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Abstract

Cell growth critically depends on signalling pathways whose regulation is the focus of intense research. Without utilizing a
priori knowledge of the relative importance of pathway components, we have applied in silico computational methods to
the EGF-induced MAPK cascade. Specifically, we systematically perturbed the entire parameter space, including initial
conditions, using a Monte Carlo approach, and investigate which protein components or kinetic reaction steps contribute to
the differentiation of ERK responses. The model, based on previous work by Brightman and Fell (2000), is composed of 28
reactions, 27 protein molecules, and 48 parameters from both mass action and Michaelis-Menten kinetics. Our multi-
parametric systems analysis confirms that Raf inactivation is one of the key steps regulating ERK responses to be either
transient or sustained. Furthermore, the results of amplitude-differential ERK phosphorylations within the transient case are
mainly attributed to the balance between activation and inactivation of Ras while duration-differential ERK responses for the
sustained case are, in addition to Ras, markedly affected by dephospho-/phosphorylation of both MEK and ERK. Our sub-
module perturbations showed that MEK and ERK’s contribution to this differential ERK activation originates from
fluctuations in intermediate pathway module components such as Ras and Raf, implicating a cooperative regulatory mode
among the key components. The initial protein concentrations of corresponding reactions such as Ras, GAP, and Raf also
influence the distinct signalling outputs of ERK activation. We then compare these results with those obtained from a single-
parametric perturbation approach using an overall state sensitivity (OSS) analysis. The OSS findings indicate a more
pronounced role of ERK’s inhibitory feedback effect on catalysing the dissociation of the SOS complex. Both approaches
reveal the presence of multiple specific reactions involved in the distinct dynamics of ERK responses and the cell fate
decisions they trigger. This work adds a mechanistic insight of the contribution of key pathway components, thus may
support the identification of biomarkers for pharmaceutical drug discovery processes.
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Introduction

Deregulated cell growth, a hallmark of cancer, is associated with

perturbed signal transduction [1]. In response to external stimuli

by specific ligands, receptor tyrosine kinases (RTKs) can alter

cellular phenotypes such as cell survival, proliferation and

migration [2]. There have been a number of different intracellular

signaling pathways activated by RTKs, including epidermal

growth factor (EGF) signaling [3]. The output of the signal

transduction frequently targets the activation of the extracellular

signal-regulated kinase (ERK), which is known to be involved in

solid tumor formation by regulating cell cycle progression [4,5].

Previous experimental studies support differential duration of

ERK activity as being critical for cell signaling decisions [6–11].

However, it still remains uncertain which mechanisms control

those phenotypic decisions. Thus, further characterizing the sub-

cellular reaction steps or protein molecules that are critical for

differential control of cellular activities is important not only to

better understand the dynamics of complex signaling system for

predictive purposes, but also to identify potential therapeutic

targets for drug development [12].

The continuous advancement of high-throughout technologies

in the post genomic era presents the challenge of how to interpret

an ever growing amount of molecular data. Numerous experi-

mental works have attempted to identify particular signaling

molecules and their mechanisms, for example, by constructing

mutants, overexpression, or reconstitutions of arrangement of

genes or proteins [6]. Using experimental techniques alone,

however, will make it difficult to identify decisive reaction steps or

molecules that control for instance differential ERK responses.

This is not only due to the inherently complex structure and

function of various signal transduction pathways, but also because

of marked nonlinearity within the system. Thus, it is useful to

introduce computational, data- or hypothesis-driven approaches in

an effort to facilitate the discovery of cell signaling decision factors

[13]. Also, complex signaling pathways can be treated as a tightly
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connected network that orchestrates regulation of a specific

functional behavior, rather than as individual, separate mecha-

nisms by focusing on a specific oncogenic molecule or its activating

event alone [14].

In this paper, we therefore apply a systems-level, multi-

parametric perturbation strategy using a Monte Carlo (MC)

simulation to discover molecules or reaction steps that orchestrate

differential mitogen-activated protein kinase (MAPK) signaling

responses. The model system is an EGF-induced signaling

pathway, originally compiled by Brightman and Fell [15]. We

have disturbed every single parameter without a priori knowledge

on the relative importance of certain parameters and have

generated massive samples of multiple perturbations for all

parameters using our MC simulation; the peak amplitude (height)

and duration (width) of ERK profiles (e.g., transient vs. sustained) are

then used as differentiation measures [16,17]. Our analysis reveals

the dominant role of intermediate module proteins such as Ras

and Raf as key controlling factors for the distinct dynamics of

ERK activation. Although MEK and ERK in the MAPK module

also showed sensitivities, they alone did not affect differential ERK

dynamics without the co-perturbation of intermediate module

proteins. This may implicate a cooperative regulation mode of key

components in cellular responses. In addition, initial concentra-

tions of the key proteins in corresponding reactions are also

actively involved in determining the cellular responses. Lastly, we

note that here identified critical molecules have already been

experimentally validated as biomarkers.

Methods

EGFR Cell Signaling Model
The EGF receptor (EGFR) system implemented is based on the

Brightman and Fell model (Figure 1) [15]. Although this pathway

representation is moderately-sized, it covers the major cascade of

an EGF-induced Ras-dependent MAP kinase signaling pathway

with one feedback loop. Here, we provide a brief biological

Figure 1. Schematic view of the EGF-R signal transduction pathway [15]. Top-level, intermediate, and MAP kinase modules are colored in
orange, magenta, and navy, respectively. Filled arrowheads represent protein-protein binding reactions whereas open arrowheads denote catalytic
interactions. Rs, free cell surface receptor; L, ligand; Ri, internal receptor; Li, internal ligand; RL, cell surface R-L complex; R2L2s, cell surface dimmer
complex of RL; R2L2i, internalized dimmer complex of RL; CPP, coated pit protein; R2L2-CPP, receptor-ligand-coated pit protein complex; R*, all active
species of R, i.e., R2L2s, R2L2i, and R2L2-CPP; Shc, Src homology and collagen domain protein; ShcP, phosphorylated Shc; GS, complex of Grb2,
growth factor receptor binding protein 2, and SOS, Son of sevenless homologue protein; GSP, phosphorylated GS; ShcGS, complex form of Shc and
GS; Ras-GDP, inactive, GDP-bound Ras; Ras-ShcGS, complex form of Ras-GDP and ShcGS; Ras-GTP, active, GTP-bound Ras; GAP, Ras GTPase activating
protein; MEKP and MEKPP, phosphorylated forms of MEK; ERKP and ERKPP, phosphorylated forms of ERK.
doi:10.1371/journal.pone.0004560.g001
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description of the signaling cascade. This network is divided into

three subsystems according to somewhat separable roles and

topographic locations.

The mechanisms in the first or top module occur close to the

plasma membrane, and are related to the activation of the EGF

receptor. First, the corresponding ligand EGF (L) as the only

external stimulus binds to a monomeric receptor (R), forming an

RL complex prior to being dimerized; at this point, intrinsic

protein tyrosine kinases are activated. Only the activated dimer

complex species are internalized through binding to cell-surface

coated pit adaptor proteins (CPP). These complexes are then

dissociated and degraded, and the monomeric species are recycled

to the plasma membrane.

In the second or intermediate module, the activated receptor (R*)

catalyzes the adaptor protein Src homology and collagen domain

protein (Shc). Phosphorylated Shc (ShcP) then forms a ternary

complex, ShcGS, with a constitutive complex of growth factor

receptor binding protein 2 (Grb2) and Son of sevenless homologue

protein (SOS), the guanylnucleotide exchange factor. Subsequent-

ly, the ShcGS complex recruits cytoplasmic SOS to the

membrane-bound Ras protein, where the inactive Ras-GDP is

activated to Ras-GTP through interaction with ShcGS. There are

two downstream options with regards to active Ras-GTP: it either

binds to GAP (GTPase-activating protein) to stimulate the GTPase

activity of Ras so that RasGTP is converted to inactive RasGDP;

or, Ras-GTP binds to Raf, forming the Ras-Raf complex such that

Raf is recruited to the plasma membrane before the complex

facilitates the Raf kinase activation (Raf*). The activated Raf in the

latter option phosphorylates the mitogen-activated protein kinase

(MAPK) cascade, which constitutes the third module.

In this third or MAPK module, both MEKP and MEKPP

activate ERK by phosphorylating a tyrosine and a threonine

residue, but only ERKPP is known to be active. ERKPP leads to

the dissociation of the ShcGS complex through feedback

regulation [18]. Raf*, MEKP, MEKPP, and ERKPP are

dephosphorylated by the same phosphatase, protein phosphatase

2A (PP2A). (We note that there have been several studies that

focused on understanding the dynamics of phospho-/dephosphor-

ylation of this MAPK cascade module by combining in silico

modeling with experimental data [19–23]).

Multi-Parametric Global Sensitivity Analysis
Parameter Sensitivity Analysis based on a Monte Carlo

Simulation. The EGFR signaling cascade system implemented

here consists of 28 kinetic reactions involving 27 different protein

molecules and 48 parameters. In general, these reactions follow

mass action kinetics except for those catalyzed by enzymes, which

follow Michaelis-Menten (MM) kinetics. The main goal of

procedures detailed in this section is to calibrate key pathway

elements (e.g., parameters, molecules, or reaction structures) that

are chiefly responsible for processing cellular phenotypic decisions

within a tolerable range. To this end, any approaches may face the

following two challenges: First, even for a moderately sized cell

signaling network, it is non-trivial to track the molecules’ temporal

behavior as kinetic parameters are often still unknown and difficult

to measure experimentally. Second, even for known parameters,

detailed quantitative measurements of protein activities may have

been conducted under experimental condition that are far from

the realities of an in vivo environment and that vary between

experiments [24]. Thus, one may have to rely on potentially

inaccurate measurements of input parameter sets.

We have therefore applied an approach that can avoid heavy

dependence on a given set of initial parameter values. At the core

is a Monte Carlo (MC) simulation that explores certain ranges of

the parametric space around a given initial parameter value and

generates samples of numerous parameter vectors. These vectors

contain a set of multiply perturbed individual elements and are

randomly generated using uniform distribution functions within

known ranges of parameter uncertainty. This MC simulation is

used for the entire parametric uncertainty analysis (see Figure
S1). The detailed procedure for our MC simulation-based global

uncertainty analysis is as follows [25,26]:

Step 1. Define a range for k parameters (or every initial

condition) involved in the signaling cascade, reflecting the

uncertainties of signaling responses. The lower and upper bound

of ranges has been suggested by [27], which reflects a variation of

approximately (+/2) 2 orders of magnitude for the initial value of

each parameter.

Step 2. Generate a series of independent random numbers

using a uniform distribution for each parameter within defined

ranges of uncertainties at Step 1. The total number of generated

samples (N = 10,000) is assumed to be independent of each other

and also sufficiently large in number.

Step 3. Run the ordinary differential equation (ODE) model

for each set of k parameters and calculate an objective function

value for the ERK profile. The objective function is defined as the

sum of the squared errors of the active ERK level between the

unperturbed (unper) and the perturbed (per) system as follows:

fobj ið Þ~
XNT

j~1

ERKPPper jð Þ{ERKPPunper i,jð Þ
� �2 ð1Þ

where j is the number of time points and i is the total number of

samples generated by the MC simulation (i = 1, …, N,

N = 10,000).

Step 4. Compare the objective function value to a threshold

value. In this study, the threshold is defined as the sum of the

squared errors between the active ERK profile from the

unperturbed system and the average active ERK profile from all

samples. Based on the threshold, each parameter set is classified

into either a tolerable sample group (m samples) when the error

sum of the ERK signal from a certain parameter set is below the

threshold, or an intolerable sample group (n samples) when it is

above the threshold. Using the threshold, 99% of the generated

samples have been classified into the tolerable group. We only

retain the tolerable group samples and discard the others. Note

that the sum of m and n is equal to N, the total number of samples

generated by the MC method.

Step 5. Distinguish differential profiles of ERK responses

using tolerable group samples only. In this study, we consider three

cases of two possible differential ERK responses: i) transient ERK

level (T) vs. sustained level (S), ii) lowly transient ERK level (L-T)

vs. highly transient level (H-T), and iii) lowly sustained ERK level

(L-S) vs. highly sustained level (H-S). In order to classify samples of

the tolerable group into the two types for each case, we introduce

two characteristic measures, i.e., amplitude and duration of the ERK

profile. In this study, we define the ‘amplitude’ as the maximum

level of ERK over a time period of 60 min and the ‘duration’ as

the time period from the point of the maximum ERK level to the

point of reaching 10% of the maximum, within 60 min (Figure 2).

In order to efficiently classify and collect samples from the tolerable

sample group for each case, we first sorted the samples with the

maximum amplitude of ERK in ascending order. Then, for case 1 (T

vs. S), transient samples are collected as those satisfying the criterion

that the ERK level at the last time-point observation (i.e., at 60 min) is

less than 10% of the maximum amplitude; sustained samples are

collected according to the maximum duration, in addition to
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considering the maximum amplitude. For case 2 (L-T vs. H-T), L-T

group samples are those below the median profile of ERK in case 1;

H-T samples are those above the median. For case 3 (L-S vs. H-S), we

further extracted samples with the duration of more than 30 min

from the sorted samples with the maximum amplitude level in case 1.

Because the maximum amplitude of ERK often occurs within the first

10 to 20 min (within the 60 min period), we assumed sustained

samples would have the duration of more than 30 min; accordingly,

samples of the duration of less than 30 min have been discarded.

From the extracted sample list (ordered from the sample with the

longest duration to that with the shortest) we have collected L-S

samples from the bottom (shortest duration sample) of the list, while

H-S samples have been taken from the top (longest duration sample)

of the sample list. Selected were 367 samples for T and 500 samples

for S in case 1, 365 samples for L-T and 367 samples for H-T in case

2, and 100 samples for both the L-S and H-S in case 3. Note that the

number of samples for each group is arbitrarily chosen. During the

process, our goal was that collected samples for each case have

distinctively separable characteristics, so that results from the multi-

parametric global sensitivity analysis can provide recognizable

features for each comparison.

Step 6. Evaluate parametric sensitivities by comparing the

parameter distributions between two sample sets of differential

ERK responses for all three cases (i.e., T vs. S, L-T vs. H-T, and

L-S vs. H-S). Here, we have simply calculated cumulative

frequency (CF) distributions to identify informative parameters

and reactions that contribute to the difference between two

differential responses. For instance, if the CF distributions between

the two groups for a certain parameter are distinctively different,

i.e., yielding low correlation coefficients between the two CF

distributions, the parameter is classified as a sensitive, fragile, or

informative factor because it contributes to the control of a

particular type of differential ERK responses; otherwise, it is

classified as an insensitive, robust, or uninformative factor.

In the following section, we briefly introduce overall state

sensitivities (OSSs) [28]. OSS is obtained by perturbing one single

parameter at a time while keeping all other parameters fixed. This

is in contrast to our MC-based approach that changes multiple

parameters simultaneously. We will then analyze how the single

parametric global sensitivity analysis can strengthen or weaken the

results from the multi-parametric approach.

Overall State Sensitivity Analysis
The OSS index is often used to capture global robustness of

state variables upon parameter perturbations [29]. For example, in

a simple enzyme mediated reaction, let the Michaelis constants Km

be a parameter p, and the concentration of the substrate or

activation level of the protein be a variable X. Then the parameter

sensitivity of X regarding p is defined by

SX ,p~
LX

Lp

p

X
: ð2Þ

With this general definition in mind, to calculate the overall

state sensitivity for the individual element j of a perturbed

Figure 2. Transient and sustained time profiles of ERK activation. a) definitions of amplitude and duration (the ‘amplitude’ is defined as the
maximum level of ERK over a time period of 60 min, and the ‘duration’ as the time period from the point of the maximum ERK level to the point of
reaching 10% of the maximum within 60 min), b) transient ERK level (T) vs. sustained level (S), c) lowly transient ERK level (L-T) vs. highly transient
level (H-T), and d) lowly sustained ERK level (L-S) vs. highly sustained level (H-S).
doi:10.1371/journal.pone.0004560.g002
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parameter set, the OSSs are integrated over discrete time t0 . . . tnT

as described previously [28]:

SOj
tð Þ~ pj

NS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XNT

k~1

XNS

i~1

1

xi

Lxi tk,t0ð Þ
Lpj

� �2
vuut : ð3Þ

Here, NT represents the number of time points while NS denotes

the number of protein molecules or protein complexes in the system.

OSS describes how robust a system is to a single parameter change

while the other parameters are fixed. We perturbed at most (+/2)

50% of the original parameter value. Note that all parameter

sensitivities are only valid in a local space, i.e., within the proximal

space of the unperturbed parametric space.

All numerical simulations of biochemical reaction-ODEs and

MC-based simulations were implemented in MATLAB (version

7.5.0, MathWorks, Natick, MA). We used ode15s function for

solving the nonlinear ordinary differential equations with 300 time

points for a 60 min simulation. Using a workstation with a

2.00 GHz CPU and 4.00 GB of RAM it took approximately

3.5 hours of CPU time to simulate 10,000 samples for the entire

pathway run.

Results

The nominal parameter set, initial conditions, and their

perturbed ranges are depicted in Table 1 and Table 2. Note

that the nominal parameter set of the EGFR model gives a

transient pattern of ERK activity. In this section, we show results

of comparing the aforementioned three cases: i) transient vs.

sustained ERK profiles, ii) lowly transient vs. highly transient

ERK profiles, and iii) lowly sustained vs. highly sustained ERK

profiles. For each case, we examine which pathway components

influence the differential responses most.

What are the most informative reactions that control
transient vs. sustained ERK responses (i.e., T vs. S)?

First, we investigated the differentiating pathway parameters

between transient and sustained activation of ERK profiles. The

cumulative frequency (CF) distributions of transient and sustained

cases for each parameter are shown in Figure 3; correlation

coefficients between the two CF distributions are shown in Table
S1, where larger correlation coefficients represent more robust

parameters.

The multi-parametric analysis based on the MC method

identifies k14, k16, k19, and k25 as the most sensitive forward

mass-action kinetic parameters while no significant effects result

from reverse kinetic parameters. Furthermore, the reaction rates of

V18, V20, and mildly V24 and V26 appear to be closely involved

in controlling the differential ERK responses. Finally, with regards

to the Michaelis constants, Km18 and Km22–Km26 are the

dominating parameters. Together, this indicates that the reaction

steps R14, R16, R18, R19–R20, R22, R24, and R26 are those

primarily controlling differential ERK responses (i.e., a transient

vs. a sustained activation profile). The corresponding protein

molecules involved in those reactions include active Ras and Raf

(RasGTP and Raf*), MEK, and ERK.

In taking a detailed look at the reactions, first, R14 and R16 are

those that balance active Ras between an inactivated and activated

state either by binding to GAP (to be finally converted to its

inactive form (RasGDP)) or by binding to Raf (to further process

the downstream pathway of active Raf). This activation of Raf

becomes important for initiating the phosphorylation of MEK to

MEKP through R19 (Note: reaction steps from R19 to R26

denote the phosphor-/dephosphorylation reactions in the MAPK

module). The reverse reaction (R18) that dephosphorylates active

Raf (Raf*) into its inactive form is also found to be a sensitive,

controlling factor. We also find that those samples that show

transient ERK activation tend to have smaller values of k14, V20,

Km18, Km22 (and less so of Km25), but larger values in k16, k19,

V18, and Km 24, Km26 (see Figure S2). For instance, the Ras

dephosphorylation reaction rate (k14) is slower for the transient

case than for the sustained one. Besides, higher frequencies of

smaller Km18 values indicate that the affinity of active Raf to its

specific enzyme PP2A is far more stable and stronger, resulting in

a much faster Raf inactivation in the transient as compared to the

sustained case. The higher frequency distribution of smaller Km22

also indicates faster MEKPP dephosphorylation in the transient

case (Figure 4). Similarly, the larger k16 value expresses faster

reaction activity in the transient case, and the distribution of larger

values of parameter V18 indicates that R18 occurs much faster as

well (Fig. 4). Lastly, larger constants Km23, Km24, and Km26

imply less active ERK phospho-/dephosphorylation reactions in

the transient case, compared to the sustained case. These

observations reveal that although the downstream signal to the

ERK activation occurs much faster, it is ‘short-lasting’, thus

producing a transient behavior. In contrast, for the sustained ERK

response, active Raf (Raf*) lasts longer so that dephosphorylated

MEKP and MEKPP have a higher chance to be re-activated,

which will eventually produce a prolonged signal for ERK

activation. Taken together, the association of both active Ras

and Raf are crucial for controlling the response of ERK in the

MAPK signaling cascade. Furthermore, reactions related to

kinases and phophatases for both MEK and ERK are also shown

to be important for distinguishing between transient or prolonged

ERK activation as a consequence of EGF stimulation.

To examine the impact of specific pathway modules on

differential ERK activities, we divided the entire EGFR pathway

into three modules and only perturbed parameters that were

involved in a particular subsystem. The results follow in the next

section.

Intermediate module reactions related to Ras and Raf are
the most sensitive steps controlling the differential ERK
response

For the first top-level module spanning from reaction step 1 to

8, we perturbed seven forward kinetic parameters (k1, k2, k4, k5,

k6, k7, and k8) and three kinetic parameters of reverse reactions

(kr1, kr3, and kr7) while fixing the other parameters at their

nominal values. In examining the differentiating pathway

parameters between the tolerable and intolerable group, param-

eter k1, i.e. the first reaction rate related to ligand-receptor

binding, was found to be the most sensitive one. However, the top-

level module parameter perturbations resulted in only transient

responses of ERK activity. This suggests that parametric variations

of the top-level module are unlikely to cause significant differences

in ERK responses. A similar picture emerges for the third, i.e.

MAPK module, where separate perturbation showed no sustained

ERK activity pattern either. However, differential responses of

ERK activity (transient or sustained behavior) were observed when

the second or intermediate module was perturbed. This result was

similar to those obtained with the whole pathway run (see Figure
S3). Specifically, in the intermediate module, R14, R16, and R18

were the most sensitive reactions, which are all involved in

determining the activation level of Ras and Raf. Consequently,

these observations indicate that differentiation-reactions in the

third module such as R20, R22, and R24–R26, which were
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Table 1. Ranges for kinetic parameters used for the MC simulation [27].

Parameter [unit] Parameter Value Test Range *Actual Test Range

k1 [M21 min21] 3.8e8 7.3e7–7.3e9 7.3518e7–7.2998e9

k2, 0.7, 0.1–1 0.1001–0.9997,

k5, 0.35, 0.1002–0.9999,

k6, 0.35, 0.1000–0.9999,

k8 [min21] 0.35 0.1001–0.9999

k3 [min21] 4.84e-2

k4 [molecule21min21] 1.383e-3 1.8e-4–1.8e-2 1.8066e-4–1.8e-2

k7 [min21] 1 0.1–10 0.1004–9.9989

k9 [min21] 12 6.0–60 6.0003–59.9861

k11 [molecule21min21] 2.0e-3 2.0e-3–2.0e-1 2.0e-3–2.0e-1

k12 [molecule21min21] 1.63e-2 2.5e-5–6.0e-2 3.1199e-5–6.0e-2

k13 [min21] 15 1.2–2.4e2 1.2045–2.3995e2

k14 [molecule21min21] 5.0e-3 5.0e-4–5.0e-2 5.0141e-4–5.0e-2

k15 [min21] 7.2e2 3.0e2–1.2e3 3.0015e2–1.2e3

k16 [molecule21min21] 1.2e-3 1.2e-4–1.0e-2 1.2066e-4–1.0e-2

k17 [min21] 27 0.15–2.4e2 0.1694–2.3994e2

k19, 50, 1.5–2.4e2 1.5210–2.3997e2,

k21 [min21] 50 1.5313–2.3999e2

k23, 8.3, 1.45–2.4e2 1.4668–2.3998e2,

k25 [min21] 8.3 1.4829–2.3999e2

k27 [min21] 1.6 1.4–1.2e2 1.4088–1.1999e2

k_1 [min21] 0.73 1.0e-10–1.0e-8 1.0052e-10–9.9991e-9

k_3 [min21] 0.7 0.1–1 0.1001–0.9997

k_7 [min21] 3.47e-4 3.47e-5–3.47e-3 3.5466e-5–3.5e-3

k_11 [min21] 3.8

k_12 [min21] 10

k_14 [min21] 60

k_16 [min21] 3

V10, 3.0e5, 0.6–3.0e6 854.6165–2.9988e6,

V18, 9.7e4, 66.7873–2.9992e6,

V28 [molecules cell21 min21] 75 276.2419–2.9999e6

V20, 9.2e5, 3.6e2–1.8e9 1.8663e5–1.7998e9,

V22, 9.2e5, 8.9270e4–1.7995e9,

V24, 2.0e5, 4.8764e5–1.7999e9,

V26 [molecules cell21 min21] 4.0e5 2.2472e5–1.7999e9

Km9, 6.0e3, 6.0e3–9.0e6 1.0976e4–8.9994e6,

Km10, 6.0e3, 6.0848e3–8.9980e6,

Km18 [molecules cell21] 6.0e3 8.0619e3–8.9990e6

Km19, 9.0e3 6.0e3–9.0e6 6.0990e3–8.9999e6,

Km21, 9.1468e3–8.9997e6,

Km23, 6.4348e3–8.9996e6,

Km25 [molecules cell21] 7.3475e3–8.9959e6

Km20, 6.0e5 6.0e3–9.0e6 6.2941e3–8.9983e6,

Km22, 6.7470e3–9.0e6,

Km24, 7.1524e3–8.9997e6,

Km26, 6.0566e3–8.9995e6,

Km27 [molecules cell21] 9.8755e3–8.9999e6

Km28 [molecules cell21] 2.0e4 6.0e3–9.0e6 6.4206e3–8.9995e6

*The column of actual test range represents parameter ranges that are contained in the generated samples.
doi:10.1371/journal.pone.0004560.t001
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discovered as sensitive reactions in the whole-pathway perturba-

tion, seem to be strongly influenced by the reactions of the

intermediate module rather than affecting differential ERK

activity patterns on their own.

What are the most informative reactions controlling the
amplitude of transient ERK responses (i.e., L-T vs. H-T)?

In parallel to the case of transient vs. sustained ERK profiles, we

continually investigated the differentiation-reactions that are

instrumental for controlling the amplitude of ERK activity for

the transient case. The result clearly shows that R18, i.e. the

dephosphorylation of active Raf (Raf*), is no longer a sensitive

reaction for the amplitude-differentiation between the low-

transient and high-transient level (see Figure S4). However,

R14 and R16, critical steps for Ras deactivation and Raf

activation, respectively, remained sensitive factors in determining

the amplitude variation.

What are the most informative reactions controlling the
extent of sustained ERK responses (i.e., L-S vs. H-S)?

We also searched for sensitive factors for the duration-

differentiation pathway within sustained profiles. Here, not only

did R14 and R16 turn out to be critical, but we also discovered

that reactions that are specifically involved in the MAPK module

became increasingly important, i.e., R19 (k19), R22(Km),

R23(Km23), R24(V24, Km24), R25(Km25), R26(Km26) as shown

in Figure S5. This indicates that phosphorylation and dephos-

phorylation of MEK and ERK play an important role in

controlling differentially prolonged ERK phenotypes.

How do changes in initial conditions and variations of
the feedback regulation through active ERK impact the
results?

First, we investigated which initial conditions are most

influential in distinguishing differential ERK responses. By fixing

parameters at their nominal values, a total of 11 initial conditions

were perturbed at the same time. The ERK profiles all show

transient behaviors with different amplitudes. Figure 5 demon-

strates that the initial concentrations of active Ras (RasGTP,

x0(16)), GAP (x0(17)), and Raf (x0(18)) are the most sensitive ones

that distinguish between tolerable and intolerable groups of

samples with different amplitudes. These three protein molecules

are key substrates involved in switching gears between Ras

inactivation by binding to GAP (R14) and direct activation of the

MAPK cascade by forming the Ras-Raf complex (R16).

Specifically, the adaptor protein, GAP, is another limiting

substrate in addition to active Ras in R14. Taken together, this

indicates that not only the previously discovered kinetic param-

eters such as k14, k16, V18, and Km18, but also the initial

concentrations of the substrate proteins involved in the corre-

sponding reactions are crucial in determining the direction of

downstream activation pathways.

Secondly, the extent of inhibitory feedback regulation of

dissociation of the SOS complex, mediated by phosphorylated

ERK, was varied across a range from zero feedback to 2 orders of

magnitude of its original feedback strength when being multiply

perturbed with the intermediate subsystems. Results showed no

significant ERK response differences triggered by variations in the

feedback parameter (k27, Km27) (compare Figure S6 with

Figure S3).

Table 2 shows the correlation coefficients of how robust the

parameters are for all three cases, plus variations of initial

conditions.

Does a single parametric global sensitivity approach
strengthen or weaken our multi-parametric approach?

Lastly, we examined the effect of single parameter perturbation

on overall state sensitivity and further compared the results with

those from the multi-parametric approach. We perturbed one

single parameter at a time while keeping the others fixed. Each

parameter was perturbed with the maximum of (+/2) 1% and

also (+/2) 50% variation around the nominal set of parameters.

Note that the overall state sensitivity results were independent of

the percentage variation. To identify controlling factors that

contribute to transient or sustained ERK profiles, we selected two

parameter sets for each case as an original parameter set, i.e., one

set for transient behavior, another set for sustained ERK behavior.

We replicated the perturbation simulation 100 times, ranked them

for each run, and averaged their ranks by dividing the sum of

ranks for each parameter with the total number of parameters

(Np = 48). Thus, smaller OSS values reflect more robust

parameters (Figure 6).

First, it is obvious that overall mass-action kinetic parameters

such as k(2–21), kr (22–28) are more sensitive than MM kinetic

Table 2. Ranges for initial conditions used for the MC simulation [27].

Initial Condition [unit] Initial Value Test Range *Actual Test Range

x01 [L0, M] 1.0e-7 2.0e-13–1.0e-7 2.3588e-11–9.9988e-8

x02 [Rs0, molecules cell21] 1.11e4 1.0e4–1.0e6 1.0191e4–9.9996e5

x04 [Ri0, molecules cell21] 3.9e3 1.0e3–1.0e5 1.0001e3–9.9992e4

x09 [Shc0, molecules cell21] 3.0e4 1.0e4–2.0e5 1.0009e4–1.9999e5

x011 [GS0, molecules cell21] 2.0e4 1.0e4–2.0e5 1.0002e4–1.9999e5

x014 [RasGDP0, molecules cell21] 1.98e4 1.0e4–1.0e6 1.0119e4–9.9998e5

x016 [RasGTP0, molecules cell21] 2.0e2 1.0e2–1.0e4 1.0049e2–9.9996e3

x017 [GAP0, molecules cell21] 1.5e4 1.0e4–2.0e5 1.0021e4–1.9995e5

x018 [Raf0, molecules cell21] 1.0e4 1.0e4–1.0e6 1.0201e4–9.9988e5

x022 [MEK0, molecules cell21] 3.6e5 1.0e4–1.0e6 1.0247e4–9.9994e5

x025 [ERK0, molecules cell21] 7.5e5 1.0e4–1.0e6 1.0024e4–9.9991e5

*The column of actual test range represents ranges of initial values that are contained in the generated samples.
doi:10.1371/journal.pone.0004560.t002
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parameters such as V (29–35) and Km (36–48). Secondly, it can be

inferred that parameters that are most sensitive in orchestrating a

transient ERK response have been initiated by intermediate-

module reactions such as k14(13), k17(16), k19(17), k21(18),

V10(29), Km9(36), Km10(37), and Km18(38). In contrast,

parameters that are more sensitive for triggering a sustained

ERK response are now strongly related to the MAPK module

such as k23(19), k25(20), k27(21), Km20–Km22(40–42), and

Km24–Km26(44–46). These are main reactions involved in

phospho-/dephosphorylation of MEK and ERK by either kinases

or phosphatases. Thirdly, the sensitive reactions of k23(19),

k25(20), and k27(21) for the sustained case are interestingly those

that are directly related to the ERK-induced inhibitory feedback

loop. In addition, parameters Km27(47) and Km28(48) are less

sensitive in the sustained case, implicating that R27 and R28 are

more stably associated.

Discussion

More mechanistic insights into key regulatory factors that control

cellular phenotypic decisions are necessary to improve our

understanding of cell biology in the normal and diseased state.

Differential dynamics of the activation of the ERK-MAPK cascade

is of importance in determining cellular responses such as cell

proliferation and differentiation [6,9]. It is, however, difficult to

assess which factors in this cascade are crucial in controlling these

differential cellular outputs because signal transduction mechanisms

are inherently complex and highly nonlinear, and thus quantitative

molecular interactions in the network can not be understood from

structural pathway maps alone.

In this paper, applying in silico modeling, we have attempted to

identify critical signaling factors in an EGF-induced MAPK signal

transduction pathway. Such key factors can be protein molecules,

kinetic parameters, or reactions as described in the result section.

Using a Monte Carlo (MC) approach, all of the reaction parameters

were systematically perturbed and investigated at the same time;

similarly also for various initial conditions. To our knowledge, such

a computational MAPK signaling cascade study, using a MC-based

multi-parametric global sensitivity analysis, has not been done

before to that extent, and without utilizing expert knowledge about

the relative importance of its pathway components.

We have investigated three possible cases with regards to

differential patterns of ERK activation, namely (i) transient vs.

sustained, (ii) lowly transient vs. highly transient, and (iii) lowly

Figure 4. Analysis of the difference in reaction rates between the transient and sustained case for reaction 18 (R18: RafRRaf*). The
cumulative frequency (CF) distribution informs that the higher frequencies of larger Km18 and smaller V18 in the sustained case indicate a much
slower reaction rate of R18 in the sustained case than in the transient case (i.e., vs,vt).
doi:10.1371/journal.pone.0004560.g004

Figure 3. Results of cumulative frequency distributions between the sustained (S) and the transient (T) case of the multi-parametric
sensitivity analysis for the whole EGFR network. Solid lines in red and in blue represent the S and T case, respectively.
doi:10.1371/journal.pone.0004560.g003
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sustained vs. highly sustained. Through our multiparametric

analysis, we discovered that the intermediate module (rather than

the top-level module or the MAPK module) dominantly controls

ERK responses to being either transient or sustained. The key

players regulating the distinct ERK behaviors were 1) the binding-

switch of Ras between GAP and Raf, 2) Raf inactivation, and 3)
the initial conditions of RasGTP, GAP, and Raf. As a result of the

fluctuation of these intermediate module molecules, MEK and

ERK phosphorylations in the third, i.e., MAPK module, were

sensitively co-regulating the differential ERK responses, but they

did not contribute on their own. The comparisons of dominant

reactions of these molecules in the three cases are summarized in

Table 3.

How are these factors involved in regulating ERK dynamics? First, faster

activation of Ras and inactivation of Raf* (i.e., R16 and R18)

governs transient ERK behavior. That is, a rapid interaction

between Ras and Raf seems to accelerate a shorter signal sent to

the downstream MAPK cascade, which results in a transient ERK

peak. Consistently, the inactivation of Ras (R14; processed in

parallel to R16) occurs much slower in a transient than in a

sustained case. One of the potential reasons why Ras inactivation

(i.e., R14) is slower in the transient case may be the availability of

adaptor protein, such as GAP. The initial concentration of GAP or

the ratio of availability between initial conditions of Ras, GAP,

and Raf should therefore be considered as controlling factors,

which may contribute to the differential ERK responses

(Figure 5). Furthermore, activated MEK also experiences faster

dephosporylation in the transient case than in the sustained case

(R22). As the catalytic activation of ERK by MEKPP rapidly

decreases, it may limit production of a prolonged activated ERK

signal. These phenomena work inversely in the sustained case.

Figure 7 summarizes these suggested mechanisms for the

differential dynamics of ERK signaling. Taken together, the

dynamics of balancing between activation and inactivation of Ras

and maintaining the stability of active Raf are central to

controlling the distinctive ERK responses. We further note that

the role of kinases and phosphatases involved in MEK and ERK

phosphor-/dephosphorylation seems crucially important for the

spectrum of ERK signaling responses as well.

Intriguingly, our results are in good agreement with reported

computational and experimental findings. Recently, the importance

of Ras dynamics has been further confirmed by investigating in silico

dynamics based on the in vivo kinetics of ERK phosphorylation in

PC 12 cells, where transient ERK activation depends on transient

Ras activation with subsequent slow Ras-GAP activation [10].

However, to our knowledge, no anti-Ras strategies have managed to

succeed in clinics yet [30]. One of the reasons is that Ras can utilize

other effector signaling pathways such as Ral-GEF and PI3K to

mediate cell transformation in different cell types. Although Ras

FTIs (farnesyltransferase inhibitors) have been successful in post-

translationally modifying Ras, it cannot block the transformation by

mutationally-activated Raf and MEK [31]. Secondly, by applying

an extended metabolic control analysis to an EGF-induced MAPK

network, Hornberg et al. found that the activity of Raf controls all

characteristics of the transient profiles of ERK phosphorylation,

thus further confirming Raf’s role as an oncogene [16]. Also, an

experimental study by Fujioka et al., based on real-time monitoring

of fluorescent probes in the MAPK cascade, supported a significant

role for Raf in regulating ERK activity [24]. Thirdly, experimental

work done by Adachi et al. showed that compound 5 (Cpd 5; a

protein-tyrosine phosphatase (PTPase) inhibitor) caused prolonged

ERK phosphorylation, which induced growth inhibition. However,

when MEK inhibitors PD098069 or U0126 were given together

with Cpd 5, both ERK phosphorylation and the growth inhibitory

effect by Cpd5 were antagonized [32]; this implies that the level of

MEK phosphorylation affects the distinct dynamics of ERK

signaling. These early studies not only confirm our in silico findings

about the role of Ras, Raf, MEK and ERK and their cooperative

regulation mode of the EGF-induced MAPK downstream pathway,

but also suggest a multi-targeted strategy (RasGTP, Raf and GAP in

Figure 5. Results of perturbing multiple initial conditions. Solid lines in red and in blue represent tolerable and intolerable group, respectively.
doi:10.1371/journal.pone.0004560.g005
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this case) if shutting-down such signaling cascades or network sub-

modules would become a high value therapeutic goal [33].

Technically, the main advantage of our multi-parametric

approach is the ease of discovery and interpretation of informative

factors contributing to differentiation-pathways between separable

output observations. It also provides a mechanistic view of the key

factors involved while exact kinetic information is not required.

However, one caveat is that parametric ranges for each parameter

need to be carefully selected to cover the range of possible values;

also, it fails to capture interactive effects between distant

parametric factors on the structural map. For example, no

feedback effect of active ERK to SOS (on differential ERK

responses) was observed through our multi-parametric global

sensitivity analysis. This may suggest that this feedback effect have

been buffered by other dominant, intermediate reaction factors

involved. In fact, one experimental work shows that the inhibition

of ERK feedback to SOS was the least active feedback loop among

multiple modes of negative feedback by phosphorylated ERK

(refer to Figure 5 in [34]). At the risk of being computationally

costly, the discovered informative factors may still need to be

Figure 6. Comparison of the overall state sensitivity index between transient and sustained ERK levels. Parameter numbers from 1 to
21 denote all forward kinetic constants, k, 22 to 28 denote all reverse kinetic constants, kr, 29 to 35 denote all maximum reaction rates, V, in MM
kinetics, and lastly, 36 to 48 denote all Michaelis constants, Km. Blue arrows indicate more sensitive parameters observed in the transient case,
whereas red arrows indicate more sensitive parameters observed in the sustained case.
doi:10.1371/journal.pone.0004560.g006

Table 3. Comparisons of key dominant reactions for the three cases of two differential ERK activities.

Case 1.: T vs. S Transient dominant (T.S) Sustained dominant (T,S)

R16, R18, R19, R22, R25 R14, R20, R23, R24, R26

Case 2.: L-T vs. H-T Lowly-transient dominant (L-T.H-T) Highly-transient dominant (L-T,H-T)

R14, R20, R24, R26 R16, R19, R22, R25

Case 3.: L-S vs. H-S Lowly-sustained dominant (L-S.H-S) Highly-sustained dominant (L-S,H-S)

R14, R20, R24, R26, R28 R16, R19, R22, R25

doi:10.1371/journal.pone.0004560.t003
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systematically examined to further verify that they are not involved

in higher-order interactions. Regardless, the single parametric

approach (OSS) supports our finding of a strong involvement of

the intermediate module reactions in the transient case and

confirms the marked role of MAPK module in the sustained case

that we have seen with the multi-parametric analysis. However,

OSS also yielded an intriguing result on its own in that the

inhibitory feedback effect to SOS by active ERK in the MAPK

module gained importance in controlling the sustained ERK

profile (see Figure 7(b)). With respect to this, we note that it is

true only for each single parametric perturbation, i.e., the

inhibitory effect may not be active in the dynamic changes of

multiple parameters as observed in our multi-parametric

approach. Together, these observations from both multi- and

single-parametric analysis support the need for further experi-

mental validation.

There are other EGFR-downstream pathways that function in

parallel to the MAPK pathway and which deserve our attention in

future work. For example, Ras may have at least one more effector

other than Raf such as PI3K (Phosphatidylinositol-3-kinase)

[2,35]. An adaptor protein, Grb2, one of the key proteins in the

MAPK signaling cascade, is also an important co-mediator protein

for the PI3K-Akt pathway which affects cell survival pathways.

Thus, consideration of PI3K downstream may change cellular

responses of ERK activation. It will be interesting to include such

parallel or convergent pathways in the next iteration model and

analyze how these additions, if at all, impact cellular phenotypic

responses.

Ultimately, we intend to integrate this powerful molecular-level

pathway analysis into microscopic-macroscopic-scale spatial mod-

eling, specifically agent-based modeling [36]. This discrete-

continuum or hybrid multi-scale modeling can help predict

tissue-level tumor progression behaviors, which, in many cases,

are attributed to molecular-level signaling cues [5]. Our multi-

parametric approach described here will therefore advance multi-

scale modeling platforms by exploring critical molecular elements

involved in phenotypic decisions on a single-cell level [37]. As

such, this combined approach may be applicable to facilitate anti-

cancer target discovery and drug development.

Supporting Information

Table S1 Correlation coefficients for the whole EGFR network.

* T, a group of samples that show transient ERK activation; S, a

group of samples that depict sustained ERK activation; L-T vs. H-

T, samples of lowly transient ERK activation vs. samples of highly

transient ERK activation; L-S vs. H-S, samples of lowly sustained

ERK activation vs. samples of highly sustained ERK activation;

Tol, samples of the tolerable group; iTol, samples of the

intolerable group.

Found at: doi:10.1371/journal.pone.0004560.s001 (0.08 MB

DOC)

Figure S1 Schematic view of the MC simulation-based multi-

parametric global sensitivity analysis.

Found at: doi:10.1371/journal.pone.0004560.s002 (0.29 MB TIF)

Figure S2 Frequency distributions of parameters k14, V20,

Km18, Km22, and Km25 in the first column, and those of k16,

k19, V18, Km24, and Km26 in the second column for the whole

pathway perturbation study. The red line and the blue line

represent the sustained and the transient case, respectively. For

instance, the frequency distributions for the transient case (blue

line) in the first column show that smaller valued parameters are

highly dominant whereas larger values are dominant for those

parameters in the second column. These observations are exactly

opposite for the sustained case (red line).

Found at: doi:10.1371/journal.pone.0004560.s003 (0.32 MB TIF)

Figure S3 Results of cumulative frequency distributions of the

multi-parametric sensitivity analysis for the intermediate module.

Solid lines in red and in blue represent the sustained and transient

case, respectively.

Found at: doi:10.1371/journal.pone.0004560.s004 (0.30 MB TIF)

Figure S4 Results of cumulative frequency distributions between

the lowly transient (L-T) and highly transient (H-T) case for the

whole network. Solid lines in red and in blue represent the L-T

and H-T case, respectively.

Found at: doi:10.1371/journal.pone.0004560.s005 (0.54 MB TIF)

Figure S5 Results of cumulative frequency distributions between

the lowly sustained (L-S) and highly sustained case (H-S) for the

whole network. Solid lines in red and in blue represent the L-S and

H-S case, respectively.

Found at: doi:10.1371/journal.pone.0004560.s006 (0.53 MB TIF)

Figure S6 Results of cumulative frequency distributions of the

multi-parametric sensitivity analysis for the intermediate module

with the variation of feedback strength (k27, Km27). Solid lines in

red and in blue represent the sustained and transient case,

respectively.

Found at: doi:10.1371/journal.pone.0004560.s007 (0.20 MB TIF)
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