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Abstract

Background: Fossil tracks made by non-avian theropod dinosaurs commonly reflect the habitual bipedal stance retained in
living birds. Only rarely-captured behaviors, such as crouching, might create impressions made by the hands. Such tracks
provide valuable information concerning the often poorly understood functional morphology of the early theropod
forelimb.

Methodology/Principal Findings: Here we describe a well-preserved theropod trackway in a Lower Jurassic (,198 million-
year-old) lacustrine beach sandstone in the Whitmore Point Member of the Moenave Formation in southwestern Utah. The
trackway consists of prints of typical morphology, intermittent tail drags and, unusually, traces made by the animal resting
on the substrate in a posture very similar to modern birds. The resting trace includes symmetrical pes impressions and well-
defined impressions made by both hands, the tail, and the ischial callosity.

Conclusions/Significance: The manus impressions corroborate that early theropods, like later birds, held their palms facing
medially, in contrast to manus prints previously attributed to theropods that have forward-pointing digits. Both the
symmetrical resting posture and the medially-facing palms therefore evolved by the Early Jurassic, much earlier in the
theropod lineage than previously recognized, and may characterize all theropods.
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Introduction

Theropod dinosaurs, exemplified by such animals as Dilopho-

saurus, Allosaurus, Velociraptor, and Tyrannosaurus, are among the most

successful dinosaurian clades, and the only one with representatives

– namely, birds – known to survive the end-Cretaceous extinction

event. Theropods skeletal fossils are also components of some of the

oldest known (Late Triassic and Early Jurassic) terrestrial faunas,

though many aspects of the anatomy of these early taxa are poorly

known compared to their younger counterparts.

Late Triassic-Early Jurassic dinosaur ichnites (trace fossils), are

dominated by ichnotaxa attributed to non-avian theropods. All

known theropods are perceived as obligate bipeds [1]; no known

theropod habitually adopted a quadrupedal posture for locomo-

tion [2]. Theropod trackways therefore do not typically exhibit

hand imprints. Only when the trunk was lowered toward a

substrate, as in a crouched posture, could the hands potentially

create impressions.

Most previously reported dinosaurian crouching (resting) traces,

such as those of the ichnotaxon Anomoepus, have usually been

attributed to bipedal, herbivorous, ornithischian dinosaurs [3–7].

Traces interpreted as having been made by crouching or resting

theropods are exceptionally rare: only six examples have been

reported based on adequate information. Four of these lack manus

impressions, including a briefly-described exemplar from China

and a specimen pertaining to the small theropod ichnotaxon

Grallator [5]. The remaining two, also referable to Grallator, have

associated but faint, amorphous hand imprints [5,8]. In two other

described theropod trackways, not made by crouching animals,

purported hand traces are faint and lack detail [5,9,10].

Here we describe a well-preserved crouching theropod trace from

a lacustrine beach sandstone of the Lower Jurassic (Hettangian,

,198 Ma) Whitmore Point Member of the Moenave Formation in

southwestern Utah (Figure 1) [11]. The trace is part of a longer,

hind foot-only trackway (SGDS.18.T1) that also includes intermit-

tent tail drags. The crouching trace was registered when the animal

rested on the substrate in a posture very similar to modern birds; the

traces include well-defined impressions made by both pedes, both

hands, the tail, and the ischial callosity. This trace constitutes

evidence that an Early Jurassic theropod expressed two bird-like

features: anatomical restriction to a palms-medial manual posture,

and symmetrical leg positions while resting.

Stratigraphic and Paleoecological Setting
Twenty-five track-bearing horizons contained within a small

area (1 km2) in St. George, Utah, contain a diverse, theropod-

dominated ichnofauna. The most fossiliferous and diverse surface

(Figure 2) is preserved within the St. George Dinosaur Discovery
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Site at Johnson Farm (SGDS) museum [12]. Mudflat, shoreline,

and periodically submerged surfaces coincide on the same bedding

plane as evidenced by mud cracks, ripple marks (current,

symmetrical, wind-driven, interference, and wave-formed), erosive

mega-ripples, load and flute casts, rill and tool marks of various

sizes, raindrop impressions, and invertebrate and vertebrate

ichnites. This suite of sedimentary features formed on a beach

or shoal along the shores of an Early Jurassic freshwater body

(Lake Dixie) that underwent seasonal regressive-transgressive

fluctuations [11]. The majority of theropod trackways on this

surface trend north-south, paralleling the paleoshoreline. The

22.3 m long SGDS.18.T1 trackway (Figure 3) includes the unique

crouching traces (Figures 4, 5). The non-crouching pes prints in

the trackway conform to the large theropod ichnotaxon Eubrontes

(Table 1; see below) for which resting traces and tail drags are

extremely rare.

Trackway SGDS.18.T1 lies within the basal portion of the

Hettangian Whitmore Point Member of the Moenave Formation

(basalmost Glen Canyon Group [13–15]), approximately 2 m

above the underlying Dinosaur Canyon Member (Figure 2). The

Dinosaur Canyon Member is dominated by fluvial sandstones and

sheet flood deposits laid down along the western edge of Early

Jurassic Lake Dixie [15–17]. The surface on which this Eubrontes

trackway is situated (hereafter referred to as the ‘‘Top Surface’’) is

interpreted as an extensive mudflat bordering the western

shoreline of Lake Dixie. The ‘‘Top Surface’’ and surrounding

horizons are among the lowest of the 25 regional track-bearing

horizons, which range stratigraphically from the top of the

Dinosaur Canyon Member through the Whitmore Point Member

(Figure 2). Theropod footprints are also preserved, albeit less

commonly, in the palustrine, fluvial, and, later, eolian settings of

the overlying Kayenta Formation [15,18–23].

The Moenave Formation overlies the Chinle Formation (Chinle

Group of Lucas [24], but in Utah, group status is not recognized

for these same strata). The basal Dinosaur Canyon Member of the

Moenave Formation grades gradually eastward from fluvial to

eolian facies; on the Colorado Plateau, these eolian deposits, called

the Wingate Formation, also overlie the Chinle Formation [25].

The Triassic-Jurassic transition lies in the lower Wingate

Formation and thus the lower Moenave Formation [26–28],

though its precise stratigraphic position remains unknown. The

faunas (body fossil and ichnological) of the Church Rock (Rock

Point of some authors) Member of the Chinle Formation and the

lower Wingate Sandstone are very similar to those of the Dinosaur

Canyon Member of the Moenave Formation [28]. The lower

Dinosaur Canyon Member thus correlates with the Church Rock

Member of the Chinle Formation and the Wingate Sandstone [28]

to the east. To the west, in southern Nevada and southeastern

California, thinning and unfossiliferous sediments equated with

undifferentiated Moenave and Kayenta formations underlie the

eolian Aztec Sandstone [29].

Other ichnofossils associated with Eubrontes tracks at the SGDS

include those of smaller theropods (Grallator, ?Stenonyx), other large

theropods (Gigandipus, Kayentapus), ornithischians (Anomoepus), early

crocodylomorphs (Batrachopus, Selenichnus), probable sphenodon-

tians (Exocampe), possible synapsid tracks (?Brasilichnium), horseshoe

crabs (Kouphichnium), insect trails (Diplichnites, cf. Bifurculapes,

Helminthoidichnites), invertebrate burrows (Skolithos, Palaeophycus,

Figure 1. Location of the St. George Dinosaur Discovery Site at Johnson Farm (SGDS) (green star) in Washington County,
southwestern Utah. The site and others within the 1 km2 mentioned in the text are within the boundaries of the City of St. George.
doi:10.1371/journal.pone.0004591.g001

Resting Theropod Trace
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Figure 2. Stratigraphic section of the Moenave Formation at the St. George Dinosaur Discovery Site at Johnson Farm. Resting trace
and trackway SGDS.18.T1 is in the ‘‘Top Surface’’ of the Main Track-Bearing Sandstone Bed (indicated by the blue arrow) in the Whitmore Point
Member of the Moenave Formation.
doi:10.1371/journal.pone.0004591.g002

Resting Theropod Trace
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Scoyenia) and unassigned vertebrate and invertebrate traces [30].

The SGDS also preserves a large collection of Characichnos swim

tracks produced by theropods [31,32]. Grallator tracks comprise

approximately 95% of all dinosaurian footprints from all track-

bearing horizons combined. In addition to its ichnofauna,

Whitmore Point Member sediments in the St. George region

have produced a diverse body fossil biota, including plant

megafossils [33], ostracodes [34], conchostracans [35], fishes

(hybodont sharks, coelacanths, lungfish, semionotids, and palaeo-

niscoids) [36], and fragmentary, as-yet unstudied theropod

dinosaur elements.

Results

Ichnotaxonomy

Eubrontes Hitchcock, 1845 [37]

Figure 6a

Diagnosis. Eubrontes giganteus has broad pes tracks .25 cm

long, functionally tridactyl with short digit III, and divarication

angles between 25u–40u [38].

Discussion. The ichnotaxonomy of Late Triassic and Early

Jurassic tracks attributed to basal theropods includes a degree of

subjectivity. Because large-bodied (.3 m), Early Jurassic

theropods plesiomorphically retain fairly similar, unspecialized

feet (compared to later Jurassic and Cretaceous taxa), multiple

taxa are almost certainly represented within this one ichnotaxon.

Tracks in the ambulatory portion of the SGDS.18.T1 trackway

(Table 1) exhibit characteristics of Eubrontes [38] (diagnosed above).

Because of the different posture adopted while crouching, the pes

prints of the resting trace itself are somewhat different [39,40].

Large, Eubrontes-like tracks from other Upper Triassic-Lower

Jurassic formations, which are typically bipedal, tridactyl, and

mesaxonic, have been considered distinct at the ichnogeneric level

as Anchisauripus, Dilophosauripus, Gigandipus, and Kayentapus based on

size and, to a lesser degree, morphological differences [38,41].

These ichnotaxonomic distinctions have been questioned; at issue

is whether ichnite morphology correlates more with actual

taxonomic diversity or with variations in track maker-substrate

interaction, and thus better represents paleoenvironment and

behavior than taxonomy. Below, we compare and cite current

criteria for the recognition of each ichnotaxon.

Gigandipus Hitchcock, 1856 [42]

Figure 6b

Diagnosis. Same as Eubrontes giganteus except including a

medially or caudomedially oriented hallux impression [3,4,43].

Tail drag marks are present in the holotype and several referred

specimens and has been touted as diagnostic [3,44].

Discussion. Gigandipus caudatus tracks are similar to

Anchisauripus and Eubrontes tracks except they invariably exhibit

an impression of a medially or caudomedially oriented hallux. In

various pedal proportions, Gigandipus is indistinguishable from

tracks otherwise assigned to Anchisauripus and Eubrontes, so the

ichnotaxon is reliably distinguished only by the presence of the

hallux impression. There has been some speculation that

Gigandipus is an extramorphological variant of Eubrontes in which

the track maker’s foot sank deep enough into the substrate to bring

the normally elevated hallux into contact with the substrate

[43,45], but some Eubrontes tracks that lack hallux impressions are

apparently deeper than some Gigandipus tracks [46], so foot-

substrate interactions cannot universally explain these differences.

Discrete intrataxonomic behaviors may also explain differences

between Gigandipus and Eubrontes; in some ichnologic schemes (e.g.,

one where ichnotaxa are based entirely on quantitative and

morphological criteria and behavioral differences are excluded),

these would render the two synonymous [44]. Gigandipus tracks,

with hallux impressions, are represented at the SGDS, suggesting

that, at least locally, they may in fact be the result of foot-substrate

interaction rather than two taxonomically distinct track makers.

Several of the tracks in the progression away from the

SGDS.18.T1 resting trace include hallux impressions, and could

be assigned to Gigandipus were they viewed in isolation, but others

do not. This supports the oft-hypothesized perception of Gigandipus

as an extramorphological variant of Eubrontes and that, in at least

some instances, the two ichnotaxa are synonymous. The

Figure 3. Schematic map of the ‘‘Top Surface’’ tracksite
(SGDS.18). Beige shaded areas represent the ‘‘Top Surface’’ of the
Main Track-bearing Sandstone Bed; gold shaded areas are unexcavated;
brown areas represent areas removed after mapping to examine lower
horizons. The Eubrontes trackway that includes the crouching trace is
highlighted in red.
doi:10.1371/journal.pone.0004591.g003

Resting Theropod Trace
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SGDS.18.T1 trackway also possesses periodic tail drag marks

associated with typical Eubrontes morphotype tracks.

Anchisauripus Lull, 1904 [47]

Figure 6c

Diagnosis. Tracks narrower than Eubrontes but broader than

Grallator, 15–25 cm in length, divarication angles of outer digits

20u–35u, and digit III projection ratio between 1.3 and 1.8 (more

than Eubrontes but less than Grallator) [38].

Discussion. The history of the ichnogenus Anchisauripus, and

specimens referred to it, is especially convolute. In general, it has

historically been a ‘‘wastebasket’’ for tracks that were larger than

the accepted norm of Grallator (Figure 6d) but smaller than the

accepted norm of Eubrontes. Indeed, even most modern usages

depend heavily on size as a diagnostic criterion [38], though there

do seem to be distinct proportion-based groupings of some

ichnospecies [38,46]. It has also been hypothesized that Grallator,

Anchisauripus, and Eubrontes may (at least in some instances)

represent an ontogenetic series, with attendant heterochronic

morphological changes, of one or more theropod taxa [38]. In an

older review of the ichnotaxon [4], Anchisauripus was thought to

differ from either Grallator or Eubrontes by possessing a short,

caudally-directed hallux impression that was frequently detached

from the remainder of the print [43], but this has been interpreted

(based on a specimen misidentified as the holotype [38]) as a

fragment of a mud crack that intersects the impression [46].

However, in modern bird tracks, digit impressions, including the

hallux, have been known to precipitate mud cracks [48,49], so it

remains to be seen whether or not Anchisauripus truly does possess a

hallux impression. Many tracks at the SGDS fall within the

Anchisauripus size range, but no morphological differences can be

distinguished between them and smaller Grallator tracks, and, in

the upper size range, Eubrontes.

Dilophosauripus Welles, 1971 [50]

Figure 6e

Diagnosis. None current (see Discussion, below).

Discussion. Dilophosauripus williamsi was first named for

theropod tracks from the Kayenta Formation of northern

Arizona [50] and are therefore geographically similar to, and

only slightly younger than, the SGDS tracks. The only other

report of this ichnotaxon was from Lower Jurassic strata in France

[51]. It was originally differentiated from similarly-sized Eubrontes

tracks largely by its possession of particularly long claw marks

[50,52], but these may be artifactual claw drag marks rather than

reflective of a genuinely distinct morphology of the track maker’s

foot (per J. Farlow [52]). Its distinctiveness from Eubrontes and/or

Kayentapus is therefore suspect pending further investigation.

Kayentapus Welles, 1971 [50]

Figure 6f

Diagnosis. The ichnogenoholotypic trackway of Kayentapus (for

K. hopii) demonstrates significant variation from print to print [52],

making a morphological diagnosis for the taxon difficult to establish,

but the ichnogenus may be characterized by slender digits that taper

less and have less acute angles of divarication than those of either

Grallator or Eubrontes [1,53]. A more stringent, quantitative diagnosis

also includes: length between 11.5–40 cm, metatarsophalangeal

pad of digit IV well defined, and angle of divarication between digits

III and IV greater than that between digits II and III [41].

Discussion. The ichnogenotype, Kayentapus hopii, was named

at the same time, and for tracks in the same area, as Dilophosauripus

Figure 5. Stereophotographs of SGDS.18.T1 crouching trace. Elevation exaggerated to emphasize individual tracks. Placards on surface are
markers used in generation of photogrammetric image in Figure 4D.
doi:10.1371/journal.pone.0004591.g005

Figure 4. Eubrontes trackway with resting trace (SGDS.18.T1) in the Whitmore Point Member of the Moenave Formation, St. George,
Utah. A, Overhead, slightly oblique angle photograph of SGDS.18.T1 resting trace. Note normal Eubrontes track cranial to resting traces (top center)
made by track maker during first step upon getting up. Scale bar equals 10 cm. B, Schematic of SGDS.18.T1 to scale with A: first resting traces (manus,
pes, and ischial callosity) in red, second (shuffling, pes only) traces in gold, final resting traces (pes and ischial callosity) in green, and tail drag marks
made as track maker moved off in blue. Note long metatarsal (‘‘heel’’) impressions on pes prints. C, Direct overhead photograph and D, computerized
photogrammetry with 5 mm contour lines of Eubrontes trace SGDS.18.T1. Color banding reflects topography (blue-green = lowest, purple-
white = highest); a portion of the berm on which the track maker crouched is discernible. Abbreviations: ic = ischial callosity, lm = left manus, lp = left
pes, rm = right manus, rp = right pes, td = tail drag marks.
doi:10.1371/journal.pone.0004591.g004

Resting Theropod Trace
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[50]; other ichnospecies have also been referred to the ichnogenus

[46,54]. It may be synonymous with the previously named

Apatichnus and/or Talmontopus [1,41] and later named Schizograllator

and Zizhongpus [5,53]; several ichnotaxa erected based on

specimens from southern Africa [55] may also be synonymous

[41]. Like Anchisauripus, Kayentapus has been differentiated from

Grallator and Eubrontes almost exclusively on the basis of its

intermediate size between Grallator and Eubrontes [1,38,46,52];

recently discovered specimens from the SGDS differ only slightly

in size from Eubrontes tracks at the same locality. However, the

validity of Kayentapus has been upheld based on differences in the

degree of digit III projection and degree of divarication of digit IV;

K. minor and K. soltykovensis plot apart from other ichnotaxa in

proportions involving print length, width, and the degree to which

digit III projects beyond other digit impressions [46,53].

Description
The beginning of the SGDS.18.T1 trackway has a southerly

orientation, approximately parallel to the paleoshoreline trend.

The track maker first proceeded up the stoss side of an erosive

mega-ripple (berm) with an approximately 10u slope and then

stopped, placing both feet parallel. It then lowered its body,

bringing the metatarsals and ischial callosity into contact with the

substrate, creating nearly symmetrical, elongate ‘‘heel’’ and

circular ischial impressions (Figures 4, 5, Table 2.) These are

similar to previously described Eubrontes and Grallator traces [5,7,8].

The absence of a broad, linear impression immediately caudal to

the ischial callosity trace indicates that even while seated, the

Eubrontes track maker kept the proximal portion of its tail elevated.

A tail mark 31 cm in length and located 134 cm caudal to the

ischial callosity but aligned with the crouching trace axis indicates

that the distal tail made substrate contact.

Unlike in any other known resting theropod trace, its position

on a slope enabled the SGDS.18.T1 track maker to bring both

hands into contact with the substrate a short distance craniolateral

to the pes impressions. The manus impressions are unique,

exhibiting medially-directed digits unlike any previously seen in an

ichnite attributable to a theropod.

After resting in this position, the animal shuffled forward about

25 cm and paused once again, leaving new pes, metatarsal, and

ischial, but not manual, impressions. The new right pes impression

overprinted the caudal right manus impression, and the claw on

left pedal digit II registered a drag mark from the first resting

position to the second. After an indeterminate amount of time, the

theropod then stood and proceeded forward, left pes first. Once

fully erect, the track maker walked across the remainder of the

exposed surface at speeds (determined by stride lengths) that vary

with the undulating topography, leaving intermittent, thin, linear,

and nearly sagittal drag marks from the distal end of the tail

(Figures 4, 5). The majority of digit I (hallux) traces in the

remainder of the trackway can be seen only in the left footprints

(Table 1).

Table 1. Measurements (in cm; u as noted) of SGDS.18.T1 Eubrontes trackway and corresponding tail drag marks.

Track # L/R TL TTL TW MTD I–II I–III I–IV II–IV II–III III–IV PA P S

T1.1 R 34 34 28.5 (3.5) – – – 65u 33u 36u – – –

T1.2 L – – (27) – – – – – – – – – –

T1.3 R – – – – – – – – – – – – –

T1.4–1.9 associated with resting traces – see Table 2

T1.10 L (38) (42.5) (29) (4.5) 91u 139u (187u) 81u 45u 48u – – –

T1.11 R 39 39 28 3.5 – – – 61u 36u 32u 166u10–12 10110–11 20010–12

T1.12 L (36) (36) (26) (3.5) 60u 110u 160u 82u 49u 36u 160u11–13 10711–12 20011–13

T1.13 R (35) – (24–30) (3.5) – – – – – – 175u12–14 10212–13 (195)12–14

T1.14 L (25–43) – (25) (2.5) – – – – – – 157u13–15 (100)13–14 (232)13–15

T1.15 R (37–43) – (25–32) (5–6) – – – (82u) (38u) (50u) 167u14–16 (145)14–15 (268)14–16

T1.16 L (35) 45.5 27 6.5 79u 155u 203u 102u 52u 53u 158u15–17 14515–16 26515–17

T1.17 R (38) – (26–30) (3.5) – – – – – – 150u16–18 13016–17 24816–18

T1.18 L 42 44 27 (1.5–2) 94u 132u (174u) 77u 41u 46u 156u17–19 14017–18 24717–19

T1.19 R 37 (42) 30 (1) – – – 70u 32u 42u 156u18–20 12718–19 22818–20

T1.20 L (41) 43 (30) (2–2.5) 68u 151u 186u 72u 32u 37u 157u19–21 11619–20 22619–21

T1.21 R (35) – 27 – (110u) (143u) (191u) (61u) (36u) (25u) 166u20–22 11920–21 23220–22

T1.22 L (45) – (33) (3) – – – 82u (42u) (43u) 167u21–23 12521–22 24321–23

T1.23* R (32) (32) (28) – – – – (59u) (30u) (34u) 179u22–24 (122)22–23 23622–24

T1.24* L (28) (25) – – – – – – – – 178u23–25 (103)23–24 20523–25

T1.25* R 32 (40) (27) – (132u) (168u) (202u) (72u) (34u) (29u) 176u24–26 10424–25 19624–26

T1.26* L (30) (42) (24) (6) – – – (59u) (27u) (34u) – 11025–26 –

Roman numerals = divarication angles between indicated pedal digits, L/R = left/right, MTD = maximum track depth, P = pace or step length, PA = pace angulation,
S = stride length, TL = track length (excluding metatarsal impression, if any), TTL = total track length (including metatarsal impression, if any), TW = track width, * = more
accurate measurements taken from 2000 M.G. Lockley tracing (CU Denver Tracks Museum Tracing # T472), although tracing provides little data and present track is
much more weathered, – = measurement not applicable or unobtainable.
Measurements in parentheses are approximations due to incompleteness, poor preservation of trace, or ambiguity in discerning track margin from surface sedimentary
structures; subscripted numbers indicate tracks between which P, PA, and S measurements are given.
doi:10.1371/journal.pone.0004591.t001
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Discussion

The medially-directed digit impressions on the manus traces

strongly support avian-style anatomical restrictions in the mobility

of the theropod wrist. Traditionally, theropod hands have been

reconstructed with palms facing ventrally, possibly in adherence to

the plesiomorphic tetrapod state retained in crurotarsan archo-

saurs [56,57] and in contrast to the palms-medial (semi-supinated)

condition seen in the adducted thoracic limbs of extant, avian

theropods [58,59]. Recent functional analyses of theropod

thoracic limbs from the Late Jurassic through the Late Cretaceous,

however, indicate that non-avian theropod arms were unable to

pronate/supinate, implying that the manus could only articulate in

line with the radius and ulna [58,60] such that the palms faced

medially, not ventrally, and the digital sequence (I–III, IV, or V)

proceeded from dorsal to ventral rather than medial to lateral.

This is the configuration present in birds when the forelimbs are

adducted. Although bipedal theropods would rarely have made

manus prints, ichnology provides a means of testing whether or

not very early theropods, for which wrist mobility is unknown, also

conformed to this pattern.

The only theropod body fossils thus far reported from the

Moenave Formation were attributed to the coelophysoid Mega-

pnosaurus sp. [61], which is too small to have made Eubrontes tracks.

The larger Dilophosaurus wetherilli from the overlying (and therefore

slightly younger) Kayenta Formation in Arizona [62], which is

either a coelophysoid [63] or a slightly more derived basal

neotheropod [64], is of appropriate size and a suitable model for

the SGDS.18.T1 track maker (Figure 7), though the existence of

Dilophosaurus itself during Moenave time is not indicated.

Coelophysoids, possibly including Dilophosaurus, are the most basal

definite theropods known; a few, more basal dinosaurs, such as

herrerasaurids and Eoraptor, may [65] or may not [66] be

theropods [67]. Such basal taxa are unknown from Jurassic strata

and thus are not parsimoniously potential SGDS.18.T1 track

makers.

Figure 6. Schematic diagrams of Late Triassic-Early Jurassic theropod tracks. A, Eubrontes, referred specimen, right pes (AC 45/1; traced
from [38]). B, Gigandipus, holotype, left pes (AC 9/16; traced from [47]). C, Anchisauripus, holotype, left pes (AC 4/6; traced from [38]). D, Grallator,
holotype, left pes (reversed image of natural cast) (AC 4/1a; traced from [38]). E, Dilophosauripus, holotype, ?left pes (UCMP 79690; traced from [50]). F,
Kayentapus, right pes from holotype trackway (UCMP 83668; traced and modified from [50]). Scale bar equals 5 cm. AC = Appleton Cabinet, Amherst
College, Amherst, Massachusetts, United States of America; UCMP = University of California Museum of Paleontology, Berkeley, California, United
States of America.
doi:10.1371/journal.pone.0004591.g006

Resting Theropod Trace

PLoS ONE | www.plosone.org 8 March 2009 | Volume 4 | Issue 3 | e4591



Although it is possible that the SGDS.18.T1 manus impressions

involve some movement of the appendages during registration,

they clearly exhibit impressions of at least two ungual-bearing

digits. The manus of basal, Early Jurassic theropods, such as

coelophysoids [62,68], bear unguals only on digits I–III; a non-

ungual phalanx terminates digit IV. If a manus with the avian-style

configuration was brought straight down in standard theropod

resting posture [60], only the ventral (lateral) surface of the

outermost digit would contact the substrate, and only one narrow

digit impression would be discernible; all other (‘‘inner’’) digits

would rest atop the outermost and not make discrete impressions.

In order to impress multiple digits from a crouching posture, the

arms must have been flexed at the elbow, and possibly the wrist,

approaching the inclined substrate at an acute angle such that the

dorsolateral surfaces of several differentially flexed, outermost

digits made contact (Figures 4, 5). The impression of diminutive

digit IV, if indeed this digit was not embedded wholly within the

palmar region, is indistinct within the larger overall impression.

Neither the belly nor the elevated, more proximal portions of each

forelimb created impressions. The arms must therefore have been

extended from the body, rather than the entire body leaning

forward far enough to bring arms in neutral resting posture into

substrate contact (Figure 7). The medially, not cranially, oriented

manual digits indicate that even while resting, the track maker was

incapable of supinating its hands to create palms-down impres-

sions, as suggested by anatomical studies of geologically much

younger theropods.

Several other manus- and pes-bearing tracks of Late Triassic-

Middle Jurassic ichnotaxa have been attributed to quadrupedal

theropods. In these specimens, hand print digital formulae and

proportions reportedly match the manus morphologies of

contemporaneous basal, coelophysoid theropods [62,68,69]. But

when discernible at all, these specimens exhibit forward-pointing

digit impressions. Such prints could only be manufactured by

hands with either fully pronated (or supinated) orientations,

anatomical impossibilities in more recent theropod osteological

reconstructions [58,60]. A brief review of these ichnotaxa is

therefore warranted: if correctly attributed to theropods, their

greater numbers suggest that SGDS.18.T1 is somehow anoma-

lous, either pertaining to a group of theropods that possessed a

different forelimb morphology, or not made by theropods. It

would also imply that the medially-facing manus configuration is

characteristic of, and evolved in, a smaller, less inclusive group of

more derived theropods.

Agialopous Branson and Mehl, 1932 [70]

Agialopous wyomingensis Branson and Mehl, 1932 [70]

The now-lost holotype specimens of the ichnite Agialopous

wyomingensis, from the Upper Triassic Bell Springs Formation of

Wyoming, ostensibly included a pair of purported manus and pes

prints [70]. Based on pes print morphology, Agialopous is likely a

junior synonym of Grallator [71]. The supposed manus print

appears to be a smaller pes print preserved somewhat differently

from that of the larger, main track and thus does not constitute a

genuine manus impression [71].

Atreipus Olsen and Baird, 1986 [6]

Atreipus ispp.

Table 2. Measurements (in cm; u as noted) of SGDS.18.T1 Eubrontes resting trace and immediately associated marks.

Track # L/R M/P TL TW MTD TTL I–II I–III I–IV II–III II–IV III–IV

TD1 n/a n/a 31 1.7 (1.5) n/a n/a n/a n/a n/a n/a n/a

Isch 1 n/a n/a 10.5 (9.5) – n/a n/a n/a n/a n/a n/a n/a

Isch 2 n/a n/a (11) (10) – n/a n/a n/a n/a n/a n/a n/a

T1.4 R P (34) (20) (4) (56) – – – 21u 56u 32u

T1.5 L P ?35 (24) 3.5 (46) – – – 37u (78u) (39u)

T1.6 R P (31) (20) (2) (42) – – – 33u 65u 28u

T1.7 L P (35) (24) 3.5 (53) 127u 148u 174u 22u 55u 34u

T1.8 L M (22) (12) (2) n/a n/a n/a n/a n/a n/a n/a

T1.9 R M (18) (8.5) (2) n/a n/a n/a n/a n/a n/a n/a

Cranial Isch 1 to cranial Isch 2 (25)

Cranial R P 1 digit IV to cranial R P 2 digit IV (21)

Cranial L P 1 digit IV to cranial L P 2 digit IV (24)

Medial L M to medial R M 55

Medial 1st L P to medial 1st R P (21)

Medial 2nd L P to medial 2nd R P (23)

Exterior L M to exterior R M 73

Exterior 1st L P to exterior 1st R P (65)

Exterior 2nd L P to exterior 2nd R P (56)

Cranial end of TD1 to caudal end of Isch 1 134

Caudal end of TD1 to caudal end of Isch 1 165

Roman numerals = divarication angles between indicated pedal digits, Isch = ischial callosity impression, L/R = left or right, M/P = manus or pes, MTD = maximum trace
depth, TD = tail drag, TL = total trace length (excluding metapodial impression, if any), TTL = total trace length (including metapodial impressions, if any), TW = total trace
width. n/a = measurement not applicable, – = measurement not obtainable.
Measurements in parentheses are approximations due to incompleteness, poor preservation of trace, or ambiguity in discerning track margin from surface sedimentary
structure.
doi:10.1371/journal.pone.0004591.t002
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Thorough reviews of this controversial ichnogenus and its

multiple ichnospecies have previously been published [6,46,69,72],

but it continues to vacillate between assignments to theropodan or

ornithischian track makers. The ichnotaxon is universally

quadrupedal, possessing both manus and pes prints. As far as is

currently known, it is also exclusively Late Triassic [6]. The pes

prints are extraordinarily similar to those of Grallator, and indeed

many examples of Atreipus have, at one time or another, been

referred either to Grallator or other similar theropod ichnotaxa

(e.g., Anchisauripus). Atreipus has typically been considered evidence

that at least some early theropods were at least facultatively

quadrupedal [43,46,69,73–76]. The highly digitigrade manus

prints of some ichnospecies are tridactyl; others are tetradactyl; in

many ways, both the pes and especially manus prints resemble

those of the non-dinosaurian, chirotherian ichnotaxa [6,72]. In all

ichnospecies, the manual digit impressions face cranially, roughly

paralleling the pedal digits. In most ichnospecies, the manus

impressions include marks made by small claws, even on the

impression of digit IV. The small claw size has led some [6,7,77–

79] to settle on a track maker that was either an early, non-

saurischian and non-ornithischian dinosaur, or a bona fide

ornithischian, albeit one with no known skeletal correlate. A third

interpretation of Atreipus as made by a non-dinosaurian dinosauri-

form [80] has also been proposed [72]. As noted above, the

functional morphology of the theropod forelimb [58,81] makes

assignment of Atreipus to theropods unlikely.

Banisterobates Fraser and Olsen, 1996 [82]

Banisterobates boisseaui Fraser and Olsen, 1996 [82]

The holotype of Banisterobates boisseaui is a single natural cast of

an unusually small trackway consisting of three pes and two manus

prints from the Upper Triassic Dry Fork Formation (Newark

Supergroup) of Virginia. They have proven difficult to attribute to

any higher taxon [82]. The track maker appears to have had a

functionally tetradactyl pes with a short, cranially-oriented hallux;

the tracks also exhibit faint ‘‘heel’’ impressions. The manus prints

appear to be tridactyl, with forward-pointing digits, but lack

distinct claw impressions. Its describers [82] ruled out non-

dinosauriform archosaurs, but the tracks are morphologically

consistent with either non-dinosaurian dinosauriforms (e.g.,

Marasuchus [83]), basal theropods, or basal ornithischians. They

preferred an ornithischian interpretation based on the forward-

pointing hallux and presence of manus impressions.

Changpeipus Young, 1960 [84]

Changpeipus carbonicus Young, 1960 [84]

Closely associated with one of several, apparently isolated,

tridactyl theropod tracks named Changpeipus carbonicus from the

?Middle Jurassic of Liaoning, China, was a tiny tridactyl print that

Figure 7. Restoration of Early Jurassic environment preserved at the SGDS, with the theropod Dilophosaurus wetherilli in bird-like
resting pose, demonstrating the manufacture of SGDS.18.T1 resting trace. By Heather Kyoht Luterman.
doi:10.1371/journal.pone.0004591.g007
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was interpreted as a manus impression of a theropod, although

pertaining to a different individual than the pes print maker [84].

There is, however, no reason to assume that this is correct: in

isolation, it appears to be a small pes print of a theropod (whether

or not the same ichnotaxon) [69], and its position lateral to the

nearest similarly-oriented pes print translates into a bizarre,

untenable posture for any known theropod. It does not represent a

theropod manus impression.

Delatorrichnus Casamiquela, 1964 [85]

Delatorrichnus goyenechei Casamiquela, 1964 [85]

When first described [85], Delatorrichnus goyenechei was considered

to have been made by a theropod progressing quadrupedally. Few

other tracks have been referred to this Atreipus-like ichnotaxon

[79], but include some from the Kayenta Formation of

southeastern Utah that lack manus prints [86]. Like Banisterobates,

Delatorrichnus tracks are quite small and possibly represent juveniles

of a larger taxon [86]. Delatorrichnus manus prints are only slightly

smaller than, and lie immediately adjacent to, their associated pes

prints. Like Atreipus and Banisterobates, the digits of the manus prints

are oriented cranially, diverging only slightly from the axes of the

pedes [85], and thus are unlikely to represent theropods.

Kayentapus Welles, 1971 [50]

Kayentapus minor Weems, 1992 [46]

A small percentage of a large number of tracks assigned to

Kayentapus minor from the Upper Triassic Groveton Member of the

Bull Run Formation (Chatham Group, Newark Supergroup) were

reportedly accompanied by largely amorphous, ovoid impressions

that have been interpreted as manus impressions [10] based on their

relative positions with respect to their associated pes prints, although

the positions of the ‘‘manus’’ impressions were inconsistent between

specimens. Similar shapeless impressions were reported near a track

of Eubrontes in the roughly coeval East Berlin Formation of

Connecticut [9] and with a crouching Grallator specimen from the

Navajo Sandstone at Coyote Buttes in south-central Utah [8].

Weems [10] interpreted the ‘‘manus’’ impressions of Kayentapus as

made by theropods that hyperextended their manual digits when

dropping into a quadrupedal stance (a posture also used to explain

the morphology of the manus impressions associated with the

crouching Grallator trace [8]). Tacitly, this interpretation also applies

to the Connecticut Eubrontes track and Coyote Buttes Grallator

specimen, as well as tracks of Atreipus and Banisterobates and tracks

typically assigned to ‘‘prosauropods,’’ such as Navahopus and

Otozoum. This interpretation posits that manual digit impressions

are absent because the digits were never impressed in the first place;

the amorphous impressions represent palm-only impressions. This

hypothesis was supported by observations that the manual

phalanges of coelophysoid theropods (the most likely track makers)

exhibit proximodorsally extended distal articular surfaces that

permitted digit hyperextension [62]. Weems [10] and others [60]

have argued that this ability in theropods enhanced a raptorial

function of the manual digits during predation, but Weems actually

ascribed such ability and behavior to all Late Triassic-Early Jurassic

saurischians, including basal sauropodomorphs (‘‘prosauropods,’’

specifically Massospondylus), which are not typically perceived as

predators; the need for this ability in those taxa was not explained.

We accept the hyperextensive ability in the studied theropod

taxa, but challenge the adaptive scenario supporting it [10]: to

prevent the manual claws from becoming dull with repeated contact

with the sediment. This seems unsatisfactory for several reasons:

1) It does not adequately explain why this ability was absent in

later theropods, especially many maniraptorans, such as

deinonychosaurs, for which the arms have generally been

ascribed a raptorial function. It is additionally peculiar

because Cretaceous examples of ostensible theropod claw

marks are known [87].

2) The regenerative ability of keratinous ungual sheaths were

almost certainly sufficient to heal any damage occasional contact

with coarse sediment may have inflicted. The ‘‘prosauropod’’

tracks Weems discusses provide a good analogy: at least some

basal sauropodomorphs (such as Melanorosaurus) were probably

facultatively quadrupedal [88] and had even larger manual

claws than contemporaneous theropods. Melanorosaurus, and

perhaps other taxa, re-evolved an at least semi-pronated manus

as an adaptation for propulsive forelimb motion during

quadrupedality [88]. Tracks possibly made by quadrupedal

basal sauropodomorphs, such as Navahopus (an alternative

affiliation of the Navahopus track maker has been proposed

[89]), show that the track makers regularly placed these claws

into a variety of sedimentary substrates, including coarse,

quartzose sand [90,91]. Regular contact with any substrate, and

coarse sand in particular, would have worn down the keratinous

sheaths of the claws much faster than would have occasional

contact with the fine mud in which tracks are typically

preserved, yet the Navahopus track maker either lacked or did

not utilize an ability to hyperextend the manual digits to keep

them from contacting the substrate – indeed, the holotype of

Navahopus [90] represents an animal climbing a dune face of

loose sand, wherein use of the claws to find additional purchase

would be useful.

2) Weems [10] specifically stated that the theropod makers of

the Kayentapus prints (as well as Atreipus and Banisterobates, for

which he accepted a theropod track maker) only occasionally

adopted a quadrupedal stance, and then only when resting –

not for prolonged locomotion. At rest (i.e., with little or no

movement), manual claws could have entered the finer-

grained, less abrasive substrate with little potential for wear.

Moreover, many later theropods, particularly some Jurassic

and Cretaceous maniraptorans, have been interpreted as

arboreal [92,93–95], demonstrating a need to actively use

claws (including manual unguals) to aid in climbing – in short,

to regularly and readily place their claw tips in contact with

rough, abrasive surfaces (tree trunks and branches). If the

capacity of theropods to rapidly regenerate their keratinous

unguals was insufficient to permit occasional resting in

contact with mildly abrasive sediment, then it certainly was

insufficient for climbing or even raptorial functions.

3) As noted above, the ability of a theropod to make a palm-only

manus impression is contraindicated by functional studies:

the inability to pronate/supinate the distal forelimb would

make it impossible for the manus to be oriented in such a way

that the palmar surface of the manus could be brought into

contact with the substrate. The long axes of the ovoid

‘‘manus’’ impressions from Virginia [10] and Utah [8] are

oriented approximately parallel to the long axes of their pes

prints. As ostensible impressions made by adjacent distal

metacarpals, this means that the digits of the manus that

made this print would have to be oriented either strongly

outward or strongly inward – in either case, almost

perpendicular to the orientation of the pedal digits, in

marked contrast to the directions of the manual digits in other

ostensible theropod manus prints (e.g., Atreipus and Banister-

obates) and in anatomically unfeasible positions.

Invoking hyperextension of the manual digits when adopting a

quadrupedal stance seems wholly unnecessary, and we doubt

Resting Theropod Trace
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whether this happened regularly. Thus, it is impossible to verify

whether or not any of the shapeless impressions accompanying the

Culpeper Kayentapus or Coyote Buttes Grallator prints actually are

manus impressions. It is possible that these impressions represent

not the palmar but the ventral (lateral, or outermost) or dorsal

surface of the manus and/or digits, made in a fashion similar to

that described here for SGDS.18.T1 and in agreement with the

understood function of the theropod forelimb. Unlike

SGDS.18.T1, however, multiple, distinct digits did not leave

impressions.

Masitisisauropus Ellenberger, 1972 [55]

Masitisisauropus palmipes Ellenberger, 1972 [55]

Tracks assigned to Masitisisauropus palmipes were initially thought

to represent manus and pes prints of a possibly feathered, Late

Triassic bird or bird-like non-avian theropod [96]. The purported

feather impressions are suspect [97]; Masitisisauropus may be

synonymous with Grallator [76,98], but the association of the

purported manus prints with the pes prints has not yet been

reinvestigated, and the possibility remains that, like Agialopous, the

manus and pes prints represent unrelated pes tracks of different

individuals.

Other Tracks

A poorly preserved, Early Cretaceous trackway from England

has been interpreted as a trace of a large, quadrupedal

‘‘carnosaur’’ (referred to the ‘‘wastebasket’’ taxon Megalosaurus)

[69,98,99]. The poor preservation of these tracks, and their

association with more common Iguanodon-type footprints, many of

which were made by quadrupeds, has led to doubt about the

correct affinity of these tracks.

Other accounts of possible theropod paired manus and pes

prints are either poorly preserved [9], consist of tracks of multiple

taxa in close proximity, or demonstrably pertain to ornithischians

[5,69].

Conclusions
In summary, other ostensible theropod manus prints are either

dubiously attributable to theropods, dubiously made by the manus

of a pes-print maker, or uninformative with regard to the track

maker’s forelimb functional morphology. Because the crouching

traces in the trackway SGDS.18.T1 match the architecture of

known theropods, we support the alternative interpretation that

most, if not all, other prints showing manus impressions instead

pertain to ornithischian or other non-theropodan dinosaurs or

dinosauriforms [6] with functionally tridactyl pedes. SGDS.18.T1

therefore includes the only unambiguous theropod manus

impressions recognized to date and indicates that the avian

orientation of the manus, with medially-facing palms, evolved very

early within the Theropoda. Less parsimoniously, this posture

evolved in immediate dinosaur ancestors; absence in other

dinosaurs would thus constitute reversals.

The lack of marks in SGDS.18.T1 made by the distal thoracic

and pelvic limbs and the ventral portion of the pelvis indicate that,

while resting, even the earliest theropods adopted a modern ratite-

like [100] posture (Figure 7) with the legs folded symmetrically

beneath the body such that the weight of the body was distributed

between each metatarsus and pes. The oldest known body fossil

evidence for adoption of this posture in a theropod is preserved in

Late Cretaceous oviraptorosaurians [101] and two Early Creta-

ceous troodontids [102,103]. Except in a specimen from the

Navajo Sandstone at Coyote Buttes, Arizona [8], the metatarsal

and pes impressions of Grallator and other theropod resting traces

exhibit ambiguous symmetry [5,7]. The clear symmetry of

SGDS.18.T1 demonstrates that even some of the oldest, basal-

most theropods engaged in this additional avian-style behavior,

which therefore also evolved very early in the theropod lineage or

was retained in theropods from pre-dinosaurian archosaurs.

Materials and Methods

Latex peels of the SGDS.18.T1 crouching trace are also

reposited at the SGDS and at the University of Colorado at

Denver Dinosaur Tracks Museum (UCD) as UCD 177.77.

Measurements were made using a square-meter grid with 10 cm

partitions and a Brunton compass, and from tracings of the

ichnites (reposited as UCD T 472 and T 642) using tape measures

and protractors. Photogrammetry (Figure 4) utilized an Olympus

C8080 Wide Zoom digital camera mounted on a tripod equipped

with a right-angle extension arm that allowed the camera to be

positioned perpendicular to the track surface to minimize

distortions. The stereoscopic images used a ground sample

distance of 0.6 mm and were processed using ADAM Technology

3D Analyst, resulting in a 3D digital terrain surface and

orthorectified images [104]. Comparative analysis involved

examination of original materials and published descriptions.
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7. Gierliński G (1994) Early Jurassic theropod tracks with the metatarsal

impressions. Przegl Geol 42: 280–284.

Resting Theropod Trace

PLoS ONE | www.plosone.org 12 March 2009 | Volume 4 | Issue 3 | e4591
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