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Abstract

The serious and growing impact of the neurodegenerative disorder Alzheimer’s disease (AD) as an individual and societal
burden raises a number of key questions: Can a blanket test for Alzheimer’s disease be devised forecasting long-term risk for
acquiring this disorder? Can a unified therapy be devised to forestall the development of AD as well as improve the lot of
present sufferers? Inflammatory and oxidative stresses are associated with enhanced risk for AD. Can an AD molecular
signature be identified in signaling pathways for communication within and among cells during inflammatory and oxidative
stress, suggesting possible biomarkers and therapeutic avenues? We postulated a unique molecular signature of
dysfunctional activity profiles in AD-relevant signaling pathways in peripheral tissues, based on a gain of function in G-
protein-coupled bradykinin B2 receptor (BKB2R) inflammatory stress signaling in skin fibroblasts from AD patients that
results in tau protein Ser hyperphosphorylation. Such a signaling profile, routed through both phosphorylation and
proteolytic cascades activated by inflammatory and oxidative stresses in highly penetrant familial monogenic forms of AD,
could be informative for pathogenesis of the complex multigenic sporadic form of AD. Comparing stimulus-specific
cascades of signal transduction revealed a striking diversity of molecular signaling profiles in AD human skin fibroblasts that
express endogenous levels of mutant presenilins PS-1 or PS-2 or the Trisomy 21 proteome. AD fibroblasts bearing the PS-1
M146L mutation associated with highly aggressive AD displayed persistent BKB2R signaling plus decreased ERK activation
by BK, correctible by gamma-secretase inhibitor Compound E. Lack of these effects in the homologous PS-2 mutant cells
indicates specificity of presenilin gamma-secretase catalytic components in BK signaling biology directed toward MAPK
activation. Oxidative stress revealed a JNK-dependent survival pathway in normal fibroblasts lost in PS-1 M146L fibroblasts.
Complex molecular profiles of signaling dysfunction in the most putatively straightforward human cellular models of AD
suggest that risk ascertainment and therapeutic interventions in AD as a whole will likely demand complex solutions.
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Introduction

Alzheimer’s disease is a neurodegenerative disorder that affects

the brain’s cognitive functioning and memory retention properties

[1]. Nearly 90% of all AD cases are a complex multigenic disorder

(Sporadic AD) [2], while less than 5% represent familial cases

(FAD) caused by highly penetrant genetic mutations in APP, PS-1

or PS-2 [3,4]. AD brain autopsies reveal hallmarks of Ab-bearing

senile plaques, tau-associated neurofibrillary tangles and enhanced

neuronal loss that reflect the complex series of responses

comprising the AD disease process [5]. Accumulation of Ab1–42

drives amyloid based AD pathology in vivo, and AD-related

hyperphosphorylation of tau negatively affects the ability of tau to

maintain microtubules, resulting in neurofibrillary tangles [1,5,6].

Oxidative stress and head trauma injury have been established as

risk factors and early events in the development of AD [7,8,9].

Aberrant function of signal transduction pathways at the cellular

and molecular level is associated with AD [10]. We have

previously defined exaggerated signal transduction in AD patients’

skin fibroblasts in response to the inflammatory neuropeptide

bradykinin (BK). Levels of this nonapeptide mediator generated

via a proteolytic cascade increase under environmental insults such

as stroke, head trauma injury, and pain [8,11], to initiate signaling

pathways via G-protein-coupled receptors [12]. In a PKC-

dependent process the BK B2 subtype receptor (BKB2R) is

modulated to forms that reflect activity of a Tyr phosphorylation

pathway [13]. The modulated B2 receptors respond to BK at

pathophysiologic levels of 25–250 nM characteristic of tissue

injury, in skin fibroblasts from persons not only having familial AD

presently but those at risk for future AD due to Trisomy 21 [8].

Stimulation of tau phosphorylation on Ser residues is the

downstream consequence of BK-induced PKC signaling in
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fibroblasts from AD and Trisomy 21 patients [8]. Neither the

PKC-dependent BK B2R modulation nor the consequent tau Ser

phosphorylation occurs in any normal skin fibroblasts from

persons aged 17–82 [8].

In the brain, AD patients display neuronal loss affecting memory

and reasoning centers in the hippocampus and cerebral cortex,

respectively [1]. These regions correspondingly are the ones that

most prominently display BK biology and its signaling pathways

[14]. An Ab rich environment can prompt increases in BK

generation and hence activity of the BKB2R [14], making the role

of inflammatory stress signaling a key focus in AD pathogenesis.

The role of oxidative stress in AD pathogenesis may center on cell

cycle re-entry, apoptosis, APP processing, Ab secretion and tau

phosphorylation [15] as well as in the disruption of Ca2+ homeostasis

[16]. The brain exhibits particularly high sensitivity to oxidative stress

[7,9] and AD brains reveal loss of synapses and oxidative stress

damage by reactive oxygen species (ROS) [17]. In APP transgenic

mice, Ab co-localizes with several oxidative stress markers suggesting

an in vivo link between Ab deposition and oxidative damage [9,18].

Oxidative stress promotes Ab toxicity through the production of free

radicals [9,19], and the application of Ab to neuronal cultures

elevates intracellular H2O2 levels resulting in neuronal apoptotic

morphology [9,20]. Intriguingly, ROS generation is not just an

outcome of the AD disease process itself but serves as a signaling

mechanism and actually precedes Ab deposition as one of the earliest

events in AD pathology [16,17,21,22].

Both BK and ROS signaling activate the MAPK cascade

superfamily as a downstream response pathway [23,24,25,26]

whose sequential phosphorylation events: MAP3KRMAP2KR
MAPK [27] occur in three parallel modules (see schematic,

Figure 1A) [1,28]. Upon dual Tyr-Thr phosphorylation JNK and

p38 are activated under environmental stresses such as UV

radiation, heat shock, and oxidative stress, while ERK is activated

by mitogens and growth factors to promote cell survival,

differentiation and cell cycle regulation [9,24]. MAPKs have been

postulated to act aberrantly in the context of AD pathology [29].

JNK, p38 and ERK have been shown to phosphorylate tau in vitro

at AD specific sites and to co-localize with tau in vivo [30,31,32].

To understand how inflammatory stress and oxidative stress

signals may serve as both guideposts and vehicles for development

of AD pathology, we have profiled how these stresses trigger key

signal transduction cascades of the MAPK superfamily in human

skin fibroblasts from established familial AD and Trisomy 21

patients and a panel of normal control fibroblasts spanning the age

range of the AD and Trisomy 21 patients. (See Table 1). The AD

fibroblasts of different genetic origins expressing endogenous levels

of presenilins mutated at various sites (see schematic, Figure 1B

adapted from [33,34,35,36,37,38]) respond differently to stress

induced by BK or H2O2 compared with one another and with

normal fibroblasts. This results in unique profiles of stress-induced

MAPK activation and caspase-3 cleavage, as well as downstream

events such as cell death.

Results

PS-1 M146L AD fibroblasts display prolonged BKB2R
modulation

We previously found that activation of PKC by 25 nM phorbol

myristate acetate (PMA) or by treatment with 250 nM BK

prompted modulation of the BKB2R in AD skin fibroblasts

(Table 1), detected by monoclonal anti-BKB2R antibodies

recognizing the modulated receptors that reflect enhanced activity

of a Tyr phosphorylation pathway in the AD cells [8,12]. Only

trace, non-PKC-dependent levels of the phosphorylated receptor

occur in skin fibroblasts of normal controls. We subsequently have

defined how persistent this modulated receptor signal is across AD

skin fibroblast lines bearing mutations in different locations along

the presenilin (PS) polypeptide chain. As shown in Figure 2, the

phosphorylated receptor increased rapidly in response to PKC

activation, reaching a maximum of 4-fold over the basal level seen

in un-stimulated AD fibroblasts at 1–2 min of phorbol ester

treatment. Beyond that point, in PS-1 A246E skin fibroblasts the

modulated forms of the BKB2R declined in the subsequent 5–

30 min time frame (Figure 2A), and PS-1 L286V fibroblasts

showed an identical decline (data not shown). A similarly transient

state of modulation was evident in PS-2 N141I AD skin fibroblasts

(Figure 2B). Trace levels of phosphorylated BKB2R in age-

matched control fibroblasts required extensive chemiluminescent

exposure to detect and did not change significantly with time of

PMA treatment (Figure 2D). However, modulated receptors were

notably more persistent in PS-1 M146L AD fibroblasts, exhibiting

a lifetime out to 30 min of PKC activation with PMA (Figure 2C).

This sustained presence of the phosphorylated receptor BKB2R

receptor forms suggested a particularly enhanced aberrant

signaling profile associated with this particular PS-1 mutation as

expressed at endogenous levels in AD skin fibroblasts.

Bradykinin stimulation of PS-1 (M146L) AD fibroblasts
results in decreased MAPK activation relative to control
fibroblasts

Given the increased length and hence strength of aberrant

BKB2R signal transduction in the PS-1 M146L AD fibroblasts, this

cell line was chosen for further study of putative downstream

signaling steps beyond the BKB2R itself, focusing on the MAP

kinase pathway. Normal control and PS-1 (M146L) AD human skin

fibroblasts were stimulated for 0–30 min with BK concentrations of

25 or 250 nM, which respectively target the I (intermediate) and L

(low) affinity phosphorylated BKB2R forms we previously charac-

terized in AD fibroblasts [12,13,39,40]. Cell lysates collected in 1%

SDS were immunoblotted after SDS-PAGE using phospho-epitope

specific antibodies to quantitate activity of MAPK modules (p38,

ERK and JNK). All three MAPK modules were activated by both

concentrations of BK. ERK, traditionally viewed as responsive to

activation of growth factor receptors, was here activated by the

GPCR BKB2 receptor. However, ERK displayed a lag in the onset

and a reduced magnitude and duration of activation in PS-1 M146L

AD fibroblasts stimulated with BK, compared to the activation

response of normal control fibroblasts. Activation of ERK was

substantially diminished at both 25 nM and 250 nM BK in PS-1

(M146L) AD fibroblasts (Figure 3A–C). Similarly to ERK, the

stress-activated MAPK modules of JNK (Figure 4A–C) and p38

(Figure 5A–C) were both activated by both BK concentrations and

showed a diminished response in the PS-1 (M146L) fibroblasts.

Compared to ERK and JNK, p38 displayed a more robust

activation in the AD fibroblasts, peaking at 2–5 min with 25 nM

and 5–10 min with 250 nM BK stimulation and subsiding by

30 min (Figure 5A–C). Yet the magnitude of p38 activation was still

significantly decreased in PS-1 (M146L) AD fibroblasts compared to

normal controls. Based on the MAPK activity profiles in PS-1

(M146L) AD fibroblasts, we extended our study to BK dependent

MAPK behavior in additional AD skin fibroblasts representing a

variety of genetic backgrounds.

Decreased BK responsiveness of ERK activity is specific to
PS-1 FAD mutations in AD fibroblasts

BK stimulation of MAPK cascades was tested in a broad series

of AD fibroblasts (Coriell Institute) derived from familial

Stress Signaling in AD Cells
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Figure 1. Mediators and modulators of fibroblast signaling in Alzheimer’s Disease. A. Schematic of the MAPK pathway. The MAPK
pathway functions by sequential phosphorylation events: MAP3KRMAP2KRMAPKRsubstrates. The three MAPK modules consisting of JNK1/2, p38
and ERK1/2 are both indicators and mediators in stress responses. MAPKs regulate nuclear target genes through phosphorylation of multiple
transcription factor substrates (TF) as well as membrane and cytoskeletal protein targets. B. Schematic of PS-1 and sites of familial AD
mutations. Presenilin-1 (PS-1) functions as a key component in the gamma-secretase complex along with participants PS-2, nicastrin (NCT), anterior
pharynx-defective phenotype 1 (APH-1) and PS enhancer-2 (PEN-2) [38]. PS-1 has multiple transmembrane (TM) domains and the 3 sites of Familial
AD (FAD) mutations investigated are positioned within their respective domains.
doi:10.1371/journal.pone.0004655.g001
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Alzheimer’s disease (FAD) patients with known mutations in PS-1

or PS-2, as well as from an ApoE4 homozygote expressing no

known PS mutation (non-PS) (Table 1). Also tested were

fibroblasts from late adolescent Trisomy 21 Down syndrome

patients at very high risk for developing AD by the age of 35 [8].

The control, AD and Trisomy 21 fibroblasts were similar in

growth rate properties [8]. The MAPK activation responses of all

these fibroblasts to 250 nM BK were compared with age and

gender matched normal controls. All the PS-1 Familial AD human

skin fibroblast lines displayed significantly decreased ERK

activation during the first 5 min of BK treatment as compared

to controls (Figure 6A–B). However the PS-2 and the non-PS AD

fibroblasts yielded BK-stimulated ERK activation levels similar to

that of the corresponding controls (Figure 6C–D). Down syndrome

fibroblasts from teen-aged subjects well before the age of onset of

symptomatic AD in this population also displayed BK-mediated

ERK activation comparable to that of age-matched normal

control fibroblasts (Figure 6E–F). Thus the decreased responsive-

ness of ERK activation by 250 nM BK is specifically associated

with PS-1 mutant AD.

Although JNK activation was so low in the AD cells as to

preclude in-depth analysis, we further defined the BK responsive-

ness of p38 activation in all of the presenilin mutant AD fibroblasts

compared with normal control cells (Figure 7A–B). The presenilin

mutant AD fibroblasts exhibited a variable degree of constitutive

p38 activity not dependent on BK (Figure 7A, ‘‘0’’ lanes). However

p38 activation by BK was blunted in all of the presenilin mutants

relative to control fibroblasts, particularly evident at 10 min of BK

treatment (Figure 7B). In contrast, Trisomy 21 fibroblast p38

activation in response to BK was comparable to that of normal

controls (Figure 7C–D).

Gamma-secretase inhibitor Compound E restores normal
BK-dependent ERK activation in PS-1 (M146L) AD
fibroblasts

In the PS-1 AD fibroblasts, BK-induced ERK activation was

significantly lower (2 fold) than that of the control fibroblasts at the

very outset of BK stimulation. Given the known functional role of

PS-1 as the catalytic core of the gamma-secretase complex

generating the AD-related amyloid beta peptide [41], we defined

the impact of a chemical inhibitor of gamma-secretase activity on

early BK-mediated ERK activation. We tested the inhibitor

Compound E at 1–10 nM concentrations decreasing gamma-

secretase activity by 80–90% [42]. Normal control and PS-1

(M146L) AD human skin fibroblasts were pre-treated with

Compound E (1 or 10 nM) or DMSO vehicle control overnight

in complete culture media and then stimulated with 250 nM BK.

In the presence of DMSO vehicle alone, BK-stimulated ERK

activation was significantly decreased (2 fold) in PS-1 (M146L) AD

fibroblasts relative to controls (Figure 8A–B). Compound E at

1 nM or 10 nM corrected the deficit in BK-stimulated ERK

activation in the PS-1 (M146L) AD fibroblasts, significantly

boosting BK-induced ERK activation by 2 fold, as compared to

the vehicle only treatment. In contrast, Compound E had no effect

on BK-mediated ERK activation in the normal control fibroblasts

(Figure 8A–B) or in AD pre-disposed Trisomy 21 fibroblasts and

the latters’ age-matched controls (Figure 9A–B). PS-2 (N141I) AD

fibroblasts treated with 10 nM Compound E also displayed no

effect on BK-induced ERK activation (data not shown).

In additional experiments we probed the effect of Compound E

on BK-mediated p38 activation (Figure 9C–D). Significant

blunting of p38 activation was evident at 2 min of BK stimulation

in PS-1 (M146L) fibroblasts relative to normal control fibroblasts.

Table 1. AD and Normal Control Cell Lines.

HSF Cell Line Genotype Donor Age/Sex AD Present Onset Age of AD

7872 PS-1 M146L 53 / M Yes 35–45

8170 PS-1 A246E 56 / M Yes 53

8597 PS-1 L286V 49 / M Yes 48

9908 PS-2 N141I 81 / F Yes 40–80

11368 No PS mutations 77 / M Yes 70

8941 Trisomy 21 19 / F No 30–40

8942 Trisomy 21 20 / M No 30–40

6234B Normal 17 / M No n.a.#

8539 Normal 53 / M No n.a.

8269 Normal 82 / F No n.a.

HSF = Human Skin Fibroblast from Coriell Institute.
#n.a. = not applicable (Table modified from Jong, Y, et al., 2003).
doi:10.1371/journal.pone.0004655.t001

Figure 2. PS-1 (M146L) AD fibroblast line displays persistent
BK-B2R modulation upon PKC activation. PS-1, PS-2 and control
non-AD fibroblasts (CTRL) were treated with 25 nM PMA for the
indicated times. B2 receptors in non-ionic detergent solubilizates were
detected by immunoblotting and chemiluminescence detection.
Results are representative of 3 experiments for PS-1 and control and
4 for PS-2.
doi:10.1371/journal.pone.0004655.g002
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However, in cells treated with 10 nM Compound E the activation

of p38 in the AD and normal fibroblasts was indistinguishable,

suggesting that this gamma-secretase inhibitor corrects the

aberrant signaling in both ERK and p38 pathways in the PS-1

(M1146L) fibroblasts.

Hydrogen peroxide-induced oxidative stress evokes
lagging ERK activation and enhanced JNK activation in
AD fibroblasts

The diversified response to BK-mediated inflammatory stress in

the various AD fibroblast lines, compared not only to normal age-

matched controls but also to each other, prompted us to define the

effects of oxidative stress on MAPK activation as well. Given the

sustained BK pathway signaling particularly evident in PS-1

M146L AD fibroblasts, we compared the oxidative stress responses

between this AD cell line and normal control fibroblasts, to

determine whether the profiles of the two stresses, oxidative and

BK-induced inflammatory, were the same or different. Human

skin fibroblast lines were subjected to oxidative stress with H2O2

(250 mM) for 0–60 min, then re-fed with complete culture medium

and monitored over a post-stress time window of 2–3 hr. Cell

lysates collected in 1% SDS were immunoblotted for expression

and activation of ERK, JNK and p38 and normalized to the

loading control protein tubulin.

Normal control fibroblasts exhibited an immediate increase in

ERK activation upon H2O2 treatment, which peaked at 10–20 min

and terminated by 60 min and was significantly higher than the AD

fibroblasts at up to 5 min (Figure 10A–B). In contrast, the PS-1

(M146L) AD fibroblasts exhibited a pronounced lag in ERK

activation in the first 5 min of H2O2 exposure. ERK activation in

the AD cells caught up to that of normal control fibroblasts by 10–

20 min and decreased in parallel with control cells by 60 min. A

striking difference from the case of BK inflammatory stress activating

Figure 3. Bradykinin stimulation of PS-1 (M146L) AD fibroblasts results in decreased ERK activation relative to control fibroblasts.
PS-1 (M146L) AD and control human skin fibroblasts were treated with 25 nM BK or 250 nM BK for 0–30 min, immunoblotted for active and total ERK
with phospho-epitope specific and total ERKantibodies, and analyzed by both ECL and Odyssey detection. Fold activation was quantified as a
percentage of basal activation in buffer treated cells (0 min) normalized to tubulin and is graphically represented for Active ERK (A–B). Representative
Odyssey immunoblots show phospho-ERK in red and total-ERK in green that together in yellow display differential ERK activation profiles between
PS-1 (M146L) AD and control fibroblasts induced by 25 or 250 nM BK (C). All graphs show mean6S.E. Statistical analysis was performed via t-test with
*p-value,0.05 and **p,0.005; n = 4.
doi:10.1371/journal.pone.0004655.g003
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ERK was evident in the non-PS ApoE4 homozygote AD fibroblast

line (Figure 10A–B). Where as this cell line had responded to BK

equivalently to normal control fibroblasts [8] (Figure 6C–D),

induction of oxidative stress prompted a temporally lagging ERK

activation profile relative to control fibroblasts in the non-PS cell line

that was comparable to the PS-1 (M146L) cells. In both of these AD

cell lines, the decreased ERK activity during the lag period was

statistically significant.

In contrast to the uniformly blunted oxidative stress-induced

ERK activation in PS and non-PS AD vs. control fibroblasts,

activation of the p38 MAPK module showed a differential

activation profile in response to H2O2 depending on the origin

of the AD (Figure 10C–D). At 1 min of H2O2 treatment, the

control fibroblasts displayed significantly higher p-p38 levels (10

fold) than did PS-1 (M146L) AD fibroblasts. The PS-1 (M146L)

AD fibroblasts displayed a lag at 1 min of H2O2-induced p38

activation but then by 3–5 min caught up to control fibroblasts for

the remainder of the 1 hr time course of H2O2 treatment. p38

activation was still evident at 3 hr after termination of oxidative

stress and re-feeding in both the PS-1 (M146L) AD and control

cells (data not shown). As further evidence of the diversity of

signaling profiles in fibroblasts from different AD origins, the non-

PS AD fibroblasts exhibited a substantially diminished p38

activation in response to oxidative stress (Figure 10C–D). This

p38 activation never attained the levels seen in either the PS-1

(M146L) or the control fibroblasts.

In marked contrast to the other two MAPK modules, H2O2-

induced JNK activation displayed a significantly enhanced profile

in the PS-1 M146L AD fibroblasts relative to controls. Initially

both AD and control fibroblasts displayed a relative delay in the

onset of JNK activation (Figure 11A–B) as compared with the swift

onset of H2O2-induced ERK and p38 activation (Figure 10A–D).

However, rather than a blunted response like that of ERK and

p38, JNK in the PS-1 (M146L) AD fibroblasts achieved statistically

significant 2-fold greater activation over that of control fibroblasts

at 40–60 min of H2O2 treatment. The control fibroblasts did

successfully activate JNK in response to H2O2, but at a

comparatively lower magnitude. Thus H2O2-induced oxidative

stress resulted in early lagging ERK and later enhanced JNK

activation in the PS-1 (M146L) AD fibroblasts. We next compared

how the downstream cellular response to oxidative stress is

executed in the control versus PS-1 (M146L) fibroblasts.

Oxidative stress is associated with enhanced apoptosis in
PS-1 (M146L) AD fibroblasts

Oxidative stress inducers are believed to participate in

apoptosis, APP processing, Ab secretion and t phosphorylation

Figure 4. Bradykinin stimulation of PS-1 (M146L) AD fibroblasts results in decreased JNK activation relative to control fibroblasts.
PS-1 (M146L) AD and control human skin fibroblasts treated with 25 nM BK (A) or 250 nM BK (B) for 0–30 min were immunoblotted for active JNK
with phospho-epitope specific antibodies and analyzed by ECL. Fold activation was quantified as a percentage of basal activation in buffer treated
cells (0 min) normalized to tubulin and is graphically represented for active JNK (A–B). Representative immunoblots shown display differential JNK
activation profiles between PS-1 (M146L) AD and control fibroblasts (C). All graphs show mean6S.E. Statistical analysis was performed via t-test with
*p-value,0.05 and ***p,0.0005; n = 4.
doi:10.1371/journal.pone.0004655.g004
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[15]. Stress kinases such as the MAPKs both respond to oxidative

stress, serving as reporters, and prompt downstream events

resulting from the stress, such as apoptosis [9,23,24]. We therefore

examined two hallmarks of cellular apoptosis: caspase-3 activation

measured by immunofluorescent antibody recognition of its

cleavage product [43,44] and nuclear condensation detected by

Hoechst 33258 staining [45]. Normal control and PS-1 (M146L)

AD human skin fibroblasts were stimulated with 250–500 mM

H2O2 for 0–60 min and then re-fed and monitored in the post

stress time window for up to 24 hr. The cells were methanol fixed

and stained for the apoptotic state markers. Both the normal

control and PS-1 (M146L) fibroblasts displayed no caspase-3

activation within the initial 60 min of H2O2 treatment. However,

subsequent to quenching of the oxidative stress by re-feeding the

cells, the activation of caspase-3 showed a differential temporal

profile in the PS-1 (M146L) AD fibroblasts as compared to the

controls. H2O2 caused caspase-3 activation by 2 hr post stress in

the PS-1 (M146L) AD fibroblasts, and the proportion of these cells

exhibiting cleaved caspase-3 remained elevated at 7 hr post stress

(Figure 12A–F). In contrast, the normal controls only began

showing minimal caspase-3 activation by 20 hr post stress

(Figure 12G–I). Phase contrast images of AD and control cells

confirm that these cell lines had equivalent growth properties and

were tested at equivalent cell densities (Figure 12J–K). Quantita-

tion of the relative fluorescence intensity of caspase activation

revealed a significant 8–10 fold enhancement of caspase-3 activity

in the PS-1 (M146L) AD fibroblasts between 2 and 7 hr after

oxidative stress (Figure 12L). The degree of caspase-3 activation

attained in the normal control fibroblasts was approximately one

third of that found in the AD fibroblasts and occurred much later,

at 10–20 hr after oxidative stress.

PS-1 (M146L) AD fibroblasts responded to oxidative stress with

early nuclear condensation evident by Hoechst staining at 5–10 hr

post stress (Figure 13A–F), whereas the control normal cells only

exhibited nuclear condensation by 15–20 hr post stress

(Figure 13G–L). The quantitation shown in Figure 14 demon-

strates that the proportion of apoptotic nuclei arising after

oxidative stress reached 60–95% of the cells in the culture during

the post-stress time window from 10 hr up to 25 hr in the PS-1

(M146L) AD fibroblasts, whereas apoptotic nuclei in control

Figure 5. Bradykinin stimulation of PS-1 (M146L) AD fibroblasts results in decreased p38 activation relative to control fibroblasts.
PS-1 (M146L) AD and control human skin fibroblasts treated with 25 nM BK (A) or 250 nM BK (B) for 0–30 min were immunoblotted for active p38
with phospho-epitope specific antibodies and analyzed by ECL. Fold activation was quantified as a percentage of basal activation in buffer treated
cells (0 min) normalized to tubulin and is graphically represented for active p38 (A–B). Representative immunoblots shown display differential p38
activation profiles between PS-1 (M146L) AD and control fibroblasts (C). All graphs show mean6S.E. Statistical analysis was performed via t-test with
*p-value,0.05; n = 4.
doi:10.1371/journal.pone.0004655.g005
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fibroblasts reached at most 30% of the total cells at 20 hr after

oxidative stress. Thus these AD fibroblasts exhibit a greater

vulnerability to oxidative stress than do normal fibroblasts.

A pro-survival function of JNK countering oxidative stress
is lost in PS-1 (M146L) AD fibroblasts

We postulated that the enhanced magnitude of JNK activation

in PS-1 (M146L) AD fibroblasts might be a potential mechanistic

link to the enhanced oxidative stress-induced apoptosis in these

cells relative to normal fibroblasts. Thus we pre-treated both cell

types with the JNK inhibitor SP 600125 to test whether blocking

JNK activation by oxidative stress would rescue the AD

fibroblasts. However, the profile of brightly fluorescent condensed

nuclei characteristic of apoptosis was equivalent in the PS-1

(M146L) fibroblasts in the absence or the presence of SP 600125

(Figure 15A–F). Surprisingly instead, inhibition of JNK by SP

600125 in the normal fibroblasts caused a striking enhancement of

apoptosis evident at 10 hr after oxidative stress (Figure 15G–L). In

the absence of JNK inhibition, the response of normal control

fibroblasts after oxidative stress amounted to at most 30%

apoptotic nuclei at both 250 mM (Figure 16A) and 500 mM

(Figure 14) H2O2 by 10 hr after oxidative stress. With or without

SP 600125 the PS-1 (M146L) AD fibroblasts approached 100%

condensed nuclei. However, the proportion of normal cells

exhibiting nuclear condensation after oxidative stress in the

presence of .90% JNK inhibition by 25 mM SP 600125

(Figure 16B) became equivalent to that observed throughout in

the PS-1 (M146L) fibroblasts (Figure 16A). Blockade of JNK did

not significantly enhance apoptosis in normal control fibroblasts

that were not subjected to oxidative stress, confirming the

specificity of the JNK effect for the stress state. Thus human skin

fibroblasts require an active JNK-mediated anti-apoptotic path-

Figure 6. Decreased BK responsiveness of ERK activation is found only in PS-1 FAD mutant AD fibroblasts. Control human skin
fibroblasts and those from AD and Trisomy 21 patients were treated with 250 nM BK for 0–5 min. Cell lysates were immunoblotted as in Figure 3 and
analyzed by Odyssey, normalized to tubulin as loading control (A, C and E). BK-induced ERK activation was quantified as a percentage of basal
activation in buffer treated cells (0 min). ERK activity phenotypes are graphically represented in fibroblasts with PS-1 familial AD mutation: M146L,
L286V, or A246E (B), PS-2 N141I and non-PS AD fibroblasts (D) as well as AD pre-disposed Trisomy 21 fibroblasts (F). MAPK activity profiles in AD and
Trisomy 21 fibroblasts were compared to age and gender matched normal controls. All graphs show mean6S.E. Statistical analysis was performed via
t-test with *p-value,0.05, **p,0.005; n = 4.
doi:10.1371/journal.pone.0004655.g006

Stress Signaling in AD Cells

PLoS ONE | www.plosone.org 8 February 2009 | Volume 4 | Issue 2 | e4655



Figure 7. Decreased BK responsiveness of p38 activation is evident in both PS-1 and PS-2 FAD mutant AD fibroblasts. Control human
skin fibroblasts and those from AD and Trisomy 21 patients were treated with 250 nM BK for 0–30 min. Cell lysates were immunoblotted for active
p38 with phospho-epitope specific antibodies and analyzed by ECL, and for total p38 and tubulin loading control analyzed by Odyssey.
Representative blots are shown in (A) and (C). Fold activation of p38 was quantified as a percentage of basal activation in buffer treated cells (0 min)
normalized to tubulin. p38 activity phenotypes are graphically represented in fibroblasts with PS-1 familial AD mutation: M146L, L286V, or A246E and
PS-2 N141I (B) as well as AD pre-disposed Trisomy 21 fibroblasts (D). MAPK activity profiles in AD and Trisomy 21 fibroblasts were compared to age
and gender matched normal controls. All graphs show mean6S.E. Statistical analysis was performed via t-test with *p-value,0.05, **p,0.005; n = 3.
doi:10.1371/journal.pone.0004655.g007
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way for protection against the deleterious effects of oxidative stress.

This anti-apoptotic mechanism is no longer functional in PS-1

(M146L) fibroblasts despite their 2-fold greater elevation of active

JNK upon oxidative stress relative to normal cells.

Discussion

Dysfunction of cellular signaling represents a prominently

emerging focus in the pathogenesis and pathobiology of Alzhei-

Figure 8. Gamma-secretase inhibitor Compound E restores normal BK-dependent ERK activation in PS-1 (M146L) AD fibroblasts.
PS-1 (M146L) AD and normal control human skin fibroblasts were treated with Gamma secretase inhibitor Compound E (1 or 10 nM) or DMSO vehicle
control for 24 hr and then stimulated with 250 nM BK for 0–30 min. Cell lysates were immunoblotted for ERK as in Figure 6 and analyzed by Odyssey
for ERK activation normalized to Tubulin as loading control. A representative blot is shown in (A). ERK activation was quantified as a percentage of
basal activation in buffer-treated cells (0 min) pre-treated with DMSO or Compound E. ERK activity phenotypes are graphically represented in control
fibroblasts compared with PS-1 (M146L) AD fibroblasts (B). All graphs show mean6S.E. Statistical analysis was performed via t-test with *p-
value,0.05; n = 3.
doi:10.1371/journal.pone.0004655.g008
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mer’s Disease (AD). Signaling within and among cells and tissues

has been offered as a prominent platform for ascertaining the risk

of developing Alzheimer’s disease [11,46,47,48,49,50]. We

therefore tested whether stimuli characteristic of inflammatory

stress and oxidative stress, known risk factors in vivo for the

development of AD, each resulted in the same or in unique

differential responses of signaling cascades. We employed skin

fibroblasts from normal individuals as well as fibroblasts from

persons with well-defined highly penetrant genetic forms of AD.

Inflammatory and oxidative stress induction with BK and H2O2

respectively, significantly altered the activity of all three MAPK

modules, pinpointing the ERK cascade as a significant stress

responder in addition to p38 and JNK. However the activity

phenotypes of each MAPK module in AD cells were intriguingly

distinct based not only on the characteristics of the stress inducer

but also on the nature of the underlying disease-causing mutation

or risk factor. Our findings challenge the concept of a unitary

signaling test or biomarker for AD risk, and point instead to an

emerging complexity in molecular profiles based in hierarchies of

signaling pathways that are subject to dysregulation among

varying origins of AD.

Our studies began from the vantage point of defining aberrant

intracellular signal transduction that may reflect a loss of function,

a redirection of key pathways, and/or a concurrent toxic gain of

function, all taking place in AD vulnerable cells [51]. The results

presented here demonstrate that complex profiles of losses and

gains of functions indeed comprise the signaling landscape of cells

derived from AD of different molecular origins. The components

of such a balance sheet in AD fibroblasts include gains in the

presence and lifetime of aberrantly functioning BKB2 receptors

that promote AD-relevant tau phosphorylation [8] and a gain in

the absolute level of JNK activation that is concurrent with loss of

a key protective role for JNK in countering oxidative stress. Other

losses are evident in the time courses and/or ultimately attained

levels of MAPK activation in the ERK and p38 modules that are

distributed differentially among different molecular bases for AD.

Thus diversity is the primary distinguishing feature of altered

signal transduction in accessible peripheral tissue cells in AD.

The altered PKC-dependent signal transduction pathway we

defined in skin fibroblasts from AD patients, yielding BKB2R

modulated by phosphorylation [8,13,14], is discernible in Trisomy

21 fibroblasts decades before the characteristic age of onset of

symptomatic AD. A common element of this molecular profile

appearing in all presenilin and non-presenilin-based genetic forms

of AD risk we tested is the initial BK-induced BKB2R Tyr

phosphorylation itself, positioned early in the BKB2R signaling

Figure 9. Gamma-secretase inhibitor Compound E affects BK-dependent p38 activation in PS-1 (M146L) AD fibroblasts but not ERK
activation in Trisomy 21 fibroblasts. Trisomy 21 and PS-1 (M146L) AD fibroblasts plus normal control human skin fibroblasts were treated with
Gamma secretase inhibitor Compound E (10 nM) or DMSO vehicle control for 24 hr and then stimulated with 250 nM BK for 0–30 min. Cell lysates
were immunoblotted and analyzed as in Figures 6 and 7, by Odyssey for ERK (A,B) and by chemiluminesence for p38 (C,D). Activity levels were
normalized to tubulin as a loading control. ERK activation was quantified as a percentage of basal activation in buffer-treated cells (0 min) pre-treated
with DMSO or Compound E (panel B). In panel D p38 activation was quantified as O.D. values as detailed in Materials and Methods. ERK activity
phenotypes are graphically represented in control fibroblasts compared with AD pre-disposed Trisomy 21 fibroblasts (B), and p38 activity phenotypes
are graphically represented in control and PS-1 (M146L) AD fibroblasts (D). All graphs show mean6S.E. Statistical analysis was performed via t-test
with **p-value,0.005; n = 3.
doi:10.1371/journal.pone.0004655.g009
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cascade [8,12,13,14]. Beyond this initial step, our present studies

now reveal multiple points of divergence in the downstream

signaling cascades in AD cells of differing genetic origins.

A primary divergence in signaling pathways links the cellular

half-life of the phosphorylated BKB2R generated by PKC

stimulation to respective sites of presenilin mutations all located

in the N-terminal domain of the molecule (Figure 1B). PS-1

M146L mutated in the second transmembrane domain exhibits a

prolonged phosphorylated BKB2R signal whereas that of both PS-

1 A246E in the sixth transmembrane domain and nearby PS-1

L286V in the hydrophobic region of the cytosolic loop domain are

relatively transient. Mutations in the N-terminal portion of the PS-

1 molecule appear to promote cytotoxic effects by a common

mechanism involving nitric oxide generation [35]. The latter

second messenger is also a known downstream target of the

BKB2R [52]. The site-specific differences in BKB2R signal

strength we observe parallel the degree to which the PS-1

mutation is an aggressive one, reflected in both an earlier age of

onset of the disease and in secretion of Ab1–42 into the culture

medium by AD skin fibroblasts and PS-1-expressing cell lines. PS-

1 M146L AD has one of the earlier ages of onset among PS-1

mutations, occurring below age 40, and skin fibroblasts from such

individuals elaborate a 9-fold greater amount of Ab peptide than

fibroblasts from normal individuals. This compares with PS-1

A246E and L286V mutations whose age of AD onset is generally

later than 40 and whose fibroblasts secrete 2-3-fold more Ab1–42

than normals [53,54].

Although mutations in the presenilin family of proteins can be

causative for AD, the links between presenilin functions and signal

transduction events in the tripartite MAPK pathways remain to be

fully explained. The skin fibroblasts employed here express PS-1

and PS-2 in their normal or mutated forms at natural endogenous

levels, obviating the issue of quantitative effects frequently present

in other types of expression systems. Under these circumstances,

when we tested BKB2R responses to the pathophysiologic levels of

25–250 nM BK, the phenotype of each active MAPK module

Figure 11. Hydrogen peroxide prompts enhanced JNK activation in PS-1 (M146L) AD fibroblasts. PS-1 (M146L) AD and normal control
human skin fibroblasts were treated with 250 mM H2O2 for 0–60 min and immunoblotted for JNK activity as described in Figure 4. JNK activation was
quantified as O.D. units normalized to tubulin as loading control (B). All graphs show mean6S.E. Statistical analysis was performed via t-test with *p-
value,0.05; n = 4.
doi:10.1371/journal.pone.0004655.g011

Figure 10. Hydrogen peroxide prompts lagging ERK and p38 activation in AD fibroblasts. PS-1 (M146L) and non-PS AD and normal
control human skin fibroblasts were treated with 250 mM H2O2 for 0–60 min and immunoblotted for ERK and p38 as described in previous figures.
ERK activation was digitally analyzed by Odyssey (A). ERK fold activation was quantified as a percentage of basal activation in buffer treated cells and
normalized to Tubulin as loading control (B). Phospho-p38 levels were analyzed by ECL (C) and p38 activation was quantified as O.D. units normalized
to tubulin as loading control (D). All graphs show mean6S.E. Statistical analysis was performed via t-test with *p-value,0.05 and **p,0.005; n = 4.
doi:10.1371/journal.pone.0004655.g010
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showed intriguingly distinct properties based on the nature and

characteristics of both the origin of the AD and the particular

stress induced.

PS-1 fibroblasts with Familial AD mutations at M146L, A246E

and L286V all selectively demonstrated a lagging and quantita-

tively decreased BK-induced ERK activation, as compared to age-

Figure 12. Hydrogen peroxide treatment results in heightened caspase-3 activation in PS-1 (M146L) AD fibroblasts. PS-1 (M146L) AD
and control fibroblasts were treated with 500 mM H2O2 for 60 min and then re-fed with media for 0–20 hr to permit a post stress time window. Cells
were methanol-fixed and analyzed by immunocytochemistry for cleaved caspase-3 with Alexa-488 labeled secondary antibody as described in
Methods. Representative images of fields uniformly containing 35–40 cells were captured at time points designated (A–F). PS-1 (M146L) AD
fibroblasts; (G–I) control fibroblasts. Representative phase contrast images of (J) control and (K) PS-1 (M146L) AD cells show comparable growth
properties and cell densities at time of testing for oxidative stress responses. (L) Alexa 488 fluorescence intensity of cleaved caspase-3
immunostaining in PS-1 (M146L) fields A–F above and control fields G–I was quantitated via the MacBiophotonics Image J analysis program (www.
macbiophotonics.ca/downloads.htm). Bar graph represents 2 independent experiments’ mean and S.E.
doi:10.1371/journal.pone.0004655.g012
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matched normal control fibroblasts. In contrast, the PS-2 N141I,

non-PS AD and Trisomy 21 fibroblasts displayed BK-induced

ERK activity equivalent in duration and magnitude to that of

normal control cells. The PS-2 N141I Familial AD mutation

represents the homologous mutation to that of PS-1 M146L

[8,55], and yet the BK-induced ERK phenotypes are surprisingly

completely different. We hypothesize that this may reflect

differential PS-1 versus PS-2 roles in the signal transduction

cascades proceeding onward to ERK activation.

The differential lag in BK-mediated ERK signaling we observed

in PS-1 mutant versus PS-2 mutant and other AD fibroblasts could

shed light on the function of PS-1 as the key catalytic component

Figure 13. Hydrogen peroxide treatment results in enhanced nuclear condensation in PS-1 (M146L) AD fibroblasts. PS-1 (M146L) AD
and control fibroblasts were treated with 500 mM H2O2 for 60 min and then re-fed with media for 0–25 hr. Cells were methanol-fixed and Hoechst
stained as described in Methods to label nuclei and distinguish between normally sized nuclei versus condensed apoptotic nuclei. Hoechst staining is
displayed in grey-scale for PS-1 (M146L) AD fibroblasts (A–F) and control fibroblasts (G–L). Representative captured images shown display signs of
apoptosis with H2O2 treatment at designated time points.
doi:10.1371/journal.pone.0004655.g013
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of gamma-secretase activity. This multi-protein complex, com-

posed of PS-1, PS-2, PEN2, Aph1 and nicastrin (NCT), cleaves

numerous membrane-embedded substrates including APP and

Notch [38,56,57,58]. Some familial AD PS-1 mutations have been

suggested to be indicative of a gain of function of gamma-secretase

[56,59,60,61,62]. A PS-1-selective role here is bolstered by our

finding that pre-treatment with the gamma-secretase inhibitor

Compound E preceeding BK stimulation in the PS-1 (M146L) AD

fibroblasts corrected BK-mediated ERK activity to the levels

observed in normal control fibroblasts. Compound E had neither

an effect on BK-induced ERK activation in Trisomy 21 and

control fibroblasts, nor on BK-stimulated ERK in PS-2 (N141I)

AD fibroblasts. Hence the diminished BK-induced PS-1 ERK

phenotype correctable by gamma-secretase inhibitor Compound E

may reflect functional differences in the catalytic core of the

gamma-secretase complex generating aspartyl protease activity

unique to PS-1 as opposed to PS-2 [38,41,56,57,63,64], or

alternatively in ER Ca2+ metabolism [41,65,66]. These respective

PS roles may or may not be independent of each other [65]. PS-1

mutation appears to exert a greater severity at several levels of BK

signaling than the homologous PS-2 mutation, from BKB2R

modulation to ERK activation. PS-1 FAD mutations are also more

prevalent than those of PS-2 FAD, underscoring the role of PS-1

in gamma-secretase related AD pathology [41,64,67,68].

The responses of the p38 module to activation by BK

inflammatory stress both paralleled and diverged from the ERK

responses, in fibroblasts of differing AD origins. The PS-2 mutant

cells resembled PS-1 mutants in regard to p38 and normal cells in

regard to ERK, while Trisomy 21 cells exhibited both BK-

dependent p38 activation and ERK activation that was equivalent

to normal fibroblasts despite showing other avenues of signal

transduction that are like presenilin AD fibroblasts [8]. The

functional divergences observed between ERK and p38 may relate

to upstream steps in this overall pathway differentially linked to

presenilin functions that remain to be defined.

The genetic background of PS-1 FAD mutations has been

proposed to correlate with increased vulnerability to oxidative

stress and apoptosis [62,69,70], possibly due to aberrant PS-1

function in maintaining ER calcium homeostasis [65,67,69]. Since

inflammatory stress yielded a diminished BK-induced activation of

all three MAPK modules in PS-1 M146L, we initially assumed

that oxidative stress would likely have a similar effect. Oxidative

stress has been consistently viewed as an early event in the

development and pathogenesis of AD and the consequent

generation of reactive oxygen species (ROS) is particularly toxic

to the brain [71,72,73]. In our AD fibroblast model the highly

penetrant single gene disorder of familial AD based on the PS-1

M146L mutation exerts a strong effect on fibroblast signaling to

severely disrupt cellular signaling homeostasis in oxidative stress as

well as inflammatory stress, but with a different molecular

signature from that of BK. In the PS-1 M146L AD human skin

fibroblasts whose aberrant BK signaling was the strongest,

oxidative stress induced a massive enhancement of JNK activation

concomitant with lagging p38 and ERK activation. A lagging

MAPK activation phenotype upon oxidative stress was also

evident for p38 in the non-presenilin based familial AD fibroblast

line, where p38 activation across the entire hour of oxidative stress

was even more strikingly diminished. Thus in these non-presenilin

AD cells oxidative stress responses present a striking contrast to the

inflammatory stress of BK-stimulated ERK, whose profile was

equivalent to that of normal cells.

Initial differential activation of MAPK pathways by oxidative

stress was followed by a heightened and earlier degree of apoptosis

in the PS-1 M146L fibroblasts relative to normal fibroblasts.

Effectively all of the AD fibroblasts underwent programmed cell

death beginning within 2 hours after oxidative stress, whereas at

most 30% of the normal control fibroblasts incurred this fate and

then only beyond 10–20 hours after oxidative stress. The JNK

inhibitor SP600125 failed to block the oxidative stress-induced

enhancement of apoptosis in the PS-1 (M146L) AD cells,

indicating that the latter stress response does not arise solely from

exaggerated activation of JNK. Rather, the SP600125 conversion

of the normal cells’ apoptotic profile to one approximating that of

PS-1 (M146L) cells underscores a protective role for JNK in

countering oxidative stress to human skin fibroblasts. JNK is more

prominently known as a pro-apoptotic than an anti-apoptotic

signaling pathway [74,75,76,77,78,79], so that its key survival

function for normal human skin fibroblasts in the face of oxidative

stress, and the disappearance of this protection in PS-1 (M146L)

fibroblasts, represents a novel finding. The enhanced JNK

activation seen in the AD cells, rather than serving as a

pathogenetic mechanism, may reflect a cellular reporting system

for the existence of an environmental stress and/or a compensa-

tory response that nonetheless fails to accomplish survival of the

AD cells. Further studies are required to determine how MAPK or

other signaling cascades may be involved in propagating the toxic

effects of H2O2 [80,81], for example by cross-talk mechanisms

affecting intracellular redox balance [24]. The lag in H2O2-

induced ERK and p38 activation in the AD fibroblasts merits

future studies to determine if this delay may compromise

mobilization of a protective response to oxidative stress linked to

JNK activation arising later in the course of oxidative stress.

Our diverse findings with BK-induced inflammatory stress and

oxidative stress thus return to the question of what type(s) of testing

for AD risk can achieve not only sufficient specificity and

sensitivity but also practicability to be a realistic option for all

individuals among the general population [46,47,48,50]. Familial

AD due to highly penetrant mutations in presenilins or amyloid

precursor protein is a rare condition detected by history plus

genetic analysis for outright disease-causing mutations or haplo-

type associations with other suspects [82,83,84,85]. Cost and

technical issues tend to constrain AD research and management

based in invasive procedures to high-risk individuals [49,86,87,88].

The more prevalent sporadic AD represents the pre-eminent

development target for both risk assessment and therapeutic

Figure 14. Hydrogen peroxide treatment results in an
increased proportion of apoptotic nuclei in PS-1 (M146L) AD
fibroblasts. PS-1 (M146L) AD and control fibroblasts treated with
500 mM H2O2 and re-fed with media for 0–25 hr were methanol-fixed,
Hoechst stained, and the number of total and apoptotic nuclei
quantitated. Graph shows percentage of condensed nuclei relative to
total number of nuclei, mean6S.E. Statistical analysis was performed via
t-test with ***p,0.0005; n = 3.
doi:10.1371/journal.pone.0004655.g014
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strategies. This AD [89,90] manifests as a complex multigenic

disorder, attributed to the conglomerate effects of small variations

in many biochemical parameters, that may have not only genetic

but epigenetic and environmental bases [48,91,92,93]. These

contributors in sporadic AD are believed to collectively replicate

the phenotype of strong monogenic causes of AD whose molecular

Figure 15. JNK inhibitor SP 600125 enhances oxidative stress apoptosis in control fibroblasts. PS-1 (M146L) AD and control fibroblasts
were pre-treated with DMSO vehicle control or JNK inhibitor SP 600125 (25 mM) for 45 minutes in buffer. Oxidative stress was induced with 250 mM
H2O2 for 60 min and cell layers were then re-fed with media plus vehicle control or JNK inhibitor for 0–10 hr. Cells were methanol-fixed and Hoechst
stained to label nuclei and distinguish between normally sized nuclei versus condensed apoptotic nuclei. The No Inhibitor column (Panels A, D, G,
and J) represents cells incubated in buffer without DMSO or SP 600125 but in the presence or absence of H2O2 during the initial 60 min incubation.
Hoechst staining is displayed in grey for PS-1 (M146L) AD fibroblasts (A–F) and control fibroblasts (G–L). Representative captured images shown
display signs of apoptosis with H2O2 treatment at designated time points.
doi:10.1371/journal.pone.0004655.g015
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signatures we have established in the MAPK and BK signaling

cascades.

Our results emphasize the need to consider, in probing AD at

any level, a broad spectrum of inflammatory, oxidative, and other

stressors as well as a broad view of the intracellular signaling

landscape responding to these stresses. A focus on a single MAPK

species or stressor could miss molecular signatures that may be

informative about cellular environments generated by PS-2

mutations as well as the proteomic manifestations of Trisomy 21

that pertain to AD pathogenesis. In current clinical assessment of

AD pathogenesis combined biomarkers provide added value

[94,95], and the significance of a similar approach at the cellular

and molecular level in AD models expressing endogenous levels of

relevant pathogenic candidates is underscored by our findings.

Our molecular profiling of signal transduction cascades in AD

cellular models indicates that the disease processes at the cellular

level even in strongly monogenic AD are complex and

multifactorial. AD human skin fibroblast models may offer a

unique opportunity for uncovering AD pathogenetic mechanisms

if recently-developed isolation procedures for induced pluripotent

stem cells (iPSC’s) from fibroblast populations can be deployed to

generate AD-specific human neuronal populations [96,97].

Dysregulation in both phosphorylation- and protease-based

signaling cascades revealed in this newly-emerging type of cellular

environment could translate insights from reprogrammed human

neurons expressing strong single-gene-causative AD into the

spectrum of individual small differences that may contribute to

sporadic AD. Furthermore, development of such a system may

suggest novel therapeutic targets to combat this disorder far ahead

of its earliest clinical manifestations. Therapeutic interventions for

other complex multigenic disorders such as diabetes, hypertension,

and cardiovascular disease are not confined to a single modality.

Thus therapeutic strategies addressing the nature of AD in any

form are likely to themselves be complex rather than monolithic.

Materials and Methods

Reagents
Material [Source]: DMSO, Hydrogen Peroxide, Bradykinin

triacetate salt, SP 600125 [Sigma Aldrich], Compound E [Alexis

Biochemicals], Fetal bovine serum [Hyclone], 8% or 4–20%

Precise Protein Gels [PIERCE], Hoechst 33258 [Sigma Aldrich],

Nestle Instant Powdered Milk, Vectastain ABC kit, Biotinylated 2u
antibodies [Vector Laboratories], Trans-Blot Transfer Medium

[Bio-Rad], 26 gauge Precision Glide Needle [Becton Dickinson;

FISHER], RestoreTM Western blot stripping buffer [PIERCE],

Tween-20 [0.1%], Odyssey Blocking Buffer [Li-Cor], X-ray film

[Midwest Scientific], Super HT Mini PAP Pen [RPI], Micro BCA

Protein Assay Kit [PIERCE], Super signal West Pico Chemilu-

minescence Substrate [PIERCE], Phosphatase Arrest 1 [GBios-

ciences], AD and age-matched normal control human skin

fibroblasts (see Table 1) [Coriell Institute].

Cell culture conditions
AD and normal control human skin fibroblasts. Optimal

culture conditions at 37uC in air containing 5% CO2 involved 4

day feeding cycles with media containing 90% v/v alpha-MEM,

and 10% v/v fetal calf serum (Hyclone). Passaging of confluent

cells cultured in T75 (Midwest Scientific) flasks required washes

(26) with Dulbecco’s Phosphate-Buffered Saline (PBS) and 5 min

treatment with 0.05% trypsin/0.54 mM (0.02%) EDTA as

described previously [8]. Trypsinized cells were distributed for

experiments into 6-well plates (Nunc), single-chamber slide flasks

(Nunc) or T12.5 stock flasks (Falcon).

Oxidative stress induction. AD and control fibroblast lines

(Table 1) were cultured to confluence in 3 mls media/T12.5 flask

or slide flask. After washing twice with pH 7.5 Hepes-buffered

Hank’s balanced salt solution (HHBSS), the cells were treated with

250–500 mM H2O2 in human skin fibroblasts in phenol red-free

Figure 16. JNK promotes a survival function in normal fibroblasts that is lost in PS-1 (M146L) AD fibroblasts. PS-1 (M146L) AD and
control fibroblasts were pre-treated with DMSO vehicle control or SP 600125 inhibitor in buffer, oxidatively stressed with 250 mM H2O2 for 60 min and
re-fed with media for 0–10 hr, then methanol-fixed and Hoechst stained as previously described. (A) Quantitation of apoptosis due to H2O2. The No
Inhibitor condition (NI) represents buffer without DMSO or SP 600125, with or without H2O2 during the 60 min incubation. The number of apoptotic
nuclei was quantitated as a percentage of condensed nuclei to total nuclei per field. Graph shows mean6S.E. Statistical analysis was performed via t-
test with *p-value,0.05; **p,0.005*** and p,0.0005; n = 3. Black * and *** brackets compare the percentage of apoptotic cells between AD and
control fibroblast lines in the presence of DMSO or SP600125. Purple * and ** brackets compare the percentage of apoptotic cells within the control
fibroblast line between the DMSO and SP600125 treatments. (B) Confirmation of SP600125 inhibition of JNK. PS-1 (M146L) AD fibroblasts pre-treated
with DMSO or SP600125 for 45 min and then with 250 mM H2O2 for 0–20 min were immunoblotted and analyzed for phospho-JNK and total JNK by
ECL and Odyssey respectively, normalized to GAPDH as a loading control.
doi:10.1371/journal.pone.0004655.g016
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HHBSS buffer for 1 hr at 37uC. Removal of the buffer and

refeeding with complete medium for 1–25 hrs quenched any

remaining oxidant species. The cells were either methanol fixed

for immunofluorescence studies or cell lysates were harvested in

1% SDS detergent containing phosphatase inhibitors for

immunoblotting studies.

Treatment with SP 600125. AD and control fibroblast lines

were first washed with HHBSS (26) and then pre-treated for

45 minutes with DMSO vehicle control or SP 600125 (25 mM) in

HHBSS. Subsequently the oxidative stress induction was followed

as described above. The entire time frame of inhibitor

pretreatment, oxidative stress induction and the methanol

fixation or detergent lysis of cells was performed in the dark due

to light sensitivity of the inhibitor. Vehicle control and inhibitor

were present in the buffer or media throughout the experimental

time frame.

Inflammatory stress induction. AD and control fibroblast

lines (Table 1) were treated with 25 or 250 nM BK for 0–

30 minutes at 37uC. Detergent harvested cell lysates were

immunoblotted with total and active phosphoepitope specific

antibodies (Table 2) against each of the three MAPKs to

determine their respective bulk protein expression and activity

profiles upon BK stimulation.

Treatment with Compound E. AD and control fibroblast

lines were pre-treated with DMSO vehicle control or Compound

E (1 or 10 nM) overnight by adding the compounds to the

complete serum-containing medium already surrounding the cells.

After 24 hours, the inflammatory stress induction was followed as

described above with washes and experimental treatment with BK

in HHBSS buffer. The vehicle control and inhibitor were present

in the buffer or media throughout the experimental time frame.

Immunoblotting and quantitation. Cell lysates collected in

1% SDS detergent were sheared with 26 gauge needles and

protein was estimated with the Micro BCA Protein Assay Kit.

Samples containing 30 mg total protein per lane were

electrophoresed on pre-cast polyacrylamide Tris-HEPES-SDS

gels (PIERCE) and transferred onto Nitro-Cellulose membranes

(Bio-Rad). Subsequently, immunoblotting with the antibodies

listed in Table 2 and individual or tandem application of ECL

(enhanced chemiluminescence) and Odyssey infrared dual color

imaging was used to determine protein expression and activity

profiles of the MAPKs, in some cases multiple MAPK species on

the same western blot.

For ECL analysis, blotted membranes were blocked for 1 hr at

room temperature with freshly prepared non-fat dry milk (Nestle

Instant 10% w/v) in Tris-Buffered Saline- Tween (TBS-T)

blocking buffer and incubated with the primary antibody in

blocking buffer or TBS-T overnight at 4uC. Washes (36) with

TBS-T were followed by incubation with biotinylated secondary

antibodies (Vector Lab) for 1 hr at room temperature. The blots

were washed (36) and incubated with ABC amplification

substrate, prepared 30 min before use. After final washes (36)

the blot was incubated with Pico ECL substrate (Pierce) for 5 min

in the dark and exposed to X-ray film. The protein bands on the

developed film were quantified by ImageJ (NIH: http://rsb.info.

nih.gov/ij/). The activity levels of p38 and JNK were calculated

by dividing the intensity of phospho-p38 or phospho-JNK by that

of loading control proteins tubulin, actin, or GAPDH, chosen for

the best resolution from the kinase bands of interest on the basis of

Mr. Relative activity levels were expressed as the relative fold

activation of p38 and JNK observed in BK- or H2O2-stimulated

cells compared to that of basal unstimulated cells (set at 1-fold).

Because of the low expression levels of p38 and JNK in these cells,

in some experiments the basal unstimulated activity was present at

trace levels rendering quantitation difficult, so that calculating

relative fold activation yielded excessively wide variation in

stimulated values. In these cases relative activation was expressed

in terms of optical density (O.D.) units alone. The optical densities

were corrected for non-specific background on the exposed blots

and normalized to loading controls as outlined above.

For Odyssey analysis either the above blot previously analyzed

by ECL or a de novo blot was incubated with Odyssey Blocking

Buffer (ODBB) for 1 hr at room temperature and then probed

with primary antibodies in ODBB plus Tween-20 (0.1%)

overnight at 4uC. Washes (36) with Phosphate-Buffered Saline-

Tween (PBS-T) were followed by incubation with green or red

infrared dye-conjugated secondary antibodies (Table 2) for 1 hr at

room temperature under dark conditions. Washes with PBS-T

(36) and a final wash in PBS without Tween plus storage in PBS

protected from light enabled optimal storage of blots at 4uC and

quantification of bands using the Odyssey Infra-red Imaging

System. The activity levels of ERK were calculated by dividing the

Table 2. Immunoreagents.

Candidate protein Manufacturer Species Dilution Antibody Application

Total-ERK Cell Signaling Rabbit 1:1000 1u WB

Phospho-ERK Cell Signaling Mouse 1:1000 1u WB

Total-JNK Cell Signaling Rabbit 1:1000 1u WB

Phospho-JNK Stressgen Mouse 1:1000 1u WB

Total-p38 Cell Signaling Rabbit 1:1000 1u WB

Phospho-p38 Cell Signaling Mouse 1:1000 1u WB

Pan a/bTubulin Cell Signaling Rabbit 1:2000 1u WB

Cleaved Caspase-3 Cell Signaling Rabbit 1:50 1u IF

Alexa 488 Molecular Probes Rabbit 1:600 2u IF

Alexa 594 Molecular Probes Rabbit 1:600 2u IF

IRDye 800CW Li-Cor (Odyssey) Rabbit 1:15,000 2u WB

Alexa Fluor 680 Invitrogen (Odyssey) Mouse 1:15,000 2u WB

WB = Western blotting, IF = Immunofluorescence.
doi:10.1371/journal.pone.0004655.t002
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intensity of phospho-ERK levels to that of regular total ERK

protein levels and normalizing that to loading control protein

tubulin. Total protein content of p38 and JNK from blots

previously analyzed for kinase activities by could thus be

determined by the tandem ECL/Odyssey strategy and corrected

for loading controls chosen on the basis of optimal band resolution

as above. Total cellular levels of ERK, JNK, and p38 proteins did

not change significantly over the time courses of up to 1 hour

incubation with BK or H2O2.
Immunofluorescence (IF) and nuclear condensation.

Human skin fibroblasts cultured in single chamber slide flasks

(Nunc) following experimental or control treatments were fixed for

1 min in ice-cold methanol and stored in HHBSS at 4uC. For

immunostaining, the HHBSS was aspirated and cell layers were

dried at room temperature. Replicate hydrophobic rings were

created with a PAP pen (RPI) on the cell layers for each

experimental condition. The rings were either stored in HHBSS

or blocked with IF blocking buffer (0.05 g BSA, 0.01 g Casein,

5 mLs HHBSS) at room temperature for 1 hr. After aspirating the

blocking buffer, the primary antibody prepared in blocking buffer

was applied (20 mL/ring) and incubated overnight at 4uC. Washes

(36) with HHBSS (20 mL/ring) were followed by incubation with

Alexa 488 conjugated light sensitive secondary antibody prepared in

blocking buffer at 4uC (Table 2). Incubation of secondary antibody

at room temperature for 1 hr in the dark was followed by washes

(36) and storage with HHBSS (20 mL/ring) at 4uC. Hoechst

staining to detect apoptotic nuclear condensation was carried out

after aspirating HHBSS from each ring. Hoechst 33258 (0.5 mg/

mL) was added (30 mL/ring) for 10 min at room temperature and

protected from light. Washes (26) were followed by storage in

20 mL HHBSS and storage 4uC. Immunofluorescence and

Hoechst-stained images were captured and quantitated on an

inverted microscope Nikon Eclipse TE2000-U via an Optronics

Magnafire 2.0 digital imaging system using its associated AnalySIS

software or alternatively the MacBiophotonics version of ImageJ

(see Figure 12 legend).
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