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Abstract

Background: African-American breast cancer patients experience higher mortality rates than European-American patients
despite having a lower incidence of the disease. We tested the hypothesis that intrinsic differences in the tumor biology
may contribute to this cancer health disparity.

Methods and Results: Using laser capture microdissection, we examined genome-wide mRNA expression specific to tumor
epithelium and tumor stroma in 18 African-American and 17 European-American patients. Numerous genes were
differentially expressed between these two patient groups and a two-gene signature in the tumor epithelium distinguished
between them. To identify the biological processes in tumors that are different by race/ethnicity, Gene Ontology and
disease association analyses were performed. Several biological processes were identified which may contribute to
enhanced disease aggressiveness in African-American patients, including angiogenesis and chemotaxis. African-American
tumors also contained a prominent interferon signature. The role of angiogenesis in the tumor biology of African-Americans
was further investigated by examining the extent of vascularization and macrophage infiltration in an expanded set of 248
breast tumors. Immunohistochemistry revealed that microvessel density and macrophage infiltration is higher in tumors of
African-Americans than in tumors of European-Americans. Lastly, using an in silico approach, we explored the potential of
tailored treatment options for African-American patients based on their gene expression profile. This exploratory approach
generated lists of therapeutics that may have specific antagonistic activity against tumors of African-American patients, e.g.,
sirolimus, resveratrol, and chlorpromazine in estrogen receptor-negative tumors.

Conclusions: The gene expression profiles of breast tumors indicate that differences in tumor biology may exist between
African-American and European-American patients beyond the knowledge of current markers. Notably, pathways related to
tumor angiogenesis and chemotaxis could be functionally different in these two patient groups.
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Introduction
The age-adjusted breast cancer incidence and mortality rates

vary substantially among race/ethnic groups [1]. Most notably,

European-American women have the highest risk of developing

the disease, while African-American women experience the

highest mortality rates. This difference in survival between

African-American and European-American breast cancer patients

has been attributed to differences in socioeconomic factors and

access to healthcare. However, after accounting for those

differences, African-American women were still found to have

lower breast cancer survival rates than European-American

women [2–5]. The data suggest that having equal medical care

may not eliminate the survival disparity between African-

American and European-American breast cancer patients, and

that other causes are involved in this problem.

It has been proposed that differences in tumor biology may

contribute to the survival health disparity associated with breast

cancer [6,7]. Race/ethnic differences in the expression of cell
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cycle-regulatory proteins in breast tumors have been described [8].

African-American patients also have a greater prevalence of more

aggressive, poorly differentiated, estrogen-receptor (ER)-negative

tumors and a higher rate of lymph node involvement than

European-Americans [4,5], and they develop breast cancer at an

age younger than 35 twice as frequently as European-American

women [9]. Recently, a high prevalence of basal-like breast

cancers was observed among pre-menopausal African-American

breast cancer patients [10,11]. Because the basal-like subtype is a

poor prognosis marker, its increased frequency among African-

American patients, when compared with non-African-American

patients, could contribute to their disproportionately high breast

cancer mortality. However, even after removal of all basal-like

cases from the analysis, African-American breast cancer cases still

had poorer outcomes than non-African-American cases [10].

We hypothesized that differences exist in the microenvironment

of breast tumors comparing African-American with European-

American patients. Our laboratory recently observed such

differences in prostate cancer and also noted an increased

expression of interferon-responsive genes in tumors of African-

American men [12]. Analogous to the prostate study, we analyzed

the gene expression profiles of breast tumors and used bioinfor-

matics tools to identify differences in oncogenic pathways between

the African-American and European-American patients. Guided

by the gene expression profiling results, we examined microvessel

density and macrophage infiltration in breast tumors by

immunohistochemistry. The importance of both for breast cancer

growth and spread has been demonstrated [13–15]. Using these

approaches, we found differences in angiogenesis, chemotaxis, and

immunobiology of breast tumors among the two patient groups. In

addition, many interferon-regulated genes were found be up-

regulated in tumors of African-American patients.

Results

Characteristics of study population
Total RNA was isolated from LCM-dissected tumor epithelia

and tumor stroma of 35 breast tumors (18 African-American and

17 European-American breast cancer patients). For one African-

American patient, LCM did not provide sufficient amounts of

good quality RNA from the tumor stroma. Further analyses (e.g.,

qRT-PCR, Western blotting, and immunohistochemistry) were

performed on an extended breast tumor set from 248 breast

cancer patients that included 32 of the 35 tumors in the gene

expression profiling study. The demographic and clinicopatholog-

ical data of the 248 patients are shown in Table 1. Clinical

characteristics of the LCM-dissected tumors are summarized in

Table 2. Consistent with other studies, we observed that African-

American women had a higher prevalence of ER-negative and

high grade tumors than European-American women.

Differences in the gene expression profiles of breast
tumors from African-American and European-American
women

In an initial analysis, the gene expression profile of the tumor

epithelium was compared between African-American and Euro-

pean-American patients. Numerous genes were found to be

differentially expressed between them using a FDR-controlled

P#0.01 as the cutoff for inclusion into the gene list (Table S1).

Consistent with the immunohistochemistry in other studies [8],

several cell cycle regulators (e.g., CDKN2A (p16), CCNA2, CCNB1,

CCNE2) were expressed at significantly higher levels in the tumor

epithelium of African-Americans than European-Americans.

As the cumulative effect of multiple genes rather than a single

gene effect determines cancer phenotypes, analyses were per-

formed that were aimed to identify biological networks in the

microdissected tumor epithelium and tumor stroma that may

contribute to the survival health disparity in breast cancer. To find

biological processes that differ by race/ethnicity, a cluster analysis

was applied to display Gene Ontology biological processes with

significant enrichment of those genes that are expressed differen-

tially among the two patient groups (Figure 1). Processes related to

cell cycle control and chemotaxis in the tumor epithelium and

neovascularization in the tumor stroma were most significantly

enriched for differently expressed genes comparing the African-

American patients with the European-American patients. Further

analysis indicated that the enrichment for differentially expressed

genes in these processes was not the product of a confounding

influence by other tumor markers. Lists of differentially expressed

genes by those markers, e.g., comparing ER-negative with ER-

positive tumors or p53 aberrant with p53 wild-type tumors or

HER2-negative with HER2-positive tumors, did not yield the

same significant enrichment in these processes. Instead, a distinct

pattern was observed which denotes biological processes including

endoplasmic reticulum-associated degradation and chemotaxis in

the tumor epithelium and angiogenesis in the tumor stroma that

could be functionally different in African-American and Europe-

an-American breast tumors (Figure 2). We also assessed whether

genes that are differentially expressed between breast tumors from

African-American and European-American patients have a

common association with other diseases or pathological reactions.

We found that those associations exist, e.g., with immune-related

reactions (skin-prick test, asthma) and inflammation (Figure S1).

Next, we examined the genes that were most significantly

differentially expressed between the African-American and

European-American patients independent of the tumors’ ER-

status (Table 3). Examples of those included PSPHL, TMPO,

CRYBB2, and AMFR in the tumor epithelium and PSPHL,

CXCL10 and CXCL11 in the tumor stroma. The function of

PSPHL is unknown while CRYBB2 encodes a protein linked to

congenital eye defects [16]. TMPO is thymopoietin and AMFR is

the autocrine mobility factor receptor/gp78. CXCL10 and

CXCL11 are ligands of the chemokine receptor CXCR3.

AMFR is a candidate oncogene that promotes metastasis [17]

and a key gene in endoplasmic reticulum-associated degradation,

which was identified as a race/ethnicity-related biological process

in this study. To corroborate the AMFR microarray data, we

followed up by Western blot analysis. AMFR protein expression

was determined in tumor extracts from 6 African-American and 6

European-American patients that were randomly selected from

available fresh-frozen tumor tissues. As shown in Figure 3, AMFR

was significantly higher expressed in African-American tumors

than in European-American tumors.

We previously had demonstrated that PSPHL and CRYBB2

could be used as a two gene classifier to differentiate between

African-American and European-American prostate cancer

patients [12]. To test if similar signatures exist in breast cancer,

we applied the prediction analysis of microarray algorithm to

interrogate our datasets for genes that can differentiate between

African-American and European-American breast cancer pa-

tients. In accordance with the prostate study, the two gene

signature consisting of probesets for PSPHL (205048_s_at) and

CRYBB2 (206777_s_at) was identified as the top-ranked predic-

tor that can distinguish between the breast tumor epithelia from

African-Americans and European-Americans (Table 4). Ninety-

four percent of the African-American patients and all European-

American patients were correctly classified by the expression
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pattern of the two genes. This result was confirmed in 55

additional breast tumors (27 African-American and 28 Europe-

an-American breast cancer patients) using qRT-PCR quantifi-

cation of PSPHL and CRYBB2 expression. In this validation

set, the two-gene signature correctly classified 93% of the

African-American patients and 86% of the European-American

patients.

For the tumor stroma, a five gene classifier consisting of

probesets for PSPHL (205048_s_at), CXCL10 (204533_at),

CXCL11 (211122_s_at), ISG20 (204698_at), and GMDS

(204875_s_at) was identified. The expression pattern of these five

stromal genes correctly classified 16 out of 17 African-Americans

(94%) and 14 out of 17 European-Americans (82%). Notably,

three genes in the classifier for the tumor stroma, CXCL10,

CXCL11, and ISG20, are known interferon c-regulated genes. An

interferon gene signature was also present in the profiles derived

from the tumor epithelium of the ER-positive tumors (e.g., STAT1,

IFIT1, IFIH1, IFI27, ISG15, OAS1, OAS3, OASL; Table S2) and

ER-negative tumors (e.g., HLA-DQA1 and HLA-DQB1; Table S3).

The presence of this signature was further supported by a Gene

Set Enrichment Analysis (GSEA) that revealed significant

associations between the parenchymal signature in the ER-positive

tumors and published signatures derived from interferon (a,b,c)-

treated cells (Table 5).

The most differently expressed genes in ER-negative tumors

between African-American and European-American women were

HLA-D family members, HLA-DQA1 and HLA-DQB1. The up-

regulation of the MHC II antigen (HLA-D) in the ER-negative

African-American breast cancer patients was corroborated by

Western blot analysis (Figure 3). The microarray data did not

show that HLA-DQ is significantly differentially expressed by race/

ethnicity in the ER-positive tumors. We confirmed this finding by

qRT-PCR analysis in a validation set consisting of 59 tumors

(Figure 4).

Table 1. Clinical characteristics of the study population.

All Cases African-American European-American P value

(n = 248) (n = 143) (n = 105) t-test

Age at diagnosis (mean6SD; n = 248) 55.0613.9 54.4614.3 55.9613.2 0.38

N (%)* N (%)* N (%)* Fisher’s exact test

Stage at diagnosis (TNM)

Stage I 66 (29) 35 (27) 31 (32) 0.56

Stage II 118 (52) 68 (52) 50 (52)

$Stage III 44 (19) 28 (21) 16 (16)

Node status

Negative 144 (63) 81 (61) 63 (64) 0.68

Positive 86 (37) 51 (39) 35 (36)

Histology

Ductal 189 (76) 116 (81) 73 (70) 0.02

Lobular 34 (14) 12 (8) 22 (21)

Others 25 (10) 15 (11) 10 (9)

Tumor grade

Low 34 (16) 17 (13) 17 (20) 0.01

Medium 74 (34) 37 (29) 37 (43)

High 107 (50) 75 (58) 32 (37)

Estrogen receptor

Negative 102 (41) 68 (48) 34 (33) 0.03

Positive 145 (59) 75 (52) 70 (67)

HER2

Negative 154 (62) 92 (65) 62 (59) 0.43

Positive 93 (38) 50 (35) 43 (41)

Nuclear p53

Negative 173 (70) 92 (64) 81 (77) 0.04

Positive 75 (30) 51 (36) 24 (23)

Cyclin E

Negative 181 (74) 97 (70) 84 (81) 0.06

Positive 62 (26) 42 (30) 20 (19)

Basal-like subtype

No 191 (82) 106 (79) 85 (87) 0.16

Yes 41 (18) 28 (21) 13 (13)

*Cases with missing information are not included.
doi:10.1371/journal.pone.0004531.t001
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Microvessel density, tumor-associated macrophages and
T-regulatory cells

Our previous analyses indicated that biological processes related

to chemotaxis and tumor angiogenesis could be functionally

different between breast tumors from African-American patients

and European-American patients. Known inducers of angiogen-

esis, such as vascular endothelial growth factor and syndecan-1,

were among the genes that were higher expressed in the tumor

epithelium of African-American patients than European-American

patients (Table S1). Thus, we examined microvessel density, a

surrogate for angiogenesis, and the number of tumor-associated

macrophages (TAM) and FoxP3-positive T-regulatory cells in

breast tumors by immunohistochemistry and assessed their

relation to the race/ethnic background of the patients. Both

TAM and T-regulatory cells have previously been associated with

increased angiogenesis in breast tumors [14,18]. African-American

patients (n = 125) were significantly more likely than European-

American patients (n = 83) to have a high tumor vessel density

(P = 0.047; Fisher’s exact test). This relationship was partly

confounded by differences in age at diagnosis, tumor ER status,

TNM stage, and grade of the tumors among the two patient

groups, as indicated by a logistic regression analysis (Table 6).

African-American patients (n = 142) were also significantly more

likely than European-American patients (n = 105) to have a high

TAM count (P = 0.01; Fisher’s exact test). This relationship was

independent of the age at diagnosis, tumor ER status, and disease

stage and grade (Table 6). A significant correlation between

microvessel density and TAMs existed in tumors of African-

American women (rho = 0.45; P,0.0001; Spearman rank corre-

lation) and tumors of European-American women (rho = 0.22;

P = 0.04; Spearman rank correlation). After adjusting for age at

diagnosis, tumor ER status, and disease stage and grade, the

association remained significant only in African-American pa-

tients. No association was observed between the number of FoxP3-

postive T-regulatory cells in breast tumors and race/ethnicity.

However, our analysis revealed a significant association between

an increased number of these cells and the basal-like breast cancer

subtype (Figure 5).

Connectivity Map to identify putative antagonistic small
molecule therapeutics

We explored the potential to tailor treatment options for

African-American patients based on their gene expression profiles.

The Connectivity Map database is a collection of genome-wide

transcriptional expression data from cell lines, including MCF-7

breast cancer cells, which were treated with a panel of bioactive

small molecules [19]. Integrated pattern-matching algorithms

enable the discovery of functional connections between these

molecule-induced signatures and disease-induced signatures

through the feature of common gene expression changes. A

significant negative correlation between a molecule-induced

signature and disease-induced signature indicates that this

molecule could potentially reverse the disease signature. We used

this database to identify small molecules that may reverse the gene

expression signature in the tumor epithelium of breast tumors that

differentiates African-American women from European-American

women. By this mechanism, these compounds may also target the

survival health disparity. The analysis revealed a significant

negative correlation between gene signatures in MCF-7 cells

induced by LY-294002 (Ppermutation = 0.0002), a PI3-kinase inhibitor,

and Y-27632 (Ppermutation = 0.008), a Rho signaling inhibitor, and

the genes that are differentially expressed between African-

American and European-American women in ER-positive tumors.

The analysis for ER-negative tumors revealed significant negative

correlations between the signatures induced by sirolimus (rapa-

mycin) (Ppermutation = 0.006), an immunosuppressant drug, resvera-

trol (Ppermutation = 0.046), an antibacterial and antifungal phytoalex-

in, and chlorpromazine (Ppermutation = 0.025), a phenothiazine, and

the genes that are differentially expressed between African-

American and European-American women in these tumors

(Figure 6). The results indicate that these compounds may

potentially antagonize the gene expression profiles in ER-positive

and ER-negative tumors that differentiate African-American

breast cancer patients from European-American breast cancer

patients. We did not apply this same analysis to the tumor stroma

signature because the MCF7 therapy response could be very

different from the therapy response of stromal cells.

Discussion

We used gene expression profiling to identify biological differences

in the microdissected tumor epithelium and tumor stroma that may

exist between African-American and European-American breast

cancer patients from the greater Baltimore area. African-Americans

from this area, and for most of the U.S., have ancestral links to

Table 2. Clinical characteristics of the microdissected breast
tumors.

Characteristic All cases
African-
American

European-
American P value1

(n = 35) (n = 18) (n = 17)

Age at diagnosis

mean6SD2 (years) 59616 56617 61615 0.42

Stage at diagnosis (TNM)

I 4 2 2

II 29 15 14 1.0

IIIA 2 1 1

Histology

Ductal 31 17 14 0.34

Lobular 4 1 3

Estrogen receptor

Positive 16 5 11

Negative 18 13 5 0.04

Unknown 1 0 1

HER2

Positive 23 12 11

Negative 9 4 5 1.0

Unknown 3 2 1

Nuclear p53

Positive 10 6 4

Negative 24 10 14 0.46

Unknown 1 1 0

Cyclin E

Positive 15 9 6

Negative 17 7 10 0.29

Unknown 3 2 1

1African-Americans versus European-Americans; t-test or Fisher’s exact test
(unknown excluded).

2SD, standard deviation.
doi:10.1371/journal.pone.0004531.t002
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specific regions in West Africa and experience an increased frequency

of aggressive breast cancer similar to West African women [20].

Our study focused on the discovery of differentially regulated

biological processes comparing African-American and European-

American breast cancer patients as opposed to the discovery of

specific genes. This approach was used as it may reveal differences

in oncogenic pathways and the tumor microenvironment, and

therefore may provide insight into therapeutic opportunities

[12,21]. Using this design, we found that biological processes

related to chemotaxis, angiogenesis, endoplasmic reticulum

function, and cell cycle control were most significantly enriched

for genes that are differentially expressed by race/ethnicity. Of

those processes, only the cell cycle control association appeared to

be significantly confounded by differences in other tumor markers

such as the race/ethnic difference in the tumor ER status.

One of our most interesting observations was the presence of an

interferon signature in tumors of the African-American patients.

The rationale of examining our datasets for an interferon signature

was based on our previous observation in prostate cancer showing

that interferon c-responsive genes are up-regulated in African-

American tumors [12]. Interferons are commonly induced by

pathogens and is a key pro-inflammatory cytokine in inflammation

and autoimmune disease. In tumor biology, interferon c is the

master regulator of the Th1 response and enhances tumor

immunogenicity and abrogated tumor development in mouse

models [22]. However, an interferon c signature can be merely an

indicator of a chronic inflammation and has been observed as a

component of breast cancer progression in HER2-transgenic mice

[23]. Currently, we are uncertain why breast tumors from African-

American patients have an interferon signature, or why interferon-

regulated genes were more differentially expressed in the ER-

positive than ER-negative tumors, although this may reflect

estrogenic regulation of host immunity [24]. The signature in the

tumor epithelium could partly be caused by infiltrating immune

cells, which cannot be completely separated from the tumor

epithelial cells by LCM. Several of the interferon-related genes in

our tumor signature have previously been reported as key genes in

the cellular defense against bacterial and viral pathogens [25–27]

and in the promotion of all steps of breast tumorigenesis including

tumor development, growth, survival, and metastasis [28–30]. We

hypothesize that etiologic agents may induce the signature in

breast and prostate tumors of African-Americans. Alternatively,

chronic inflammation and/or specific genetic variations in

immune-related genes could be more prevalent among these

African-American cancer patients and cause the heightened

interferon activity in their tumors.

There have been two recent reports that investigated gene

expression variations between individuals with European ancestry

and individuals with African ancestry (Nigeria) using lymphoblas-

toid cell lines [31,32]. Analogous to the present study, the authors

assessed the enrichment of biological processes and pathways by

genes that are differentially expressed by race/ethnicity. Notably,

Figure 1. GOBP terms that are enriched for differentially expressed genes in the tumor stroma and the tumor epithelium
comparing African-American breast cancer patients (AA, n = 18) with European-American patients (EA, n = 17). The two smaller
heatmaps show enlargements of GOBP term clusters that are most significantly enriched for differentially expressed genes (P#0.01) between the two
patient groups. Red color intensity is a surrogate for the relative enrichment of differentially expressed genes in a GOBP term. The color coding of the
heat maps is related to the enrichment of genes in a biological process (2Log(P value)-based) with red indicating a higher enrichment.
doi:10.1371/journal.pone.0004531.g001
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processes related to antimicrobial humoral response, inflammation

mediated by chemokines and cytokines, histamine H1 receptor-

mediated signaling pathway, toll-receptor signaling pathway, and

the VEGF signaling pathway were identified. The results from

these two studies suggest that differences in the genetic

background between healthy volunteers of European ancestry

and those from Nigeria cause gene expression differences affecting

host immune response, inflammation and chemotaxis, and

angiogenesis. These findings are consistent with our findings in

breast tumors, and while preliminary, raise the possibility that

differences in common genetic variations among African-Ameri-

can and European-American breast cancer patients may lead to

group-specific alterations in cancer-related pathways that control

host response, inflammation, and tumor angiogenesis.

Few others have studied race/ethnic differences in the

expression of tumor markers in breast cancer and observed that

p16, p53, and cyclin E were more commonly expressed in tumors

from African-American patients than European-American pa-

tients [8,33]. p16 is encoded by CDKN2A. This gene was also up-

regulated in the African-American tumors of this study, as

indicated by the microarray data. Nuclear accumulation of p53

protein in tumor cells is a surrogate for a functional impairment of

the p53 pathway while the overexpression of cyclin E is most

frequently caused by a post-transcriptional mechanism that leads to

the accumulation of hyperactive low molecular weight cyclin E

isoforms [34,35]. Consistent with the previous reports, p53 and cyclin

E protein accumulation was also more common in African-American

tumors than European-American tumors in the present study.

The gene expression profiles of breast tumors indicated that

pathways related to tumor angiogenesis and chemotaxis could be

functionally different between African-American and European-

American patients. For further corroboration of these findings, we

demonstrated higher levels of microvessel density and TAMs in

African-American tumors than European-American tumors.

Increased microvessel density and the infiltration of tumors by

macrophages have been shown to be poor prognosis markers [13–

15]. The two markers are interrelated as TAMs are a major source

of chemokines and cytokines which induce tumor angiogenesis

[14,15]. From the present study, we do not know why TAM

infiltration is increased in tumors from African-American women.

Possibly, tumors from African-American patients release more

chemotactic cytokines to attract the infiltration of TAM than those

Figure 2. Uniquely enriched biological processes in the tumor epithelium (A) and tumor stroma (B) comparing African-American
breast cancer patients with European-American patients. The heatmap shows that some GOBP terms, e.g., those related to endoplasmic
reticulum-associated protein catabolism and positive regulation of chemotaxis in the tumor epithelium and angiogenesis in the tumor stroma, show
a uniquely strong enrichment for differentially expressed genes when comparing the two patient groups. The same significant enrichments were not
observed when we stratified these tumors either by ER status (negative versus positive), p53 status (negative versus positive), cyclin E status (negative
versus positive), or HER2 status (positive versus negative). The color coding of the heat maps is related to the enrichment of genes in a biological
process (2Log(P value)-based) with red indicating a higher enrichment.
doi:10.1371/journal.pone.0004531.g002
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from European-American patients. Among the most important of

the chemotactic signals that attract TAM are MCP-1, CSF-1, and

VEGF [15]. Of those, VEGF was found to be higher expressed in

the African-American tumors. We also assessed the infiltration of

tumors by FoxP3-positive T-regulatory cells. The number of these

cells in breast tumors has been associated with an increased risk of

relapse in breast cancer [36]. Although the number of these immune

suppressive cells was not significantly different between African-

American and European-American breast tumors, elevated numbers

of these cells were found in basal-like tumors. Future studies should

investigate whether these T-regulatory cells are related to poor

outcome among young African-American breast cancer patients

who frequently present with the basal-like subtype [10,11].

If gene expression differences exist between African-American

and European-American breast cancer patients, those differences

could potentially be exploited for tailored therapy. In an

exploratory approach, we used the Connectivity Map database

to identify small molecules that may antagonize the gene

expression signature in the tumor epithelium of breast tumors

that differentiated African-American patients from European-

American patients. An antagonist could potentially improve the

therapeutic outcome of high risk breast cancer patients, e.g.,

African-American patients with ER-negative tumors. Significant

negative connectivity scores, indicating an antagonistic effect of

the small molecule drug on the query signature, were obtained for

the PI3-kinase inhibitor, LY-294002, and Rho signaling inhibitor,

Y-27632, in ER-positive breast tumors and for sirolimus,

resveratrol, and chlorpromazine in ER-negative tumors. Although

preliminary, these findings are novel and may have implications

for cancer therapy. The toxicity profile of LY-294002 excludes it

from clinical trials, but its antagonist effect suggests that ER-

positive African-American and European-American breast cancer

patients could respond differentially to therapeutic PI3-kinase

inhibitors. Sirolimus is rapamycin, which is a mTOR inhibitor and

Table 3. Most differently expressed genes by race/ethnicity independent of the tumor ER status.

Tumor epithelium

Gene Name GenBank ID Affy ID ER-negative P value ER-positive P value Gene Title

Fold change* Fold change*

PSPHL NM_003832 205048_s_at 5.0 561026 7.2 261027 phosphoserine phosphatase-like

TMPO AW272611 203432_at 1.72 0.0006 1.57 0.006 thymopoietin

AK2 NM_013411 212175_s_at 1.65 0.004 1.67 0.005 adenylate kinase 2

NBN NM_002485 202907_s_at 1.62 0.002 1.66 0.007 nibrin

CRYBB2 NM_000496 206777_s_at 1.56 0.0005 1.79 0.001 crystallin, beta B2

AMFR NM_001144 202203_s_at 1.51 0.003 1.59 0.04 Autocrine mobility factor receptor (gp78)

EDG2 AW269335 204036_at 0.64 0.007 0.56 0.005 lysophosphatidic acid receptor 2

PLAGL1 NM_002656 207002_s_at 0.5 0.003 0.64 0.004 pleiomorphic adenoma gene-like 1 (Zac1)

Tumor stroma

Gene Name GenBank ID AffyID ER-negative P value ER-positive P value Gene Title

Fold change* Fold change*

PSPHL NM_003832 205048_s_at 4.59 561026 5.96 761029 phosphoserine phosphatase-like

CXCL10 NM_001565 204533_s_at 5.65 9.661025 2.1 0.01 Chemokine (C-X-C motif) ligand 10

CXCL11 AF002985 211122_s_at 1.96 0.007 2.9 0.0002 Chemokine (C-X-C motif) ligand 11

SLC38A1 AK024263 218237_s_at 1.9 0.001 2.71 0.005 solute carrier family 38, member 1

PAICS BX538303 201014_s_at 1.73 0.009 1.92 0.003 phosphoribosylaminoimidazole carboxylase

PSMA2 BX641097 201317_s_at 1.62 0.001 1.63 0.005 proteasome subunit, alpha type, 2

AK2 NM_013411 212175_s_at 1.6 0.002 1.5 0.01 adenylate kinase 2

LAPTM4B BC038117 208767_s_at 1.6 0.01 1.66 0.007 Lysosomal associated protein transmembrane 4 beta

LASS6 NM_203463 212446_s_at 1.6 0.007 1.67 0.009 LAG1 longevity assurance homolog 6

SOS1 AL833457 212777_at 1.57 0.00007 1.82 0.0002 son of sevenless homolog 1

SMS AA552813 202043_s_at 1.57 0.004 1.87 0.007 spermine synthase

ARF4 BC016325 201096_s_at 1.54 0.01 1.6 0.007 ADP-ribosylation factor 4

C7orf24 BF570959 215380_s_at 1.51 0.005 2.4 0.0009 chromosome 7 open reading frame 24

CDC42BPA NM_003607 214464_at 0.64 0.009 0.43 0.0006 CDC42 binding protein kinase alpha

TGFB1I1 AK122975 209651_at 0.63 0.002 0.54 0.003 TGF beta1 induced transcript 1

PTRF NM_012232 208790_s_at 0.62 0.001 0.65 0.003 polymerase I and transcript release factor

NUAK1 AB011109 204589_at 0.62 0.0009 0.54 0.008 NUAK family, SNF1-like kinase, 1

PLAGL1 NM_002656 207002_s_at 0.6 0.003 0.42 0.01 pleiomorphic adenoma gene-like 1 (Zac1)

AQP1 NM_198098 209047_at 0.53 0.007 0.45 0.009 aquaporin 1

*At least 1.5-fold difference in expression and P,0.05 comparing African-American versus European-American patients ( = reference).
doi:10.1371/journal.pone.0004531.t003
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an immunosuppressant. Sirolimus and other mTOR inhibitors are

currently in clinical trials, and their anti-tumor efficacy in breast

cancer in preclinical models has been demonstrated [37,38].

Resveratrol is a chemopreventive agent that has a plethora of

effects in breast cancer including anti-inflammatory activities,

apoptosis induction, angiogenesis inhibition, and effects on PI3-

kinase signaling, among others [39,40]. Chlorpromazine is a

psychotropic agent and not an anti-cancer drug. However, recent

data have shown that chlorpromazine has anti-proliferative and

pro-apoptotic effects in cancer cells [41,42], and future studies

should evaluate the activity of chlorpromazine in breast cancer.

Our study has strengths and limitations. We conducted a

microarray analysis of microdissected tumor epithelium and tumor

stroma, thus providing comprehensive databases of gene expres-

sion for these two cellular compartments in African-American and

European-American breast tumors. The use of LCM also largely

Figure 3. Autocrine mobility factor receptor (AMFR) and HLA-D protein expression in breast tumors. (A) Shown is the protein
expression of AMFR in extracts of 6 tumors from African-American patients and 6 tumors from European-American patients. b-actin and calnexin are
loading controls. Like AMFR, calnexin is located in the endoplasmic reticulum. (B) Quantification of AMFR expression. Shown is the relative expression
of AMFR protein after normalization to b-actin. AMFR expression is significantly higher in tumors from African-American patients than in tumors from
European-American patients (P = 0.038; Wilcoxon rank sum test). (C) Differential HLA-D protein expression in ER-negative breast tumors. Shown is the
expression of HLA-D in extracts of 6 tumors from African-American patients and 6 tumors from European-American patients. (D) Quantification of
HLA-D expression. Shown is the relative expression of HLA-D protein after normalization to b-actin. The expression is significantly higher in tumors
from African-American patients than in tumors from European-American patients (P = 0.016; Wilcoxon rank sum test).
doi:10.1371/journal.pone.0004531.g003

Table 4. Classification of tumors by race/ethnicity with a two-gene signature consisting of PSPHL and CRYBB2.

Test set (microarray-based expression)

True/Predicted African-American European-American Total % Accuracy

African-American 17 1 18 94

European-American 0 17 17 100

Validation set (qRT-PCR-based expression)

True/Predicted African-American European-American Total % Accuracy

African-American 25 2 27 93

European-American 4 24 28 86

doi:10.1371/journal.pone.0004531.t004
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ruled out that varying amounts of tumor and stroma between

African-American and European-American tumors is a confound-

er of the datasets. Despite the advantages of more rigorous

histological sampling enabled by LCM, the approach has

limitations. LCM is labor intensive and cannot be applied for

the analyses of large sample sets, and further stratification of the

breast tumors in the many subtypes (basal-like, ERBB+, normal-

like, luminal A & B & C) was not possible in this sample set

because of sample size limitations.

In conclusion, the gene expression profiles of breast tumors

correspond to differences in tumor biology between African-

American and European-American patients. Particularly, path-

ways related to chemotaxis, tumor angiogenesis, and immunobi-

ology could be functionally different in the two patient groups.

The therapeutic implications of those differences should be

evaluated in future studies.

Materials and Methods

Tissue collection
Fresh-frozen (n = 35) and paraffin-embedded (n = 248) tumor

specimens were obtained from breast cancer patients that resided

in the greater Baltimore area, as described previously [43,44].

Patients were recruited at the University of Maryland Medical

Center (UMD), the Baltimore Veterans Affairs Medical Center,

Union Memorial Hospital, Mercy Medical Center, and the Sinai

Hospital in Baltimore between 1993 and 2003. All patients were

identified through surgery lists and enrolled into the study prior to

surgery. They signed a consent form and completed an

interviewer-administered questionnaire. These patients had path-

ologically confirmed breast cancer, were of African-American or

European-American descent by self-report, were diagnosed with

breast cancer within the last 6 months before recruitment, and

had, by self-report, no previous history of the disease. Clinical and

pathological information, including tumor ER status, was obtained

from medical records and pathology reports. Disease staging was

performed according to the tumor–node–metastasis (TNM) system

of the American Joint Committee on Cancer/the Union

Internationale Contre le Cancer (AJCC/UICC). The Nottingham

system was used to determine the tumor grade. The collection of

tumor specimens, survey data, and clinical and pathological

information was reviewed and approved by the University of

Maryland Institutional Review Board for the participating

institutions (UMD protocol #0298229). IRB approval of this

protocol was then obtained at all institutions (Veterans Affairs

Medical Center, Union Memorial Hospital, Mercy Medical

Center, and Sinai Hospital). The research was also reviewed and

approved by the NIH Office of Human Subjects Research (OHSR

#2248).

Laser capture microdissection
Enriched tumor epithelium and tumor stroma from 35 fresh-

frozen surgical breast tumors was obtained by laser capture

microdissection (LCM) as described [44]. In brief, frozen eight-

micron serial sections from OCT-preserved frozen tissues were

prepared and mounted on plain, uncharged microscope slides.

One Hematoxylin/eosin-stained section of each specimen was

Table 5. Highest-ranked GSEA-annotated terms enriched for genes that are differently expressed by race/ethnicity in ER-positive
tumors.

GSEA Term GSEA Hits* All Genes{
Annotated Genes
in GSEA dataset{

All Annotated
Genes{{

Fisher’s exact
test P value

1. Up-regulated in fibroblasts at 6 hours following treatment
with interferon-alpha

21 243 52 11852 1.6E-22

2. Effect of NUP98-HOXA9 on gene transcription at 3 d after
transduction (UP)

30 243 182 11852 4.7E-19

3. Genes up-regulated by interferon-alpha in primary hepatocyte 15 243 52 11852 7.1E-14

4. Up-regulated in fibroblasts at 6 hours following either infection
with UV-inactivated CMV or interferon-alpha

12 243 28 11852 9.6E-14

5. Genes up-regulated by interferon-beta in HT1080
(fibrosarcoma)

18 243 94 11852 4.9E-13

6. Up-regulated in fibroblasts following infection with human
cytomegalovirus (at least 3-fold, with Affymetrix change call, in
at least two consecutive timepoints), with maximum change at
12 hours

11 243 26 11852 1.3E-12

7. Genes up-regulated by interferon-alpha in HT1080
(fibrosarcoma)

15 243 66 11852 3.3E-12

8. Genes significantly up-regulated in SLE patient blood
mononuclear cells

11 243 29 11852 5.4E-12

9. Up-regulated at any timepoint up to 24 hours following
infection of HEK293 cells with reovirus strain T3Abney

24 243 234 11852 7.6E-11

10. Genes up-regulated by interferon-gamma in
colon,derm,iliac,aortic,lung endothelial cells

14 243 71 11852 1.4E-10

11. Upregulated 2-fold in HT1080 cells 6 hours following
treatment with any of interferons alpha, beta and gamma

13 243 83 11852 1.2E-08

*Annotated genes in the GSEA dataset that are differently expressed (P#0.01) comparing ER-positive tumors from African-American and European-American women.
{All GSEA-annotated genes that are differently expressed comparing ER-positive tumors from African-American and European-American women.
{All annotated genes in this GSEA dataset.
{{All GSEA-annotated genes.
doi:10.1371/journal.pone.0004531.t005
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reviewed by a pathologist before commencing dissection. The

pathologist indicated which representative sections of the tumors

should be microdissected. LCM was performed at the NIH

Collaborative Research LCM Core Laboratory with the Pixcell II

LCM system (Arcturus, Mountain View, CA). At least 3000 to

5000 cells were obtained per specimen. Total RNA was isolated

using the PicoPure protocol (Arcturus, Mountain View, CA). The

mRNA was amplified with two linear amplification steps by in vitro

transcription using the MEGAscript T7 kit (Ambion, Austin, TX)

followed by the labeling step using the BioArray HighYield RNA

Transcript Labeling Kit T3 from Enzo Life Sciences (Farming-

dale, NY). Labeled cRNA was hybridized onto Affymetrix HG-

U133A GeneChips. Cel files with the normalized expression data,

and additional tumor marker information, were deposited in the

GEO repository (GSE5847). Table S4 lists the GEO accession

number for the Cel files of each sample.

Analysis of gene expression data
All chips were normalized with the robust multichip analysis

procedure [45]. Gene lists comparing expression of tumor

epithelium from African-Americans to tumor epithelium from

European-Americans and tumor stroma from African-Americans

to tumor stroma from European-Americans were generated using

moderated t-scores to obtain P values that are false discovery rate

(FDR)-controlled [44]. Prediction analysis for microarrays (PAM)

was used to classify patients as either African-American or

European-American [46]. Pathway and disease association

analyses were performed with the in-house WPS software [47]

and a P#0.01 cutoff point for inclusion of differentially expressed

genes. Biological processes were annotated according to Gene

Ontology Biological Processes (GOBP) (Gene Ontology Consor-

tium: http://www.geneontology.org). A one-sided Fisher’s exact

test was used to determine which biological processes had a

statistically significant enrichment of differentially expressed genes.

If the microarray analysis yielded several significantly differentially

expressed transcripts that all encoded one gene, only one entry of

this gene was used for significance testing. We then compiled the

Fisher’s exact test results for cluster analyses and displayed the

results in color-coded heat maps to reveal the patterns of

significantly altered biological processes and pathways. The color

coding of our heatmaps is related to the enrichment of genes in a

biological process/pathway (2Log(P value)-based) with red

indicating a higher enrichment. A disease association analysis

was conducted using both our WPS software and information

provided by the genetic association database (http://geneticasso-

ciationdb.nih.gov). In this analysis, we assessed whether differen-

tially expressed genes between breast tumors from African-

American and European-American patients had previously been

associated with other diseases, as indicated by the genetic

association database, and whether these disease-associated genes,

were significantly enriched in the breast tumor gene signature

using the one-sided Fisher’s exact test. The results were displayed

in a heatmap. We also performed a Gene Set Enrichment Analysis

[48] to find significant overlaps between race/ethnicity-related

gene signatures in breast cancer and published signatures archived

in the molecular signature database (http://www.broad.mit.edu/

gsea/msigdb/).

Connectivity mapping
Functional connections between gene signatures derived from

the comparison between African-American and European-Amer-

ican breast patients and gene signatures induced by small

molecules (164 molecules that target cancer and other diseases)

were explored using the Connectivity Map database at http://

Figure 4. Differences in tumor HLA-DQ mRNA expression
between African-American (AA) and European-American (EA)
breast cancer patients. qRT-PCR analysis of HLA-DQ expression in
extracts from 59 fresh-frozen breast tumors. (A) Relative HLA-DQ
expression comparing AA patients (n = 28) with EA patients (n = 31)
across all tumors. The expression of HLA-DQ is significantly higher in AA
than EA patients (P = 0.007; t-test). (B) Relative HLA-DQ expression in ER-
negative tumors comparing AA patients (n = 14) with EA patients (n = 14).
The expression of HLA-DQ is significantly higher in AA than EA patients
(average fold difference: 29.6; P = 0.006; t-test). (C) Relative HLA-DQ
expression in ER-positive tumors comparing AA patients (n = 14) with EA
patients (n = 17). The expression of HLA-D mRNA in ER-positive tumors
was not significantly different between AA and EA patients (P = 0.42; t-
test). Note: Ct values are inversely correlated to mRNA expression.
doi:10.1371/journal.pone.0004531.g004
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www.broad.mit.edu/cmap. The database is a collection of

genome-wide transcriptional expression data from cultured cells

treated with bioactive small molecules at different concentrations

and pattern-matching algorithms that enable the discovery of

functional connections between drugs, genes and diseases [19].

The significance of a negative or positive correlation (permutated

P value) between a query signature, e.g., a list of differentially

expressed genes (P#0.01) from the comparison between African-

American and European-American breast cancer patients, and the

expression data from a cell line treated with a small molecule is

calculated based on the likelihood that the correlation between

these two lists is a product of chance as described in the manual of

cmap.

Quantitative Real-Time PCR
Total RNA was extracted from 59 fresh-frozen breast tumors

(bulk tissue) using the Trizol method and subjected to reverse

transcription for quantitative PCR (qRT-PCR). Twenty-eight of

the tumors were from African-American patients and 31 were

from European-American patients. None of those tumors was used

in the gene expression profiling study. qRT-PCR was subsequently

performed in duplicate using the TaqMan PSPHL, CRYBB2, and

HLA-DQ expression assays (Applied Biosystems, Foster City, CA),

which include pre-optimized probes and primer sets for these

genes. The CRYBB2 assay was designed to specifically target the

Affymetrix microarray probeset for this gene. Data were collected

using the ABI PRISMH 7500 Sequence Detection System. The

18 s RNA was used as the internal standard reference. Normalized

expression was calculated using the comparative Ct method and

fold changes were derived from the 2{DDCt values for each gene. A

power analysis was performed with the publicly available PS

software [49,50] to assess that the chosen sample size was sufficient

to detect a 1.5-fold difference or greater in expression between the

two patient groups with an assumed standard deviation of 0.6 and

a,0.05 in a two-sided t-test. With these assumptions, we had a

power .90% to detect a statistically significant difference between

28 African-American tumors and 31 European-American tumors.

Protein extraction and Western blot analyses
Fresh-frozen tumor samples were crushed into small pieces in

liquid nitrogen and homogenized in 2 ml of M-PER lysis buffer

containing protease inhibitors and iodoacetamide (all Pierce

Biotechnology, Rockford, IL). Protein concentrations were

determined with the Bio-Rad Protein Assay (Bio-Rad Laborato-

ries, Hercules, CA). Western blot analysis was performed

according to standard procedures and 50 mg of total protein were

loaded per lane. The following antibodies were used to visualize

the membrane-bound proteins: 1:100 diluted mouse monoclonal

antibody for HLA-D (MHC class II antigen) (Abcam, Cambridge,

MA); 1 mg/ml rabbit polyclonal antibody (Ab2) for autocrine

mobility factor receptor (gp78) [17].

Immunohistochemistry
Formalin-fixed and paraffin-embedded 5 mm slides were

deparaffinized and placed into citrate buffer for antigen retrieval.

To detect FoxP3, slides were pre-treated with trypsin for 10 min at

37uC prior to antigen retrieval. Slides were microwaved and rinsed

in 16 phosphate-buffered saline (PBS) buffer. Endogenous

peroxidase was blocked using the DakoCytomation Envision

System-HRP blocking buffer according to the manufacturer’s

protocol (DakoCytomation, Carpinteria, CA). After an overnight

incubation with the primary antibody at 4uC, slides were washed

in PBS and incubated with a corresponding HRP-labeled

secondary antibody using the DakoCytomation Envision System

reagents. Slides were washed after 30 min incubation at room

temperature, were stained with DAB, and counterstained with

Methyl Green. Marker expression was evaluated using the

following primary antibodies: 1:100 diluted monoclonal DO-7

antibody (DakoCytomation) for p53; 1:100 diluted rabbit

polyclonal antibody (DakoCytomation) for c-erbB-2 (HER2);

ready-to-use monoclonal Ab-2 (Clone HE12, cross-reacts with

the C-terminus) antibody (Lab Vision Corp., Fremont, CA) for

cyclin E; ready-to-use mouse monoclonal Ab-1 (Clone JC/70A)

antibody for CD31 (Lab Vision Corp., Fremont, CA); ready-to-use

mouse monoclonal Ab-3 antibody for CD68 (Lab Vision Corp.);

ready-to-use mouse monoclonal antibody for CD138/syndecan-1

(Lab Vision Corp.); 1:1500 diluted rabbit polyclonal antibody for

FoxP3 (Abcam); 1:250 diluted mouse monoclonal antibody for

cytokeratin 5 (Lab Vision Corp.); and ready-to-use mouse

monoclonal antibody for EGFR (HER1) (Lab Vision Corp.).

Nuclear p53 expression was scored positive if more than 10% of

Table 6. Association of microvessel density and macrophage
count with race/ethnicity of patients.

Logistic regression
(unadjusted) OR
(95% CI)

Logistic regression
(adjusted**) OR
(95% CI)

High microvessel density*

European-American 1 (reference) 1

African-American 1.83 (1.05 to 3.22) 1.70 (0.91 to 3.22)

High macrophage count*

European-American 1 1

African-American 1.99 (1.19 to 3.33) 1.91 (1.05 to 3.49)

*CD31-positive microvessels and CD68-positive macrophages were
dichotomized into low/high at the median.

**Odds ratio (OR) adjusted by age at diagnosis, tumor ER status, tumor grade,
TNM stage.

doi:10.1371/journal.pone.0004531.t006

Figure 5. FoxP3-positive lymphocytes in breast tumors. The
number of FoxP3-positive lymphocytes is highest in basal-like breast
tumors (BL; n = 28) when compared to estrogen receptor (ER)-positive
breast tumors (non-BL, ER (+); n = 111) and non-basal-like ER-negative
breast tumors (non-BL, ER (2), n = 36). P for trend: 0.0004. Shown is the
average FoxP3-positive lymphocyte count per 2506 field. Solid lines in
graph indicate the median. Basal-like breast tumors are defined as
being ER-negative, HER2-negative, cytokeratin 5-positive and/or HER1-
positive.
doi:10.1371/journal.pone.0004531.g005
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the tumor cells expressed nuclear p53, as described [44,51]. To

score the immunohistochemistry of cyclin E (nuclear), cytokeratin-

5 (cytosolic), EGFR (membrane-bound), and HER2 (membrane-

bound), a combined score of intensity and distribution was used to

categorize the immunohistochemical staining for protein expres-

sion according to a standard protocol [52,53]. Intensity received a

score of 0 to 3 if the staining was negative, weak, moderate, or

strong. The distribution received a score of 0 to 4 if the staining

distribution was ,10% positive cells, 10%–30%, .30%–50%,

.50%–80%, and .80%. A sum score was then divided into four

groups as follows: (1) negative = 0–1, (2) weak = 2–3, (3) moder-

ate = 4–5, and (4) strong = 6–7. Negative to weak staining was

scored as being negative. Moderate to strong nuclear staining was

scored as being positive.

Basal-like breast cancer
In accordance with the literature [10], basal-like breast tumors

were defined as being ER-negative and HER2-negative, cytoker-

atin 5-positive and/or HER1-positive. The ER status was

obtained from medical records. Basal-like breast cancers, as

defined by these criteria, were significantly associated with an

aberrant tumor p53 status and accumulation of nuclear cyclin E

expression (each P,0.001). Both have previously been described

as markers of basal-like breast cancers [54,55].

Microvessel and cell counts
The quantification of the tumor microvessel density was performed

on CD31-positive microvessels according to the method of Weidner et

al. [13]. If the available tumor section did not contain representative

fields for the count, the tumor was not scored. The number of

macrophages and T regulatory cells in the tumor specimens was

determined by counting the number of CD68-positive macrophages

and FoxP3-positive T-regulatory cells per 2506 field in 3

representative fields. If the available tumor section did not contain

3 representative fields for the count, the tumor was not scored.

Statistical analysis
Stata 7.0 (Stata Corp, College Station, TX) statistical software

was used for data analysis. Statistical tests were two-sided and an

association was considered statistically significant with P,0.05.

The t-test and the Wilcoxon rank sum test were applied to analyze

the relationship between race/ethnicity and continuous data. The

Spearman correlation coefficient was calculated for correlation

analyses of continuous and categorical data. The P for trend was

determined by Spearman rank correlation. The x2 and Fisher’s

exact tests were used to analyze dichotomized data and

multivariate logistic regression was used to calculate odds ratios.

To generate dichotomized data for immunohistochemistry, scores

were divided into moderate to strong versus negative to weak, or

Figure 6. Connections between gene signatures induced by small molecule drugs in MCF-7 breast cancer cells and a query
signature. The query signature consisted of the differentially expressed genes in ER-negative breast tumors comparing African-American with
European-American patients. Shown is a heatmap with the color-coded connectivity score (21 to +1) for individual sets of experiments exposing
MCF-7 cells to sirolimus, resveratrol, or two phenothiazines, fluphenazine and chlorpromazine. The heatmap shows that negative correlations
between drug-induced signatures and the query signature were found for multiple experiments with MCF-7 cells. Green: negative connectivity
indicating an antagonist effect of the drug on the query signature. Black: no connectivity. Red: positive connectivity indicating an agonist effect.
Different cutoffs were used for inclusion of differentially expressed genes in the query signature: (1) P#0.01, (2) P#0.01 and fold change at least 1.5-
fold, (3) P#0.05 and fold change at least 1.5-fold. The negative correlations between signatures induced by sirolimus, resveratrol, or chlorpromazine,
and the query signature were statistically significant at Ppermutation,0.05, respectively, in the combined analysis with n = 8 for sirolimus, n = 4 for
resveratrol, and n = 4 for chlorpromazine.
doi:10.1371/journal.pone.0004531.g006
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into strong versus negative-moderate. Continuous data, such as

CD31 and CD68 counts, were dichotomized into low and high

using the median value as the cutoff.

Supporting Information

Figure S1 Disease association analysis. Shown is a heat map. The

list of differentially expressed genes (P#0.01) comparing tumor

epithelium from African-American breast cancer patients (AA) with

tumor epithelium from European-American patients (EA) was

analyzed for their relationship with other diseases using the genetic

association database. The red color indicates common associations

between differentially expressed genes in a gene list, e.g., AA versus

EA (all tumors), and other diseases. The disease association analysis

was performed for four gene lists: AA (n = 18) versus EA (n = 17) for

all tumors combined; AA (n = 13) versus EA (n = 5) for ER-negative

tumors, AA (n = 5) versus EA (n = 11) for ER-positive tumors and

ER-positive (n = 16) versus ER-negative tumors (n = 18). Red color

intensity is a surrogate for the strength of the association.

Found at: doi:10.1371/journal.pone.0004531.s001 (0.09 MB

PDF)

Table S1

Found at: doi:10.1371/journal.pone.0004531.s002 (0.04 MB

PDF)

Table S2

Found at: doi:10.1371/journal.pone.0004531.s003 (0.03 MB

PDF)

Table S3

Found at: doi:10.1371/journal.pone.0004531.s004 (0.02 MB

PDF)

Table S4

Found at: doi:10.1371/journal.pone.0004531.s005 (0.01 MB

PDF)
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