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Abstract

Whilst the Major Histocompatibility Complex (MHC) is well characterized in the anuran Xenopus, this region has not
previously been studied in another popular model species, the common frog (Rana temporaria). Nor, to date, have there
been any studies of MHC in wild amphibian host-pathogen systems. We characterise an MHC class I locus in the common
frog, and present primers to amplify both the whole region, and specifically the antigen binding region. As no more than
two expressed haplotypes were found in over 400 clones from 66 individuals, it is likely that there is a single class I locus in
this species. This finding is consistent with the single class I locus in Xenopus, but contrasts with the multiple loci identified
in axolotls, providing evidence that the diversification of MHC class I into multiple loci likely occurred after the Caudata/
Anura divergence (approximately 350 million years ago) but before the Ranidae/Pipidae divergence (approximately 230
mya). We use this locus to compare wild populations of common frogs that have been infected with a viral pathogen
(Ranavirus) with those that have no history of infection. We demonstrate that certain MHC supertypes are associated with
infection status (even after accounting for shared ancestry), and that the diseased populations have more similar supertype
frequencies (lower FST) than the uninfected. These patterns were not seen in a suite of putatively neutral microsatellite loci.
We interpret this pattern at the MHC locus to indicate that the disease has imposed selection for particular haplotypes, and
hence that common frogs may be adapting to the presence of Ranavirus, which currently kills tens of thousands of
amphibians in the UK each year.
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Introduction

Many studies searching for the genetic consequences of natural

selection have focused their attention on the Major Histocompat-

ibility Complex (MHC) [e.g. 1,2,3]. The MHC is a group of genes

known to be directly involved in the immune response in

vertebrates, and variation at the MHC has been linked to disease

resistance and susceptibility (e.g. contrasting allelic frequencies in

resistant and susceptible chickens with Marek’s disease [4]). In

most vertebrates the MHC comprises several loci which fall into

three subgroups, class I, II and III [5]. Proteins encoded by the

MHC class I and II loci form complexes with antigenic peptides

and present these at the cell surface to the T-cell antigen receptors.

The class III region encompasses many genes and although some

are involved in immunity, they are not directly involved in the

presentation of antigens [6]. MHC class I is primarily involved in

presenting endogenously synthesised antigens such as viral

proteins, whereas MHC class II is mainly involved in presenting

exogenous antigens such as bacteria [7]. However, professional

antigen presenting cells (e.g. dendritic cells) can load exogenous

antigens onto both class I and II molecules, and autophagy can

deliver endogenous antigens to the class II pathway [8]. The class I

gene family is divided into the classical class Ia genes and the non-

classical class Ib genes. Class Ia genes are very polymorphic, with

most of the polymorphism occurring within the Peptide Binding

Region (PBR) which is the area that recognizes antigens [9]. Class

Ib genes have limited or no polymorphism and their function

remains largely unknown [9,10].

Expressed MHC loci typically show very high levels of diversity,

which correspond to allelic polymorphisms [11]. High diversity in

MHC loci could have a straightforward benefit, by allowing the

identification of a larger number of antigens, and so enabling the

organism to cope with a greater range of pathogens. It has

therefore been proposed that the high diversity at the MHC is

maintained by balancing selection, caused by coevolution between

hosts and pathogens. One possible form of balancing selection is

overdominance (heterozygote advantage), whereby heterozygotes

are at an advantage as they can present a broader range of
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antigens [12]. An alternative form is negative frequency-dependent

selection, whereby individuals with a novel rare allele have a selective

advantage, since pathogens have not evolved to escape their

surveillance [13,14]. Although overdominance and negative-fre-

quency dependent selection are the most frequently proposed modes

of selection at the MHC, there are other possibilities. For example,

there is evidence for fluctuating selection in TAP genes (Transporter

associated with Antigen Processing) in Danish brown trout [15].

Fluctuating selection occurs when a heterogeneous environment

causes selection for different alleles over time and/or space [16].

Fluctuating selection could occur if a pathogen is fast evolving, or if

different strains occur in different populations. Directional selection

can also occur at the MHC, in which case the spread of an

advantageous allele (positive selection) would be expected to lead to a

loss of genetic variation. Similarly, selection against disadvantageous

alleles (negative or purifying selection) would also be expected to

reduce diversity. Directional selection may explain why the two

human leukocyte antigen (HLA) types associated with protection

from malaria are common in West Africans but rare in other racial

groups [17]. Directional selection appears most likely when a single

pathogen imposes a substantial proportion of the selection on a

particular host species.

In Xenopus laevis there is a single class I locus of the class Ia type

[18,19], and there is evidence that this locus is involved in

susceptibility to viral infection (Ranavirus, family: Iridoviridae) in

amphibians. Pre-metamorphic Xenopus tadpoles do not express

MHC class Ia genes [20] and have been shown (in laboratory

experiments) to have much higher mortality rates when exposed to

Ranavirus than adults which do express these genes [21]. Laboratory

studies on Xenopus also imply that the MHC genotype may play a role

in lethality, with different genotypes conferring differing levels of

susceptibility to Ranavirus infection [21]. Many wild populations of

common frogs (Rana temporaria) in the UK have been infected with

Ranavirus, which causes skin ulceration, systemic haemmorhaging,

and can result in mass mortalities [22]. Ranavirus is estimated to kill

tens of thousands of common frogs in the UK each year [23].

In this study we characterised MHC class I in the common frog

and developed primers to amplify exons 2 and 3 which form the

antigen binding region (á1 & á2 domains). We use this novel MHC

marker to explore selection in wild populations of common frogs

with and without a history of Ranavirus infection. The aims of this

study were (1) to identify whether there are specific MHC

supertypes associated with infected (Rv+) and uninfected (Rv2)

populations, and thus assess evidence for selection in this system;

and (2) to compare MHC diversity with previous information on

neutral diversity at microsatellite loci in the same populations.

Results

Full MHC genotypes, based on criteria outlined in the methods

section (6+ identical clones for a homozygote, 2+ clones of each

allele for a heterozygote), were obtained for 32 Rv2 individuals (7

populations, 4–5 individuals per population) and 31 Rv+
individuals (7 populations, 4–5 individuals per population) (see

Fig. 1 for sampling locations). Single confirmed alleles were

obtained for a further 2 Rv2 individuals and one Rv+ individual.

The 129 alleles from over 400 clones revealed a maximum of two

alleles per individual. The MHC region was highly variable, with

178 out of 543 (32.78%) nucleotides, and 90 out of 181 (49.72%)

amino acids, being polymorphic. The mean proportion of

polymorphic nucleotides was significantly greater in the Rv2

group compared to the Rv+ group (Rv+ = 0.0793, Rv2 = 0.0869,

p,0.0001). Heterozygosity in Rv+ (0.875) and Rv2 (0.936)

groups did not differ significantly from expected heterozygosity

(Rv+ = 0.965, Rv2 = 0.972), and did not differ significantly

between groups.

Figure 1. Map Showing the Location of Study Sites in England. Infected (Rv+) populations are indicated by black circles, and uninfected
(Rv2) by grey circles.
doi:10.1371/journal.pone.0004616.g001
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Modeltest [24] identified the TrN+I+G model as that which best

fitted our data. This model allows for variable base frequencies, equal

transversion frequencies and variable transition frequencies, with a

proportion of invariable sites (I = 0.349) and a gamma distributed rate

variation among sites (G = 0.248) [25]. A neighbour joining tree of

the MHC sequences revealed 23 supertypes (Fig. 2). The supertypes

differed significantly in frequency between Rv+ and Rv2 popula-

tions, even after accounting for shared ancestry (x2 = 54.951, p,0.05)

(Fig. 3). The comparable test on fourteen microsatellite loci in the

same populations only identified one additional locus (RtSB3 [26])

that showed significant (without Bonferroni correction) frequency

differences between Rv+ and Rv2 populations (x2 = 79.53, p,0.05).

Analysis using Fdist2 [27] showed that the genetic variation

among populations (as measured by FST among Rv+ and Rv2

populations combined) was significantly greater at the MHC locus

than the average of the microsatellite loci (FST = 0.150, p,0.03),

indicating that this locus may be under some form of selection.

Much of this effect was due to variation among the Rv2

populations (FST = 0.214, p,0.008), whereas the Rv+ populations

were genetically more similar in their MHC allele frequencies and

not significantly more variable than the microsatellites

(FST = 0.066,p = 0.578). As would be expected from the compar-

ison of frequencies in Rv+ and Rv2 sites, the microsatellite locus

RtSB3 also showed significantly elevated FST in the pooled

populations, as did an additional locus RtSB14 [26] – however

neither showed the difference in FST within Rv+ populations, and

only RtSB14 showed this pattern within Rv2 populations.

Discussion

It is apparent from our data that there is a single expressed

MHC class I locus in Rana temporaria, as we found a maximum of

two alleles per individual (n = 66 individuals). Xenopus species have

Figure 2. Neighbour-Joining Tree of MHC Sequences with
Supertypes Labeled. Individuals are labeled with disease status ‘POS’
(Rv+) or ‘NEG’ (Rv2), population ID, individual ID and allele ID.
Bootstrap support values are reported by each node.
doi:10.1371/journal.pone.0004616.g002

Figure 3. Distribution of Chi-squared Values Generated by
Randomizing Disease Status. The chi-squared value obtained from
empirical data is marked with an arrow, together with the 95%
confidence limit.
doi:10.1371/journal.pone.0004616.g003
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also been shown to have a single class I locus [28], in contrast to

axolotl [29], indicating that Rana temporaria may have a primordial

MHC organization like that of Xenopus. The Caudata (including

axolotls) are thought to have diverged from Anura (including Rana

and Xenopus sp.) over 350 million years ago, whilst Ranidae (Rana

sp.) and Pipidae (Xenopus sp.) diverged approximately 230mya [30].

This implies that the diversification of MHC class I into multiple

loci occurred between these two dates.

It has previously been shown that MHC Class I deficient

tadpoles (this locus is not expressed until metamorphosis) are more

susceptible to Ranavirus infection than adults, when exposed to the

virus in the laboratory [21,31]. The authors also noted that a

particular Xenopus strain showed a high tadpole mortality rate and

a slower adult recovery time; suggesting tentatively that the

genotype of this strain might infer higher susceptibility, though no

sequence information was presented [21]. Our evidence comes

from a natural experiment in the field, in which some ponds have

been exposed to repeated infection for over a decade, whereas

others have escaped disease over the same period. We have shown

that certain MHC class I supertypes differ in frequency between

infected and uninfected wild populations of common frogs,

implying directional selection against the alleles conferring greater

susceptibility. This finding indicates that the frogs are adapting to

the presence of Ranavirus in the wild. Other research has shown

that Xenopus is capable of mounting a specific immune response to

Ranavirus under laboratory conditions [32]; it is possible that this is

also occurring in the Rv+ populations in our study.

The reduced allelic richness in Rv+ populations might be

explained by a bottleneck due to the frog mortality [33]. However,

it has previously been shown that there was no comparable reduction

in allelic diversity at microsatellite loci in infected populations,

comparing these and also 11 further Rv+ and 9 further Rv2

populations (Teacher 2009, PhD thesis, University of London). Hence the

reduction in MHC richness appears better explained as another

effect of directional selection, which could also produce more

uniform allele frequencies (the reduced FST among the Rv+
populations) if the different infected ponds retained similar resistant

genotypes. This finding implies that Ranavirus imposes selection for

similar genotypes across the geographical range studied.

Microsatellite loci RtSB3 and RtSB14 also showed a higher FST

than expected, although only RtSB3 showed a significant

difference between Rv+ and Rv2 ponds under the more stringent

randomization test. It is possible that these loci may be linked to an

adaptive locus (i.e. had their frequencies changed by genetic

hitchhiking [34]). It would be interesting to identify candidate

genes by chromosome walking or genome mapping.

The microsatellite studies had provided evidence for positive

assortative mating in Rv+ populations: elevated homozogosity

indicated an excess of mating between related individuals. There is

therefore an intriguing possibility that assortative mating for

resistant MHC haplotypes may be taking place. Experimental

studies of resistance/susceptibility of MHC genotypes under

deliberate Ranavirus infection, and associated mate choice could

prove fruitful for understanding the mechanism fully.

Materials and Methods

Ethics Statement
This work was performed under UK Home Office licensing, and

ethics committee approval from the Zoological Society of London.

Sampling
Common frog populations were chosen based on their disease

history. Seven populations where chosen which had undergone

yearly mortalities caused by Ranavirus for approximately 5

generations (10 years) (Rv+ populations), and seven populations

were chosen which had no history of Ranavirus mortalities (Rv2

populations). All populations were located in the South-East of

England (Fig. 1) in urban or sub-urban garden ponds. Frogs were

captured by hand at each location; each frog was then weighed

and held in a clean container at ambient temperature. Frogs below

15 grams were released due to the risks associated with the blood

sampling procedures on small animals. Between 5 and 10 frogs of

a suitable size were sampled at each location. Each frog was

anaesthetised using an aqueous solution of MS222 (Pharmaq Ltd,

UK) buffered with NaHCO3 to the pH of the water where the frog

was collected (or at pH 7 if collected on land). Each frog was then

bled via cardiocentesis using 0.5 ml heparinised insulin syringes, and

blood samples of 150 ml maximum volume were collected. The frogs

were then rinsed in fresh water until conscious, and placed in their

original container until all signs of anaesthetic exposure had passed

for at least 10 minutes. They were then released back into the wild at

the location of capture, taking care to ensure that day-time release

did not expose the animals to any additional hazards. Blood samples

were centrifuged to pellet the red blood cells, and the pellets were

stored in RNALater (Ambion, UK).

Molecular techniques
Total RNA was extracted from blood pellets using the SV 96

Total RNA Isolation System (Promega, UK) which includes DNase

treatment to remove genomic DNA (gDNA). The standard protocol

for this kit was altered due to the low volumes of blood available; in

the first lysis step 40 ml blood was added to 300 ml RNA Lysis Buffer.

RNA concentrations of approximately 0.03 mg/ml were obtained

and cDNA synthesis was performed using the First Strand cDNA

Synthesis Kit (GE Healthcare/Amersham).

Published MHC class I mRNA sequences from cDNA clones in

Rana pipiens (GenBank accession numbers AF185587 and

AF185588) were aligned using ClustalW, and Primer3 [35] was

used to design primers to amplify the whole MHC class I region

(approximately 900 bp): Rpip9F 59-TTCCGACAGTCACACTCTGC-39

and RpipR 59-GGTGGTCTTGTAGCCTTCTCC-39. Once Rana temporaria

sequences were obtained from these primers, a species-specific

reverse primer (RpipR2 59-TGAAACCCGTACACCAGACA-39) was de-

signed to be used with Rpip9F to amplify only the antigen binding

region (exons 2 and 3 corresponding to the á1 & á2 domains,

approximately 650 bp). The 650 base-pair region was amplified

from cDNA using the Polymerase Chain Reaction (PCR) with

primers Rpip9F and RpipR2. The reagents were: 16 ml Taq PCR

Master Mix (Qiagen, UK), 4 ml cDNA, 200 pmol of each primer

(2 ml), and 16 ml RNAse-free water. The samples were denatured

at 95uC for 15 minutes followed by 25 cycles of 94uC for 30 sec,

60uC for 1 min 30 sec, and 71uC for 2 minutes, followed by a final

elongation step of 71uC for 10 min to complete fragment

extension. The PCR products were run on 1.2% agarose gels

with 5 ml loading buffer and a 100 base-pair ladder (Microzone

Ltd, UK). The 650 base pair bands were cut from the gels and

DNA extracted using the QIAquick Gel Extraction Kit (Qiagen,

UK). One sample of gDNA was run with each cDNA PCR plate;

gDNA samples yield a 950 base pair band which is not seen in

cDNA amplifications, thus confirming that cDNA samples were

not contaminated with gDNA.

Ligation and transformation of amplified cDNA products were

performed the same day using the Qiagen PCR Cloning Plus Kit

(Qiagen, UK). For each individual, 75 ml of transformed cells were

spread onto an LB agar plate containing ampicillin, IPTG and X-

gal according to the cloning kit instructions. Plates were incubated

overnight at 37uC. Six clonal sequences were required per
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individual to reduce the chances of missing one allele from a

heterozygote to below p = 0.05. Seven colonies were picked per

individual as colonies did not always contain the insert. The

colonies were grown overnight at 37uC, shaking at 225 rpm, in

individual falcon tubes containing 600 ml LB broth with 30 mg

ampicillin. Plasmid purifications were then prepared from the

colonies using the Zyppy Plasmid Miniprep Kit (Zymo Research,

USA). Purified plasmid DNA (30–50 mg/ml) was used for

sequencing with standard M13 primers by Cogenics (Essex, UK).

Analysis
Alleles were confirmed when at least two clones showed

identical sequences. Homozygotes were confirmed on the basis

of at least 6 identical sequences; when 6 clones are picked, there is

a probability of 0.55 = 0.03125 that there is a second allele which

has not been picked by chance. Every confirmed allele was

recorded in the data set. Nucleotide sequences (GenBank accession

numbers FJ385575–FJ385703) were aligned using Sequencher v.4.

(Gene Codes Corporation), and confirmed as belonging to the

MHC Class I conserved domain using BLAST searches (National

Center for Biotechnology Information). We used the antigen

binding region (comprising of the a1 and a2 domains) for all

analyses; this region which was identified by amino acid alignment

with Xenopus [36] and Atlantic salmon [1] sequences.

Observed heterozygosity was calculated within Rv+ and Rv2

groups by dividing the number of observed heterozygotes by the

total number of individuals with both alleles typed. Expected

heterozygosity was calculated as HE = 12S pi
2 where pi is the

frequency of the ith allele. The observed number of heterozygotes

was compared with Hardy-Weinberg expectations [37] within

Rv+ and Rv2 groups using Fisher’s exact test, and between

groups using a Chi-squared test; both tests were implemented in R

v.2.4.0. The allelic richness was characterized by the mean

number of substitutions per base as calculated by MEGA [38], and

compared between Rv+ and Rv2 groups using a two-tailed t-test.

Modeltest [24] was used to test 56 possible DNA substitution

model parameters, and identify the best fit model for the data. A

neighbour-joining tree was produced using the Tamura-Nei model

of nucleotide substitution [25], with 100 bootstrap replicates.

MHC supertypes were identified on the basis of branch length;

clusters of individuals (n.1) which were separated from other

individuals by a branch length of #0.007 (an arbitrarily chosen

value, after visual inspection of data) were categorized as a unique

supertype (Fig. 2). A Chi-squared test was used to compare MHC

supertype frequencies between Rv+ and Rv2 populations;

however the individuals within each category are not strictly

independent, as inhabitants of the same pond are likely to share

common ancestry. To overcome this issue, we constructed a

randomization test (performed in R v.2.4.0). The Chi-squared test

was repeated (for 10,000 iterations) after reallocating disease status

at random to ponds; the source code is included in Supporting

Information S1. The Chi-squared value from the real data was

then compared with the randomized distribution to establish the

significance level. For comparison, this method was then repeated

with data from 14 putatively neutral microsatellite loci (Teacher

2009, PhD thesis, University of London), using data for the same

populations as used for the MHC analyses (Rv+ = 77 individuals,

mean per population = 11; Rv2 = 61 individuals, mean per

population = 9) to investigate whether the Rv+ and Rv2

populations were, by chance, more genetically distinct than

average. We used FDist2 [27] implemented in Lositan [39] to

further assess the effect of any selection on the variation between

populations at the MHC or microsatellite loci. The program

compares the FST of marker loci with simulated expected values

(conditional on their heterozygosity), and identifies outliers. This

method was applied to Rv+ and Rv2 populations individually and

combined, using data at the MHC locus, together with data for the

same populations from the 14 microsatellite loci to provide

information on neutral expectations.

Supporting Information

Supporting Information S1

Found at: doi:10.1371/journal.pone.0004616.s001 (0.03 MB

DOC)
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