3D geometric parameters.

Found at: doi:10.1371/journal.pone.0004742.s003 (0.26 MB

PDF)

Text S3 ImageJ plugin for calculation of 3D moments of inertia.

This ImageJ plugin calculates 3D moments of inertia and rotates

the image data into alignment with the 3D principal axes.

Found at: doi:10.1371/journal.pone.0004742.s004 (0.01 MB

TXT)

Text S4 ImageJ plugin for calculation of best-fit sphere. This

ImageJ plugin takes a list of point selections from the ROI

manager and returns the radius and centre of the best-fit sphere.

Found at: doi:10.1371/journal.pone.0004742.s005 (0.00 MB

TXT)

Text S5 Construction of the felid cladogram for phylogenetic

contrasts. Justification for the construction of the felid cladogram

and description of the phylogenetic control applied to the

allometric calculations.

Found at: doi:10.1371/journal.pone.0004742.s006 (0.11 MB

PDF)

Figure S1 Felid cladogram. Phylogenetic relationship of felids

used to calculate allometric relationships. Numbers indicate

branch length in millions of years.

Found at: doi:10.1371/journal.pone.0004742.s007 (0.31 MB

PNG)
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7. Favier B, Dollé P (1997) Developmental functions of mammalian Hox genes. Mol

Hum Reprod 3: 115–131. doi:10.1093/molehr/3.2.115.

8. Currey JD (2003) The many adaptations of bone. J Biomech 36: 1487–1495.

doi:10.1016/S0021-9290(03)00124-6.

9. Rodrı́guez JI, Palacios J, Ruiz A, Sanchez M, Alvarez I, et al. (1992)

Morphological changes in long bone development in fetal akinesia deformation

sequence: An experimental study in curarized rat fetuses. Teratology 45:

213–221. doi:10.1002/tera.1420450215.

10. Lamb KJ, Lewthwaite JC, Lin J, Simon D, Kavanagh E, et al. (2003) Diverse

range of fixed positional deformities and bone growth restraint provoked by

flaccid paralysis in embryonic chicks. Int J Exp Path 84: 191–199. doi:10.1046/

j.1365-2613.2003.00353.x.

11. Mosley JR, March BM, Lynch J, Lanyon LE (1997) Strain magnitude related

changes in whole bone architecture in growing rats. Bone 20: 191–198.

doi:10.1016/S8756-3282(96)00385-7.

12. Mosley JR, Lanyon LE (1998) Strain rate as a controlling influence on adaptive

modeling in response to dynamic loading of the ulna in growing male rats. Bone

23: 313–318. doi:10.1016/S8756-3282(98)00113-6.

13. Riggs CM, Whitehouse GH, Boyde A (1999) Structural variation of the distal

condyles of the third metacarpal and third metatarsal bones in the horse. Equine

Vet J 31: 130–9.

14. Riggs CM, Lanyon LE, Boyde A (1993) Functional associations between

collagen fibre orientation and locomotor strain direction in cortical bone of the

equine radius. Anat Embryol (Berl) 187: 231–8.

15. Takano Y, Turner CH, Owan I, Martin RB, Lau ST, et al. (1999) Elastic

anisotropy and collagen orientation of osteonal bone are dependent on the

mechanical strain distribution. J Orth Res 17: 59–66. doi:10.1002/

jor.1100170110.

16. Rho J, Currey J, Zioupos P, Pharr G (2001) The anisotropic Young’s modulus of

equine secondary osteones and interstitial bone determined by nanoindentation.

J Exp Biol 204: 1775–1781.

17. Rho JY, Zioupos P, Currey JD, Pharr GM (2002) Microstructural elasticity and

regional heterogeneity in human femoral bone of various ages examined by

nano-indentation. J Biomech 35: 189–198. doi:10.1016/S0021-9290(01)00199-

3.

18. Carter DR, Caler WE, Spengler DM, Frankel VH (1981) Fatigue behavior of

adult cortical bone: the influence of mean strain and strain range. Acta Orth 52:

481. doi:10.3109/17453678108992136.

19. Rubin C, Lanyon L (1982) Limb mechanics as a function of speed and gait: a

study of functional strains in the radius and tibia of horse and dog. J Exp Biol

101: 187–211.

20. Boyde A (2003) The real response of bone to exercise. J Anat 203: 173–189.

doi:10.1046/j.1469-7580.2003.00213.x.

21. Reilly G, Currey J (1999) The development of microcracking and failure in

bone depends on the loading mode to which it is adapted. J Exp Biol 202:

543–552.

Felid Bone Allometry in 3D

PLoS ONE | www.plosone.org 9 March 2009 | Volume 4 | Issue 3 | e4742



22. Ventura J, Gotzens V (2005) Prevalence of anomalies in the appendicular

skeleton of a fossorial rodent population. J Wildl Dis 41: 728–734.

23. Wobeser G (1992) Traumatic, degenerative, and developmental lesions in wolves

and coyotes from Saskatchewan. J Wildl Dis 28: 268–275.

24. Bulstrode C, King J, Roper B (1986) What happens to wild animals with broken

bones? Lancet 327: 29–31. doi:10.1016/S0140-6736(86)91905-7.
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